

A Review on Control of the Underwater Vehicles

KANTUBHUKTA DINESH¹, NARENDRA.D², J.VIJAYCHANDRA³, B.SESHASAI⁴, K.VEDAPRAKASH⁵

^{1,2,3,4,5}DEPARTMENT OF LECTRICAL AND ELECTRONICS & LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Abstract -This paper focused on the motion control of the underwater vehicles and also the evaluation of the underwater vehicles motion control techniques from past few decades. Underwater Vehicles became more popular in the naval forces from the past few decades for its tremendous defence operations under the water. It provides the unmanned operations where human life is safe for the usage of this vehicles during wars. In Under the water there are some challenges in control of the vehicles. This makes the improvement in the control system of the underwater vehicles In this paper we mostly look on to the motion control system of the underwater vehicles.

Key Words:Underwater vehicles, Stability of the Underwater vehicles, Motion Control of UV.

1.INTRODUCTION

In recent trends there is a drastic increase on the research on Unmanned under water vehicles (UUAV). There are many applications are developed in unmanned underwater vehicles such as Remote Operated Vehicles (ROV) and an autonomous Underwater Vehicles (AUVs). While designing these applications the oceanography survey is taken into consideration on bathymetric measurements, underwater maintenance activities like those performed at oil platforms, fibre optic communication lines and also the defence forces. For the design of the vehicle guidance and control necessitates an understanding of a wide range of disciplines like vectorial kinematics and dynamics, hydrodynamics, navigation systems and control theory [1]. The parametric uncertainties like added mass, hydrodynamic coefficients, as well as non-linear and coupled dynamics are the major issues with autonomous Underwater Vehicle control [2]. There are Several engineering issues relating to the high density, non-uniform, and unstructured seawater environment (disturbances) as well as the vehicle's nonlinear reaction must be considered to achieve a high degree of autonomy [3].

2. LITERATURE OF RESEARCH ANALYSIS ON THE CONTROL OF UNDERWATER VEHICLE

When the literature regarding the underwater vehicles is analyzed, it can be observed that the term 'control' addresses a broad range of research studies. To our belief, these studies can be classified under three main categories listed below and a schematic explanation is given in Fig. 1: - Motion control: Focuses on subjects such as the platform response to an input and stability of a remotely operated/autonomous underwater vehicle, - Mission control: Focuses on the execution of the behavioural modelling of an autonomous underwater platform, where this behaviour is predefined parametrically, -Formation control: Focuses on coordinated behaviour of multiple autonomous underwater vehicles (i.e. swarms or platoons), where motion control has been under investigation of several researchers especially since the pioneering studies of Fossen and Sagatun [4]. Initial solid contributions on this topic, which constitute the main focus of this review study, have beenpublished in early 1990s. That decade later witnessed the studies regarding motion control; and in the current decade, concentration has increased on the improvement of swarm formations

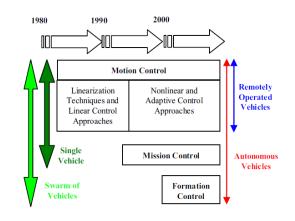


Figure -1: Study on motion control

2.1. GENERAL NOTATION FOR THE MOTION OF MARINE VEHICLES

The motion of marine vehicles can be described in 6 degrees of freedom (DOF), since 6 independent coordinates are ecessary to determine the position and orientation of a rigid body. The six different motion components are defined as 'surge', 'sway', 'heave', 'roll', 'pitch' and 'yaw', as shown in Table 1. When analysing the motion of marine vehicles in 6 DOF, it is convenient to define two coordinate frames as indicated in Fig. 2. The moving coordinate frame X0Y0Z0 is fixed to the vehicle and referred to as 'the body-fixed reference frame'. The origin O of the body-fixed frame is usually chosen to coincide with the 'centre of gravity (CG)', when CG is in the principal plane of symmetry or at any other convenient point if this is not the case.

