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Abstract 
 

Convolutional Neural Networks (CNNs) have been 

established as a powerful class of models for image 

recognition problems. Encouraged by these results, we 

provide an extensive empirical evaluation of CNNs on 

large- scale video classification using a new dataset of 1 

million YouTube videos belonging to 487 classes. We 

study multiple approaches for extending the connectivity 

of a CNN in time domain to take advantage of local spatio-

temporal information and suggest a multi-resolution, 

foveated architecture as a promising way of speeding up 

the training. Our best spatio-temporal networks display 

significant performance improvements compared to strong 

feature-based baselines (55.3% to 63.9%), but only a 

surprisingly modest improvement compared to single-

frame models (59.3% to 60.9%). We further study the 

generalization performance of our best model by retraining 

the top layers on the UCF- 101 Action Recognition dataset 

and observe significant performance improvements 

compared to the UCF-101 baseline model (63.3% up from 

43.9%). 

 

Keywords: Convolutional Neural Networks, spatio-

temporal, multi-resolution, foveated architecture, 

empirical evaluation. 

 
1. Introduction 

Images and videos have become ubiquitous on the 

internet, which has encouraged the development of 

algorithms that can analyze their semantic content for 

various applications, including search and summarization. 

Recently, Convolutional Neural Networks (CNNs) [15] 

have been demonstrated as an effective class of models for 

understanding image content, giving state-of-the-art 

results on image recognition, segmentation, detection and 

retrieval [11, 3, 2, 20, 9, 18]. The key enabling factors 

behind these results were techniques for scaling up the 

networks to tens of millions of parameters and massive 

labeled datasets that can support the learning process. 

Under these conditions, CNNs have been shown to learn 

powerful and interpretable image features [28].  

 

 

Encouraged by positive results in do- main of images, we 

study the performance of CNNs in Multi-scale video 

classification, where the networks have access to not only 

the appearance information present in single, static images, 

but also their complex temporal evolution. There are several 

challenges to extending and applying CNNs in this setting. 

From a practical standpoint, there are currently no video 

classification benchmarks that match the scale and variety 

of existing image datasets because videos are significantly 

more difficult to collect, annotate and store. To obtain 

sufficient amount of data needed to train our CNN 

architectures, we collected a new Sports-1M dataset, which 

consists of 1 million YouTube videos belonging to a 

taxonomy of 487 classes of sports. We make Sports-1M 

available to the re- search community to support future 

work in this area. 

From a modeling perspective, we are interested in 

answering the following questions: what temporal 

connectivity pattern in a CNN architecture is best at taking 

advantage of local motion information present in the video? 

How does the additional motion information influence the 

predictions of a CNN and how much does it improve 

performance over- all? We examine these questions 

empirically by evaluating multiple CNN architectures that 

each take a different approach to combining information 

across the time domain. 

From a computational perspective, CNNs require 

extensively long periods of training time to effectively 

optimize the millions of parameters that parametrize the 

model. This difficulty is further compounded when 

extending the connectivity of the architecture in time 

because the network must process not just one image but 

several frames of video at a time. To mitigate this issue, 

we show that an effective approach to speeding up the 

runtime performance of CNNs is to modify the 

architecture to contain two separate streams of processing: 

a context stream that learns features on low-resolution 

frames and a high-resolution fovea stream that only operates 

on the middle portion of the frame. We 
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analyze a 2-4x increase in runtime performance of the net- 

work because of the reduced dimensionality of the input, 

while retaining the classification accuracy. 

At last, a question that arises is whether features learned 

on the Sports-1M dataset are generic enough to generalize 

to a different, smaller dataset. We investigate the transfer 

learning problem empirically, achieving significantly 

better performance (65.4%, up from 41.3%) on UCF-101 

by re-purposing low-level features learned on the Sports-

1M dataset than by training the entire network on UCF-

101 alone. Furthermore, since only some classes in UCF-

101 are related to sports, we can quantify the relative 

improvements of the transfer learning in both settings. 

Our contributions can be summarized as follows: 

We provide extensive experimental evaluation of 

multiple approaches for extending CNNs into video 

classification on a multi-scale dataset of 1 million 

videos with 487 categories (which we release as 

Sports-1M dataset) and report significant gains in 

performance over strong feature-based baselines. 

