

An Investigation of Combined Replacement of Cement with Fly ash and Sand with Granulated Blast Furnace Slag Sand

Nishant Meshram, PG Student Civil Department(C&M), DYPCOE, Akurdi, Pune,

Dr. Basavaraj S Balapgol, Professor in Civil Engineering, DYPCOE, Akurdi, Pune,

Mrs. Ashwini Patil, Assistant professor in civil Engineering, DYPCOE, Akurdi, Pune

Abstract The utilization of waste materials from the industries has been continuously gaining emphasis in the construction work recently. The present work is to use Processed Granulated Blast Furnace Slag Sand and Fly ash as combined replacement for river sand and ordinary Portland cement respectively. M35 grade of concrete with W/C 0.4 will be adopted with two percentages of cement replacement by Fly Ash i.e, 30% and 40%, along with this the slag sand is varied from 0% to 100% in step of 20%. In first variation, 30% Fly Ash is replaced by cement and slag sand is varied as 0%, 20%, 40%, 60%, 80% and 100%. In second variation, 40% GGBS is replaced with cement and slag sand is varied as 0%, 20%, 40%, 60%, 80%, and 100%. For all mixes compressive strength, split tensile and flexural strength will be determined at different days of curing. The strength of cube specimens, cylinders and beams will be determined and compared with conventional concrete specimens. The beams are tested for flexure, under two point loading condition. Different parameters will be investigated in detail. In this paper literature is reviewed in detail to understand the experimental analysis.

Keywords — GGBS, Slag Sand, Fly ash, Compressive Strength, Split Tensile strength, Flexural Strength of Beams

I. INTRODUCTION

Concrete is the largest man made material on earth. It contains cement, fine aggregate, coarse aggregate & water. Among these 70% to 75% volume of concrete is occupied by coarse and fine aggregate, rest of about 25% to 30% is cement and water in form of cement paste. Beside these elements, chemical and mineral admixtures are added to enhance the properties of concrete. The large production of cement causes destruction of environment (Global Warming) and the continues use of Natural Sand leads to the depletion of river beds results into the ecological imbalance. Therefore the replacement of cement and natural sand by the industrial waste by-products (Mineral admixtures) has been continuously emphasized during recent years. In this study, the cement is partially replaced by Fly ash and natural sand is partially replaced by slag sand in various percentages. Fly ash and blast furnance slag sand are waste product obtained from Iron and steel manufacturing industry. Therefore the disposal problem of waste material is solved side by side the saving of cement and natural sand can be done.

II. PROBLEM STATEMENT

Worldwide, the cement industry is facing growing challenges in conserving material and energy resources, as well as reducing CO2 emissions.At the same time, the cement industry is facing challenges such as cost increases in energy supply, requirements to reduce CO 2 emissions, and the supply of raw materials in sufficient qualities and amounts so the partial replacement of materials like mineral admixture are used. M Sand is manufactured by crushing hard rocks and quarry stones into pieces. Special Knowledge and Technology is required for production of M – Sand and it is non – renewable resources.

III. AIM AND OBJECTIVES

The main aim of this project is to highlight the performance of concrete with the use of ground granular blast furnace slag sand and fly ash as Supplementary cementitious material in construction industries and to increase its application in concrete.

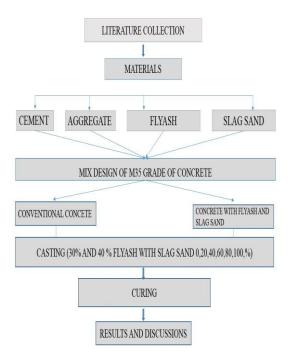
- To study the effect on physical properties concrete combined with fly ash and slag sand by conducting workability tests
- To compare the mechanical properties of fly ash and slag sand concrete, with conventional concrete.
- To check durability Parameters of Concrete with partial replacement of Cement with fly ash and aggregates with slag sand.

• To carry out Economic Feasibility comparing conventional concrete and and partial replacement of flyash ,slag sand concrete.