Ι

 Table -1 Notations used for under water vehicles

DOF		forces and moments	linear and angular vel.	positions and Euler angles
1	motions in the <i>x</i> -direction (surge)	X	и	x
2	motions in the <i>y</i> -direction (sway)	Y	v	у
3	motions in the <i>z</i> -direction (heave)	Ζ	w	Ζ
4	rotation about <i>x</i> -axis (roll)	K	р	ϕ
5	rotation about y-axis (pitch)	M	q	θ
6	rotation about z-axis (yaw)	N	r	ψ

By this Equation (1)-(3) α denotes the position andorientation vector with coordinates in the earthfixed frame, v denotes the linear and angular velocity vector with coordinates in the body-fixed frame and is used to describe the forces and moments acting on the vehicle in the body-fixed frame and τ is used to describe the forces andmoments acting on the vehicle in the body-fixed frame.

The rotation sequence according to the *xyz*-conventionshowing both the linear (u, v, w) and angular (p, q, r) velocities, is depicted in Fig. 3.

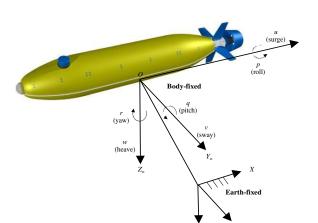
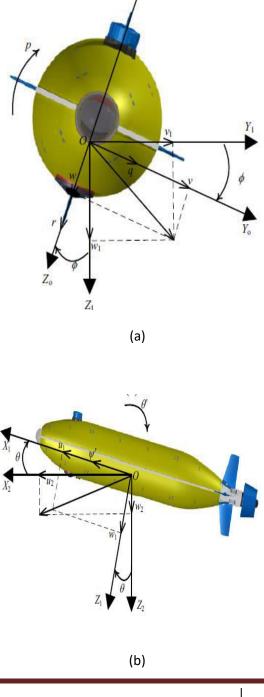
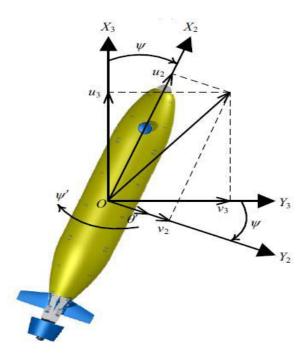


Figure-2. Body-fixed and earth-fixed reference frames


The motion of the body-fixed frame is described relative to an inertial reference frame. For marine vehicles, it is usuallyassumed that the accelerations of a point on the surface of the Earth can be neglected. As a matter of fact, since the motion of the Earth hardly affects the marine vehicles due to their low speeds, this can be considered as a good approximation. As a result of this, an 'earth-fixed reference frame' *XYZ* can be considered to be inertial. This implies the following:

- The position and orientation of the vehicle should bedescribed relative to the inertial reference frame;
- The linear and angular velocities of the vehicle should beexpressed in the body-fixed coordinate system. Based on the notation shown in Table 1, the general motion of a marine vehicle in 6 DOF can be described by the followingvectors [1]:


$$\alpha = [\alpha_1^T, \alpha_2^T]^T$$
Where $\alpha_1 = [x, y, z]^T$ and $\alpha_2 = [\phi, \theta, \psi]^T - (1)$

$$v = [v_1^T, v_2^T]^T$$
Where $v_1 = [u, v, w]^T$ and $v_2 = [p, q, r]^T - (2)$

$$\tau = [\tau_1^T, -\tau_2^T]^T$$
Where $\tau_1 = [X, Y, Z]$ and $\tau_2 = [K, M, N]$ -(3)

(c)

Figure - 3. Rotational sequence-based *xyz*-convention

(a)Rotation over roll angle \emptyset about X_1 ($u_1 = u_2$)

(b) Rotation over pitch angle θ about Y_2 ($v_2 = v_1$)

(c) Rotation over heading angle ψ about Z_3 ($w_3 = w_2$)

2.2. STABILITY OF UNDERWATER VEHICLES

Stability of an underwater vehicle can be defined as "theability of returning to an equilibrium state of motion after adisturbance without any corrective action, such as use of thrusterpower control surfaces" [1]. or Hence, maneuverability can be effined as the capability of the vehicle to carry out specificmaneuvers. At this point, the following issue about the stability shall beemphasized. Excessive stability implies very high control effort; whereas it would be easy to control a marginally stable vehicle. Consequently, there exists а compromise between stability andmaneuverability. Furthermore, it makes sense to distinguishbetween controls-fixed (open-loop) and controlsfree (closedloop)stability. The essential difference between these terms can e stated as follows [1]:

• Open-loop stability implies investigating the vehicle's

stability when the control surfaces are fixed, and when he thrust from all the thrusters is constant.