We highlight an architecture that processes input at two 

spatial resolutions - a low-resolution context stream 

and a high-resolution fovea stream - as a promising 

way of improving the runtime performance of CNNs 

at no cost in accuracy. 

We apply our networks to the UCF-101 dataset and re- 

port significant improvement over feature-based state- 

of-the-art results and baselines established by training 

networks on UCF-101 alone. 

2. Related Work 

The standard approach to video classification [26, 16, 

21, 17] involves three major stages: First, local visual 

features that describe a region of the video are extracted 

either densely [25] or at a sparse set of interest points [12, 

8]. Next, the features get combined into a fixed-sized 

video- level description. One popular approach is to 

quantize all features using a learned k-means dictionary 

and accumulate the visual words over the duration of the 

video into histograms of varying spatio-temporal positions 

and extents [13].   Lastly, a classifier (such as an SVM) is 

trained on the resulting ”bag of words” representation to 

distinguish among the visual classes of interest. 

Convolutional Neural Networks [15] are a biologically- 

inspired class of deep learning models that replace all three 

stages with a single neural network that is trained end to 

end from raw pixel values to classifier outputs. The spatial 

structure of images is explicitly taken advantage of for 

regularization through restricted connectivity between 

layers (local filters), parameter sharing (convolutions) and 

special local invariance-building neurons (max pooling). 

Thus, these architectures effectively shift the required  

 

 

 

 

 

engineering from feature design and accumulation 

strategies to design of the network connectivity structure 

and hyper-parameter choices. Due to computational 

constraints, CNNs have until recently been applied to 

relatively small scale image recognition problems (on 

datasets such as MNIST, CIFAR- 10/100, NORB, and 

Caltech-101/256), but improvements on GPU hardware 

have enabled CNNs to scale to networks of millions of 

parameters, which has in turn led to significant 

improvements in image classification[11], object detection 

[20, 9], scene labeling [3], indoor segmentation [4] and 

house number digit classification [19]. Additionally, 

features learned by large networks trained on ImageNet 

[7] have been shown to yield state-of-the-art performance 

across many standard image recognition datasets when 

classified with an SVM, even with no fine-tuning [18]. 

Compared to image data domains, there is relatively 

little work on applying CNNs to video classification. 

Since all (KTH, Weizmann, UCF Sports, IXMAS, 

Hollywood 2, UCF-50) only contain up to few thousand 

clips and up to few dozen classes. Even the largest 

available datasets such as CCV (9,317 videos and 20 

classes) and the recently introduced UCF-101[22] (13,320 

videos and 101 classes) are still dwarfed by available 

image datasets in the number of instances and their variety 

[7]. Despite these limitations, some extensions of CNNs 

into the video domain have been explored. [1] and [10] 

extend an image CNN to video domains by treating space 

and time as equivalent dimensions of the input and 

perform convolutions in both time and space. We consider 

these extensions as only one of the possible generalizations 

in this work. Unsupervised learning schemes for training 

spatio-temporal features have also been developed, based 

on Convolutional Gated Restricted Boltzmann Machines 

[23] and Independent Subspace Analysis [14]. In contrast, 

our models are trained end to end fully supervised. 

3. Models 

Unlike images which can be cropped and rescaled to a 

fixed size, videos vary widely in temporal extent and can- 

not be easily processed with a fixed-sized architecture. In 

this work we treat every video as a bag of short, fixed-sized 

clips. Since each clip contains several contiguous frames 

in time, we can extend the connectivity of the network in 

time dimension to learn spatio-temporal features. There are 

multiple options for the precise details of the extended 

connectivity and we describe three broad connectivity 

pattern categories (Early Fusion, Late Fusion and Slow 

Fusion) be- low. Afterwards, we describe a multi-resolution 

architecture for addressing the computational efficiency. 

• 

• 

• 
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Figure 1: Explored approaches for fusing information over 

temporal dimension through the network. Red, green and 

blue boxes indicate convolutional, normalization and 

pooling layers respectively. In the Slow Fusion model, the 

depicted columns share parameters. 

 

3.1. Time Information Fusion in CNNs 

We investigate several approaches to fusing information 

across temporal domain (Figure 1): the fusion can be done 

early in the network by modifying the first layer convolu- 

tional filters to extend in time, or it can be done late by 

placing two separate single-frame networks some distance 

in time apart and fusing their outputs later in the 

processing. We first single-frame CNN and then discuss its 

extensions in time according to different types of fusion. 

Single-frame. We use a single-frame baseline 

architecture to understand the contribution of static 

appearance to the classification accuracy. This network is 

similar to the ImageNet challenge winning model [11], but 

accepts in- puts of size 170     170     3 pixels instead of 

the original 224     224     3. Using shorthand notation, the 

full architecture  is  C(96, 11, 3)-N -P -C(256, 5, 1)-N -P -

C(384, 3, 1)-C(384, 3, 1)-C(256, 3, 1)-P -FC(4096)-

FC(4096),  where C(d, f, s) indicates a convolutional layer 

with d filters of spatial size f   f , applied to the input with 

stride s. FC(n) is a fully connected layer with n nodes. All 

pooling layers P pool spatially in non-overlapping 2 2 

regions and all normalization layers N are defined as 

described in Krizhevsky et al. [11] and use the same 

parameters: k = 2, n = 5, α = 

10
−4

, β = 0.5. The final layer is connected to a softmax 
classifier with dense connections. 

Early Fusion. The Early Fusion extension combines in- 

formation across an entire time window immediately on the 

pixel level. This is implemented by modifying the filters on 

the first convolutional layer in the single-frame model by 

extending them to be of size 11    11     3     T pixels, where 

T is some temporal extent (we use T = 10, or approxi- 

mately a third of a second). The early and direct 

connectivity to pixel data allows the network to precisely 

detect local motion direction and speed. 

Late Fusion. The Late Fusion model places two 

separate single-frame networks (as described above, up to 

last convolutional layer C(256, 3, 1) with shared 

parameters a distance of 15 frames apart and then merges 

the two streams 

in the first fully connected layer. Therefore, neither single- 

frame tower alone can detect any motion, but the first fully 

connected layer can compute global motion characteristics 

by comparing outputs of both towers. 

Slow Fusion. The Slow Fusion model is a balanced 

mix between the two approaches that slowly fuses temporal 

information throughout the network such that higher layers 

get access to progressively more global information in 

both spatial and temporal dimensions. This is implemented 

by extending the connectivity of all convolutional layers 

in time and carrying out temporal convolutions in addition 

to spatial convolutions to compute activations, as seen in 

[1, 10]. In the model we use, the first convolutional layer is 

extended to apply every filter of temporal extent T = 4 on 

an input clip of 10 frames through valid convolution with 

stride 2 and produces 4 responses in time. The second and 

third layers above iterate this process with filters of 

temporal extent T = 2 and stride 2. Thus, the third 

convolutional layer has access to information across all 10 

input frames. 

3.2. Multi-resolution CNNs 

Since CNNs normally take on orders of weeks to train on 

multi-scale datasets even on the fastest available GPUs, 

the runtime performance is a critical component to our 

ability to experiment with different architecture and hyper-

parameter settings. This motivates approaches for 

speeding up the models while still retaining their 

performance. There are multiple fronts to these endeavors, 

including improvements in hardware, weight quantization 

schemes, better optimization algorithms and initialization 

strategies, but in this work we focus on changes in the 

architecture that enable faster running times without 

sacrificing performance. 

One approach to speeding up the networks is to reduce 

the number of layers and neurons in each layer, but similar 

to [28] we found that this consistently lowers the 

performance. Instead of reducing the size of the network, 

we conducted further experiments on training with images 

of lower resolution. However, while this improved the 

running time of the network, the high-frequency detail in 

the images proved critical to achieving good accuracy. 

Fovea and context streams. The proposed multi-

resolution architecture aims to strike a compromise by 

having two separate streams of processing over two spatial 

resolutions (Figure 2). A half the original spatial 

resolution (89 89 pixels), while the fovea stream receives 

the center 89 89 region at the original resolution. In this 

way, the total  input dimensionality is halved. Notably, 

this design takes advantage of the camera bias present in 

many online videos, since the object of interest often 

occupies the center region. Architecture changes. Both 

streams are processed by identical network as the full 

frame models, but starting at 
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Figure 2: Multi-resolution CNN architecture. Input frames 

are fed into two separate streams of processing: a 

context stream that models low-resolution image and a 

fovea stream that processes high-resolution center crop. 