• Closed-loop stability refers to the case when both the control surfaces and the thruster power are allowed tovary. This implies that the dynamics of the controlsystem must also be considered in the stability analysis.

3. MOTION CONTROL OF UNDERWATER VEHICLES

In the presence of environmental disturbances, improvedrobustness and performance for an underwater

vehicle can be achieved using closed-loop control system of PID-type

(proportional, derivative and integral) instead of an open-loop control scheme. In closed-loop control approach, sensor and navigation data are used for feedback. Using a series of controllers of PID-type where each controller is designed for the control of one DOF is a well-known practice for the conventional autopilot design of remotely operated underwater vehicles.

Traditionally, PID controllers used to be applied for the ROV systems. However, most ROV systems for offshore applications used only simple P- and PI-controllers, since derivative action was very sensitive to measurement noise and it was difficult to measure (estimate) the velocity vector. It should be noted that the use of the PID algorithm for control does not guarantee optimal control of the system or system stability, since the system to be controlled shows highly nonlinear behaviour for the underwater vehicle case.

In the early 1990s, decoupled control design approach was mainly applied to unmanned underwater vehicles control problem [5]. In such studies, the main approach was to divide the 6 DOF linear equations of motion into three noninteracting (or loosely interacting) subsystems for speed control, steering and diving. Several closed-loop PIDcontrollers were used for each of the subsystems [6]. The basic tasks in autonomous underwater systems are depth and steering control. Numerous control strategies have been adopted; certainly, all of them have advantages anddisadvantages. It is possible to classify the algorithms into two main groups: Linear and Nonlinear [2].

1) Linear methods: They are designed by using a vehicle'slinear model, identified in a specific behaviour case (nominal forward speed, angle of attack, etc.). These methods enable to control easily a vehicle, but they work in specific conditions and model nonlinearities are not considered. The PID-based methods mentioned in the previous paragraphs also fall into this category, since the mathematical operators applied in these methods (e.g. proportion, integration, differentiation) are linear. An example for the application of PID control to the underwater vehicles is [7]. A modified PD, namely the 'decoupled PD setpoint controller' for UUVs is presented in [8]. Another approach falling into the linear control category is the Linear-Quadratic-Gaussian (LQG) method, which is suitable for uncertain linear systems disturbed by:

- additive white Gaussian noise,

- incomplete state information (i.e.not all the state variables are measured and available for feedback) where the available state information is also disturbed by additive white Gaussian noise and quadratic costs. This method was applied to the underwater vehicle control problem in [9].

Ι

2)Nonlinear methods: In the literature, the nonlinear controlmethods have been applied for particular problems and specific unmanned vehicles developed throughout various research projects. Among those, one of the most commonly used methodologies is the Sliding Mode Control (SMC), a robust control scheme in case of parameter uncertainties.Even though SMC is a nonlinear control method, severalstudies (such as [6] and [10]) still assume linear vehicle model in the nominal control. Another example of SMC using a simplified nonlinear vehicle model for the nominal control is [11]. The main drawback of SMC is the chattering effect, which can excite un-modelled high frequency modes. These modes degrade the performance of the system, and may even lead to instability. Chattering also leads to high wear of fins and increase electrical power consumption. A chattering-free SMC is proposed for the trajectory control of ROVs in [12].