Both streams consist of alternating convolution (red), 

normalization (green) and pooling (blue) layers. Both 

streams con- verge to two fully connected layers (yellow). 

 
89 89 clips of video. Since the input is only of half the 

spatial size as the full-frame models, we take out the last 

pooling layer to ensure that both streams still terminate in a 

layer of size 7 7 256. The activations from both streams 

are concatenated and fed into the first fully connected layer 

with dense connections. 

3.3. Learning 

Optimization. We use Downpour Stochastic Gradient 

Descent [6] to optimize our models across a computing 

cluster. The number of replicas for each model varies 

between 10 and 50 and every model is further split 

across 4 to 32 partitions. We use mini-batches of 32 

examples, momentum of 0.9 and weight decay of 0.0005. 

All models are 

initialized with learning rates of 1e
−3

 and this value is 

further reduced by hand whenever the validation error 

stops improving. 

Data augmentation and preprocessing. Following 

[11], we take advantage of data augmentation to reduce the 

effects of overfitting. Before presenting an example to a net - 

work, we preprocess all images by first cropping to center 

region, resizing them to 200 200 pixels, randomly 

sampling a 170 170 region, and finally randomly flipping 

the images horizontally with 50% probability. These 

preprocessing steps are applied consistently to all frames 

that are part of the same clip. As a last step of preprocessing 

we sub- tract a constant value of 117 from raw pixel 

values, which is the approximate value of the mean of all 

pixels in our images. 

4. Results 

We first present results on our Sports-1M dataset and 

qualitatively analyze the learned features and network pre- 

dictions. We then describe our transfer learning 

experiments on UCF-101. 

4.1. Experiments on Sports-1M 

Dataset. The Sports-1M dataset consists of 1 million 

YouTube videos annotated with 487 classes. The classes 

are arranged in a manually-accurate taxonomy that 

contains internal nodes such as Aquatic Sports, Team 

Sports, Winter Sports, Ball Sports, Combat Sports, Sports 

with Animals, and generally becomes fine-grained by the 

leaf level. For example, our dataset contains 6 different 

types of bowling, 7 different types of American football 

and 23 types of billiards. 

There are 1000-3000 videos per class and approximately 

5% of the videos are annotated with more than one class. 

The annotations are produced automatically by analyzing 

the text metadata surrounding the videos. Thus, our data is 

weakly annotated on two levels: first, the label of a video 

may be wrong if the tag prediction algorithm fails or if the 

provided description does not match the video content, and 

second, even when a video is correctly annotated it may still 

exhibit significant variation on the frame level. For 

example, a video tagged as soccer may contain several 

shots of the scoreboard, interviews, news anchors, the 

crowd, etc. 

We split the dataset by assigning 70% of the videos to 

the training set, 10% to a validation set and 20% to a test 

set. As YouTube may contain duplicate videos, it is 

possible that the same video could appear in both the 

training and test set. To get an idea about the extent of this 

problem we processed all videos with a near-duplicate 

finding algorithm on the frame level and determined that 

only 1755 videos (out of 1 million) contain a significant 

fraction of near-duplicate frames. Furthermore, since we 

only use a random collection of up to 100 half-second 

clips from every video and our videos are 5 minutes and 

36 seconds in length on average, it is unlikely that the 

same frames occur across data splits. 

Training. We trained our models over a period of one 

month, with models processing approximately 5 clips per 

second for full-frame networks and up to 20 clips per 

second for multi-resolution networks on a single model 

replica. The rate of 5 clips per second is roughly 20 times 

slower than what one could expect from a high-end GPU, 

but we expect to reach comparable speeds overall given that 

we use 10-50 model replicas. We further estimate the size 

of our dataset of sampled frames to be on the order of 50 

million examples and that our networks have each seen 

approximately 500 million examples throughout the 

training period in total. 

Video-level predictions. To produce predictions for an 

entire video we randomly sample 20 clips and present each 

clip individually to the network. Every clip is propagated 

through the network 4 times (with different crops and flips) 
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Figure 4: Predictions on Sports-1M test data. Blue (first row) indicates ground truth label and the bars below show model 

predictions sorted in decreasing confidence. Green and red distinguish correct and incorrect predictions, respectively. 
 

Model Clip Hit@1 Video Hit@1 Video Hit@5 

Feature Histograms + Neural Net - 57.3 - 

Single-Frame 43.1 58.3 78.7 

Single-Frame + Multires 44.4 61.0 79.5 
Single-Frame Fovea Only 30.0 49.9 72.8 

Single-Frame Context Only 39.1 57.0 78.2 

Early Fusion 39.9 58.7 77.8 

Late Fusion 41.7 60.3 79.7 

Slow Fusion 42.9 61.9 81.2 

CNN Average (Single+Early+Late+Slow) 42.4 64.9 83.4 

Table 1: Results on the 200,000 videos of the Sports-1M test set. Hit@k values indicate the fraction of test samples that 

contained at least one of the ground truth labels in the top k predictions. 
 

and the network class predictions are averaged to produce a 

more robust estimate of the class probabilities. To produce 

video-level predictions we opted for the simplest approach 

of averaging individual clip predictions over the durations 

of each video. We expect more elaborate techniques to 

further improve performance but consider these to be 

outside of the scope of the paper. 

Feature histogram baselines. In addition to comparing 
CNN architectures among each other, we also report the ac- 

curacy of a feature-based approach. Following a standard 

bag-of-words pipeline we extract several types of features 

at all frames of our videos, discretize them using k-means 

vector quantization and accumulate words into histograms 

with spatial pyramid encoding and soft quantization. 

Every histogram is normalized to sum to 1 and all 

histograms are concatenated into a 25,000 dimensional 

video-level feature vector.  

 

Our features are similar to Yang & Toderici[27] and 

consist of local features (HOG [5], Texton [24], Cuboids [8], 

etc.) extracted both densely and at sparse interest points, as 

well as global features (such as Hue- Saturation, Color 

moments, number of faces detected). As a classifier we use a 

multilayer neural network with Rectified Linear Units 

followed by a Softmax classifier. We found that a multilayer 

network performs consistently and significantly better than 

linear models on separate validation experiments. 

Furthermore, we performed extensive cross- validations 

across many of the network’s hyper-parameters by training 

multiple models and choosing the one with best performance 

on a validation set. The tuned hyper parameters include the 

learning rate, weight decay, the number of hidden layers 

(between 1-2), dropout probabilities and the 
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Figure 5: Examples that illustrate qualitative differences between single-frame network and Slow Fusion (motion-aware) 

network in the same color scheme as Figure 4. A few classes are easier to disambiguate with motion information (left three). 

 

  
Figure 3: Filters learned on first layer of a multi-resolution 

network. Left: context stream, Right: fovea stream. 

Notably, the fovea stream learns grayscale, high-frequency 

features while the context stream models lower frequencies 

and colors. GIFs of moving video features can be found on 

our website (linked on first page). 

 
number of nodes in all layers. 

Quantitative results. The results for the Sports-1M 

dataset test set, which consists of 200,000 videos and 

4,000,000 clips, are summarized in Table 1. As can be 

seen from the table, our networks consistently and 

significantly outperform the feature-based baseline. We 

emphasize that the feature-based approach computes visual 

words densely over the duration of the video and produces 

predictions based on the entire video-level feature vector, 

while our networks only see 20 randomly sampled clips 

individually. Moreover, our networks seem to learn well 

despite significant label noise: the training videos are 

subject to incorrect annotations and even the correctly-

labeled videos often contain a large amount of artifacts 

such as text, effects, cuts, and logos, none of which we 

attempted to filter out explicitly. 

Compared to the wide gap relative to the feature-based 

baseline, the variation among different CNN architectures 

turns out to be surprisingly insignificant. Notably, the 

single-frame model already displays strong performance. 

Furthermore, we observe that the foveated architectures are 

between 2-4 faster in practice due to reduced input 

dimensionality. The precise speedups are in part a function 

of the details of model partitioning and our implementation, 

but in our experiments we observe a speedup during 

training of 6 to 21 clips per second (3.5x) for the single-

frame model and 5 to 10 clips per second (2x) for the Slow 

Fusion model. 