Later, other approaches, which use full nonlinear model, have been proposed. Particularly in [2], Lyapunov and backstepping techniques are used. In [13], PI-type task functionsenabling a conventional Lyapunov-based guidance system to counteract the effects both of unmodeled, i.e., unmeasured kinematic interactions between an UUV and the environment, and of bias in velocity measurements, is introduced. An adaptive nonlinear controller based on traditional back stepping method for diving control of an AUV is presented in [14]. In [2], a method called Higher Order Sliding Mode (HOSM) is implemented in order to avoid the chattering problem and to improve control performance. A nonlinear output-feedback control technique based on the HOSM approach is applied to the motion control problem for an underwater vehicle proto type that is equipped with a special propulsion system based on hydro-jets with variable-section nozzles and the results are presented in [15]. Due to the challenging nature of the underwater vehicle control problem, researchers have been continuing to pursue (general or ad-hoc) novel approaches for the solution throughout the last and the current decades. Regarding their strength and robustness, recent studies have concentrated on intelligent and/or adaptive control methods. State of the art publications on this topic apply neural network based, fuzzy reasoning oriented, even the hybrids of these methods. Due to their capability of estimating various mathematical functions, including highly nonlinear functions, neural networks are powerful tools. Furthermore, in many cases, such networks can be trained to adapt to changing input-output relationships. Hence, neural networks may have a great potential in control systems for nonlinear and unknown systems, such as AUVs [16]. In addition to handling nonlinearity, several other properties of the neural networks make them suitable for control purposes[16]:

- Parallel structure: The parallel structure of neuralnetworks, which facilitates the construction of parallelimplementation of control systems, yields robust andfast processing systems. - Applicability to hardware implementation: Neuralnetworks can easily be implemented in hardware. Anumber of integrated circuits (IC) for artificial neuralnetworks (ANN) purposes are available in the market.

- **Multivariable nature**: Their potential ability to correctlymap functions with many inputs and outputs make neural networks interesting for the control of multivariable systems. Several different neural network controller schemes havebeen suggested and implemented in the past [16], some of which have been particularly applied to the underwater vehicle control problem:

1. Identification and modelling:

- (a) Forward Modelling;
- (b) Direct Inverse Modelling
- (c) Indirect Inverse Modelling.

2. Direct control:

- (a) Supervised Control;
- (b) Direct Inverse Control;
- (c) Model Reference Control;
- (d) Critic Control;
- (e) Internal Model Control; and
- (f) Predictive Control.

Offline learning method has been a simple but a commonway of implementing control systems utilizing neural networks. Since the neural network controller is first trained prior to use (analogous to tuning of a conventional controller), the speed of the resulting network is generally considered to be high enough. During runtime, no weight adjustments take place and the response of the controller is rapid. However, the resulting controller is not adaptive, and hence inaccuracies in the network weights or changes in system parameters are likely to result in poor performance of the controller system. Continuously updating the neural network weights while the controller is in use, is a very powerful alternative to offline training. In adaptive (or online trained) neural network controllers, initially a measure of the system performance is set up, and the controller weights are adjusted in a manner which improves this performance, generally through minimizing some output error. The main challenges of this approach are calculating the optimal weight changes from the system input and output as well as the reference trajectory for the system and ensuring the stability.

In literature, it is observed that most of the network controllers designed for AUVs are direct controllers constituting the main

L

part of the control system. Offline trained, nonadaptive AUV neural network controllers are presented in [17, 18], and online controllers are proposed in [19-25]. In order to have effective robust controllers for various applications, fuzzy logic controllers are being developed and used. It is logical to design a fuzzy controller, if the dynamics of the controlled system is fully known. For motion control of underwater vehicles, fuzzy logic control is presented in [26-28], and the sliding mode fuzzy logic control is presented in [29, 30].

4. CONCLUSIONS

There are some control difficulties of autonomous underwater vehicles which brings out many difficulties, due to non-linear dynamics, the presence of disturbance, and observation noises. The Shallow water phenomena resulting from the interaction of wave dynamics, tidal waves, coastal currents, and artificial objects, particularly in shallow, confined water areas, provide a complex environment for operating unmanned underwater vehicles. There by, controlling Autonomous Underwater Vehicles to satisfactorily track trajectories in shallow waters remains a challenge [30]. For the motion control of underwater vehicles, numerous control strategies have been developed such as Proportional Integral Derivative controller, Linear Quadratic Regulator, Sliding Mode Controller, Neural Network, Fuzzy Logic controllers etc. The neo control techniques are being adopted by the researchers to add those to motion control problem of underwater vehicles. Particularly for the motion control of underwater vehicles, it requires advanced control systems techniques in order to design the intelligent and robust and stable controller that provides an optimal results in terms of handling non-linearity and cost minimization.

There are three different underwater vehicles are being developed:

1.ROV: Remotely operated underwater vehicle that isunder development. It is essentially an unmanned underwater vehicle (UUV) that allows the vehicle's operator to remain in a comfortable environment while the ROV works in the hazardous undersea environment below.