Contributions of motion. We conduct further exper 

Table 2: Classes for which a (motion-aware) Slow Fusion 

CNN performs better than the single-frame CNN (left) and 

vice versa (right), as measured by difference in per-class 

average precision. 

 

 

iments to understand the differences between the single- 

frame network and networks that have access to motion in- 

formation. We choose the Slow Fusion network as a 

representative motion-aware network because it performs 

best. We compute and compare the per-class average 

precision for all Sports classes and highlight the ones that 

exhibit largest differences (Table 2). Manually inspecting 

some of the associated clips (Figure 5), we qualitatively 

observe that the motion-aware network clearly benefits 

from motion in- formation in some cases, but these seem to 

be relatively un- common. On the other hand, balancing the 

improvements from access to motion information, we 

observe that motion- aware networks are more likely to 

underperform when there is camera motion present. We 

hypothesize that the CNNs struggle to learn complete 

invariance across all possible an- gles and speeds of camera 

translation and zoom. 

Qualitative analysis. Our learned features for the first 

convolutional layer can be inspected on Figure 3. 

Interestingly, the context stream learns more color features 

while the high-resolution fovea stream learns high 

frequency grayscale filters. 

As can be seen on Figure 4, our networks produce 

interpretable predictions and generally make reasonable 

mis- takes.   Further analysis of the confusion matrix 

(attached in the supplementary material) reveals that most 

errors are among the fine-grained classes of our dataset. 

For exam- ple, the top 5 most commonly confused pairs of 

classes are deer hunting vs. hunting, hiking vs. 

backpacking, powered paragliding vs. paragliding, 

sledding vs. toboggan, and bu- jinkan vs. ninjutsu. 

Sports class ∆ AP ∆ AP Sports class 

Juggling Club 0.12 -0.07 Short Track Motor Racing 

Pole Climbing 0.10 -0.07 Road Racing 

Mountain Unicycling 0.08 -0.07 Jeet Kune Do 

Tricking 0.07 -0.06 Paintball 

Footbag 0.07 -0.06 Freeride 

Skipping Rope 0.06 -0.06 Cricket 

Rope Climbing 0.06 -0.06 Wrestling 

Slacklining 0.05 -0.06 Modern Pentathlon 

Tee Ball 0.05 -0.06 Krav Maga 

Sheepdog Trial 0.05 -0.05 Rally Cross 
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Table 3: Results on UCF-101 for various Transfer Learning 

approaches using the Slow Fusion network. 

 

4.2. Transfer Learning Experiments on UCF-101 

The results of our analysis on the Sports-1M dataset 

indicate that the networks learn powerful motion features. 

A natural question that arises is whether these features also 

generalize to other datasets and class categories. We ex- 

amine this question in detail by performing transfer 

learning experiments on the UCF-101 [22] Activity 

Recognition dataset.   The dataset consists of 13,320 videos 

belonging to 101 categories that are separated into 5 broad 

groups: Human-Object interaction (Applying eye makeup, 

brushing teeth, hammering, etc.), Body-Motion (Baby 

crawling, push ups, blowing candles, etc.), Human-Human 

interaction (Head massage, salsa spin, haircut, etc.), 

Playing Instruments (flute, guitar, piano, etc.) and Sports. 

This grouping allows us to separately study the 

performance improvements on Sports classes relative to 

classes from unrelated videos that are less numerous in our 

training data. 

Transfer learning. Since we expect that CNNs learn 

more generic features on the bottom of the network (such 

as edges, local shapes) and more intricate, dataset-specific 

features near the top of the network, we consider the 

following scenarios for our transfer learning experiments: 

Fine-tune top layer. We treat the CNN as a fixed feature 

extractor and train a classifier on the last 4096-dimensional 

layer, with dropout regularization. We found that as little as 

10% chance of keeping each unit active to be effective. 

Fine-tune top 3 layers. Instead of only retraining the 

final classifier layer, we consider also retraining both fully 

connected layers. We initialize with a fully trained Sports 

CNN and then begin training the top 3 layers. We intro- 

duce dropout before all trained layers, with as little as 10% 

chance of keeping units active. 

Fine-tune all layers. In this scenario we retrain all net- 

work parameters, including all convolutional layers on the 

bottom of the network. 