2. Single Shot ROV (SSR): single shot ROV provides Mine Countermeasures (MCM) and Time Critical Strike (TCS) and is in fact, a 'one-shot' mine destructor remotely operated vehicle.

3. AUV: This is an autonomous underwater vehicle. It provides: Intelligence, Surveillance and Reconnaissance (ISR), Mine Countermeasures (MCM), Anti-Submarine Warfare

(ASW),Inspection/Identification,Oceanography,Communicati on/Navigation Network Nodes (CN3), Information Operations (IO), Barrier Patrol (HomelandDefense, Anti-Terrorism/Force Protection), and BarrierPatrol (Sea Base support). Underwater vehicles that are being developed by 'TR Technology Inc.', differ from each other in terms of:

- Autonomy, Navigations aids
- sensors, payload
- Application area
- Mission duration
- Thruster configuration

Obviously, each underwater vehicle should have a motion ontrol system specific to its characteristics and needs. Although, numerous control strategies which were successfully applied for the motion control problem of underwater vehicles exist and are literally accurate, it is hard to determine which approach is the most suitable and furthermore applicable to our cases. Not only for the motion, but also for the mission and adopted and strategies should be carefully chosen in order to acquire robust underwater vehicles that will perform critical applications. For the time being, navigation and motion modelling problems of these vehicles have been solved, and motion control structure is being developed.

ACKNOWLEDGEMENT

I would like to thank my entire department of EEE, LIET without their exceptional support this paper would not been possible.

REFERENCES

[1] T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley & Sons Ltd, ISBN: 0-471-94113-1, 1994.

[2] T. Salgado-Jimenez, J-M. Spiewak, P. Fraisse, and B.Jouvence, "A robust control algorithm for AUV: based on ahigh order sliding mode", Proc. *MTS/IEEE Techno-Oceans'04*, Kobe, Japan, vol. 1, pp. 276-281, November2004.

[3] H. Mahesh, J. Yuh and R. Lakshmi, "A CoordinatedControl of an Underwater Vehicle and RoboticManipulator", *Journal of Robotic Systems*, vol. 8, no. 3, pp.339-370, 1991.

[4] T.I. Fossen, S.I. Sagatun, "Adaptive Control of NonlinearSystems: A Case Study of Underwater Robotic Systems", *Journal of Robotic Systems*, vol. 8, no. 3, pp. 393-412,1991.

[5] A. J. Healey, D. B. Marco, "Slow Speed Flight Control ofAutonomous Underwater Vehicles: Experimental Resultswith the NPS AUV II", Proc. 2nd International Offshoreand Polar Engineering Conference (ISOPE), San Francisco, CA, pp. 523-532, 1992.

[6] A. J. Healey, D. Lienard, "Multivariable sliding modecontrol for autonomous diving and steering of

T

unmannedunderwater vehicles",

OceanicEngineering, vol. 18, pp. 327-339, 1993.

IEEE

Journal

of

"The NDREA-AUV flight control B. Jalving, system", IEEE Journal of Oceanic Eng., vol. 19, no. 4, 1994.

[8] P. Herman, "Decoupled PD set-point controller forunderwater vehicles", Ocean Engineering, vol. 36, no. 6-7,pp. 529-534, May 2009.

[9] A. I. Field, D. Cherchas, S. Calisal, "Optimal control of vehicle", anautonomous underwater Proc. World AutomaticCongress, Hawaii, USA, vol. 1, no. 38, 2000.

[10] R. Cristi, A. F. Papoulias and A. Healey, "Adaptive slidingmode control of autonomous underwater vehicle in the diveplane", IEEE Journal of Oceanic Eng., vol. 15, no. 3, pp.162-160, July 1990.

[11] L. Rodrigues, P. Tavares and M. Prado, "Sliding modecontrol of an AUV in the diving and steering planes", Proc.MTS/IEEE Oceans'06, Fort Lauderdale, Florida, USA, pp.576-583, September 1996.

[12] S. Soylu, B. J. Buckham, R. P. Podhorodeski, "Achattering-free sliding-mode controller for underwatervehicles with faulttolerant infinity-norm thrust allocation", Ocean Engineering, vol. 35, no. 16, pp. 1647-1659,November 2008.

[13] M. Caccia, G. Veruggio, "Guidance and control of underwater unmanned areconfigurable vehicle", ControlEngineering Practice, vol. 8, no. 1, pp. 21-37, January2000.

[14] J-H. Li, P-M. Lee, "Design of an adaptive nonlinearcontroller for depth control of an autonomous underwatervehicle", Ocean Engineering, vol. 32, no. 17-18, pp. 2165-2181, December 2005.

[15] A. Pisano, E. Usai, "Output-feedback control of by anunderwater vehicle prototype higher-order slidingmodes", Automatica, vol. 40, no. 9, pp. 1525-1531,September 2004.

[16] J. Lorentz, J. Yuh, "A Survey and Experimental Study ofNeural Network AUV Control", Proc. IEEE Symposium onAutonomous Underwater Vehicle Technology, pp. 109-116,1996.

[17] V. W. Porto, D. B. Fogel, "Neural Networks for AUVGuidance Control", Sea Technology, vol. 33, no. 2, pp. 25-35, February 1992.

[18] R. M. Sanner, D. L. Akin, "Neuromorphic Pitch AttitudeRegulation of an Underwater Telerobot", IEEE ControlSystems Magazine, vol. 10, no. 3, pp. 62-68, April 1990.

[19] J. Yuh, "A Neural Net Controller for Underwater RoboticVehicles", IEEE J. Oceanic Eng, vol. 15, no. 3, pp. 161-166, 1990.

"Learning Control for [20] J. Yuh, Underwater RoboticVehicles", IEEE Control Systems Magazine, vol. 14, no. 2,pp. 39-46, 1994.

[21] J. Yuh and K. V. Gonugunta, "Learning Control ofUnderwater Robotic Vehicles", Proc. IEEE Int'l Conf. onRobotics and Automation, vol.2, pp. 106-111, 1993.

[22] J. Yuh. and R. Lakshmi, "An Intelligent Control SystemforRemotely Operated Vehicles", IEEE Journal of OceanicEng., vol. 18, no.1, pp.55-62, Jan. 1993.

[23] K. P. Venugopal, R. Sudhakar, A. S. Pandya, "On-Control Autonomous Underwater LineLearning of VehiclesUsing Feed-forward Neural Networks", IEEE Journal ofOceanic Eng., vol. 17, no. 4, pp. 308-318, October 1992.

[24] T. Ura, T. Suto, "Unsupervised Learning System ForVehicle Guidance Constructed With Neural Network", Proc.7th International Symposium on Unmanned UntetheredSubmersible Technology, pp. 203-212, September 23-25,1991.

[25] I.S. Akkizidisa, G.N. Robertsa, P. Ridaob, J. Batlleb,"Designing a Fuzzy-like PD controller for an underwaterrobot", Control Engineering Practice, vol. 11, pp. 471-480,December 2001.

[26] N. Kato, Y. Ito, J. Kojima, K. Asakawa, Y. Shirasaki,"Guidance and control of autonomous underwater vehicleAQUA EXPLORER 1000 for inspection of underwatercables", Proc. 8th Int. Symp. on Unmanned UntetheredSubmersible Technology, pp. 195-211, 1993.

[27] S. M. Smith, G. J. S. Rae, D. T. Anderson, A. M. Shein,"Fuzzy logic control of an autonomous underwater vehicle", Control Engineering Practice, vol. 2, no. 2, pp. 321-331,1994.

[29] F. Song, S. M. Smith, "Design of sliding mode fuzzycontrollers for an autonomous underwater vehicle withoutsystem model", Proc. MTS/IEEE Oceans 2, pp. 835-840,2000.

[28] P.W.J. van de Ven, C. Flanagan, D. Toal, "Neuralnetworkcontrol of underwater vehicles", EngineeringApplications of Artificial Intelligence, vol. 18, no. 5, pp.533-547, August 2005.

[30] J. Guo, F-C. Chiu, C-C. Huang, "Design of a sliding modefuzzy controller for the guidance and control of anautonomous underwater vehicle", Ocean Engineering, vol.30, no. 16, pp. 2137-2155, November 2003.