Train from scratch. As a baseline we train the full net- 

work from scratch on UCF-101 alone. 

Results. To prepare UCF-101 data for classification we 

sampled 50 clips from every video and followed the same 

evaluation protocol as for Sports across the 3 suggested 

folds. We reached out to the authors of [22] to obtain the 

YouTube video IDs of UCF-101 videos, but unfortunately 

Table 4: Mean Average Precision of the Slow Fusion net- 

work on UCF-101 classes broken down by category groups. 

 
these were not available and hence we cannot guarantee that 

the Sports-1M dataset has no overlap with UCF-101. How- 

ever, these concerns are somewhat mitigated as we only use 

a few sampled clips from every video. 

We use the Slow Fusion network in our UCF-101 

experiments as it provides the best performance on Sports-

1M. The results of the experiments can be seen on Table 3. 

Interestingly, retraining the softmax layer alone does not 

per- form best (possibly because the high-level features are 

too specific to sports) and the other extreme of fine-tuning 

all layers is also not adequate (likely due to overfitting). 

In- stead, the best performance is obtained by taking a 

balanced approach and retraining the top few layers of the 

network. Lastly, training the entire network from scratch 

consistently leads to massive overfitting and dismal 

performance. 

Performance by group. We further break down our 

performance by 5 broad groups of classes present in the 

UCF- 101 dataset. We compute the average precision of 

every class and then compute the mean average precision 

over classes in each group. As can be seen from Table 4, 

large fractions of our performance can be attributed to the 

Sports categories in UCF-101, but the other groups still 

display impressive performance considering that the only 

way to ob- serve these types of frames in the training data is 

due to label noise. Moreover, the gain in performance 

when retraining only the top to retraining the top 3 layers 

is almost entirely due to improvements on non-Sports 

categories: Sports performance only decreases from 0.80 to 

0.79, while mAP improves on all other categories. 

5. Conclusions 
We studied the performance of convolutional neural net- 

works in multi-scale video classification. We found that 

CNN architectures are capable of learning powerful 

features from weakly-labeled data that far surpass feature- 

based methods in performance and that these benefits are 

surprisingly robust to details of the connectivity of the 

architectures in time. Qualitative examination of network 

out- puts and confusion matrices reveals interpretable 

errors. 

Our results indicate that while the performance is not 

particularly sensitive to the architectural details of the 

connectivity in time, a Slow Fusion model consistently 

per- forms better than the early and late fusion alternatives

Group mAP 
from 

scratch 

mAP 
fine-tune 

top 3 

mAP 
fine-tune 

top 
Human-Object Interaction 0.26 0.55 0.52 

Body-Motion Only 0.32 0.57 0.52 

Human-Human Interaction 0.40 0.68 0.65 

Playing Musical Instruments 0.42 0.65 0.46 

Sports 0.57 0.79 0.80 

All groups 0.44 0.68 0.66 

 

Model 3-fold Accuracy 

Soomro et al [22] 43.9% 

Feature Histograms + Neural Net 59.0% 

Train from scratch 41.3% 

Fine-tune top layer 64.1% 

Fine-tune top 3 layers 65.4% 

Fine-tune all layers 62.2% 
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Surprisingly, we find that a single-frame model already 

displays very strong performance, suggesting that local 

motion cues may not be critically important, even for a 

dynamic dataset such as Sports. An alternative theory is that 

more careful treatment of camera motion may be necessary 

(for example by extracting features in the local coordinate 

sys- tem of a tracked point, as seen in [25]), but this 

requires significant changes to a CNN architecture that we 

leave for future work. We also identified mixed-resolution 

architectures that consist of a low-resolution context and a 

high- resolution fovea stream as an effective way of 

speeding up CNNs without sacrificing accuracy. 

Our transfer learning experiments on UCF-101 suggest 

that the learned features are generic and generalize other 

video classification tasks. In particular, we achieved the 

highest transfer learning performance by retraining the top 

3 layers of the network. 

In future work we hope to incorporate broader categories 

in the dataset to obtain more powerful and generic 

features, investigate approaches that explicitly reason 

about camera motion, and explore recurrent neural 

networks as a more powerful technique for combining clip-

level predict ions into global video-level predictions. 
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