IV. LITERATURE REVIEW

Sr.No.	Author	Finding/Outcomes		0
	Name/Research Paper			Ι
1	V.R. Prasath Kumar	• The coarse		I
	et.al -	aggregate is		ł
	Characterization	completely		1
	study on coconut	replaced with		2
	shell concrete with	coconut shell.		
	partial replacement of	• To enhance the		
	cement by GGBS	coconut shell		
		concrete property,		
		cement is partially		
		replaced with		
		GGBS.		
		• The micro-		
		structural		
		characterization		
		has proved that		
		incorporating		
		GGBS has		
		improved the		
		hydration process.		
		• The IMM study has		
		clearly shown		
		improvisation in		
		the interfacial	4	2
		transition zone		(
		(ITZ) of coconut		f
		shell concrete.		ι
				I
2	Meriem Senani et.al -	• The author		١
	Substitution of the	investigates on the		c
	natural sand by	Substitution of the		r
	crystallized slag of	natural sand by		C
	blast furnace in the	crystallized slag of		r
	composition of	blast furnace in the		(
	concrete - Alexandria	totally or partially		ł
	Engineering Journal	composition of		1
	(2016)	concrete.		
		• On adding		
		Crystallized sand		
		slag in proportions		_
		improves the	5	I
		compressive and		
		tensile strength.		ł
		• Interest in reducing		S
		the cost of Concrete.		C

3	Gaurav Singha et.al - Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure - Procedia - Social and Behavioral Sciences 195 (2015) 2272 – 2279	 The compressive strength of concrete increases with increase in GBFS percentage up to a certain percentage and after that it decrease following a Gaussian Model. The most optimum percentage of GBFS to be used in normal conditions considering both strength and economy factor is from 40% to 50% and for marine conditions its from 50% to 60%. The long term strength development of GBFS concrete is almost double of normal conditions.
4	ZemeiWu, et.al - Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes - Construction and Building Materials 136 (2017) 307–313	 The compressive and flexural properties of UHPC with different GGBS or fly ash contents The optimal GGBS and fly ash contents for flexural behavior of UHPC were 40% and 20%, respectively Standard curing under standard, hot water, and steam curing were systematically studied.
5	Aliakbar Gholampour, et.al - Performance of sustainable concretes containing very high	• The Fly Ash and GGBS is partially replaced by weight of high volume of cement by different


INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 04 ISSUE: 10 | OCT -2020

ISSN: 2582-3930

	1
volume Class-F fly	percentages.
ash and ground	• High volume use of
granulated blast	FA and GGBS in
furnace slag - Journal	concrete with the
of Cleaner Production	possibility of
162 (2017)	significantly
1407e1417	reducing its
	environmental
	impact.

V. METHDOLOGY

VI. EXPERIMENTAL INVESTIGATION

A. Cement

OPC 53 Grade cement is required to conform to BIS specification IS:12269-1987 with a designed strength for 28 days being a minimum of 53 MPa or 530 kg/cm². 53 Grade OPC provides high strength and durability to structures because of its optimum particle size distribution and superior crystallized structure.

Table No. 1 - Physical Properties of Cement	No. 1 - Physical Properties	s of Cement
---	-----------------------------	-------------

Sr.	Name of Test	Units	Test	Specified
No.			Results	Limit (IS
				12269-
				2013)
				53 Grade
1	Standard	(%)	42	

				1
	Consistency	Temperature	27+/-2	
2	Density of	(g/cc)	3.2	
	cement			
3	Initial Setting	(min)	195	30 Min
	Time			
4	Final Setting	(min)	280	600 Max
	Time			
5	Soundness by	(mm)	1	10 mm
	Le- Chateliers			Max
	Method			
6	Fineness by	(%)	3.4	10 % Max
	Dry Sieving			
7	3 Days	(N/mm^2)	42	27 Min
	Compressive			
	Strength			
	7 Days		52	37 Min
	Compressive			
	Strength			
	28 Days		65	53 Min
	Compressive			
	Strength			

B. Fly Ash

Fly ash from pulverized coal combustion is categorized as such a pozzolan. Fly ash or flue ash, also known as pulverised fuel ash is a coal combustion product that is composed of the particulates that are driven out of coal-fired boilers together with the flue gases.

Table No. 2 - Physical Properties of Fly Ash				
Sr.	Name of Test	Units	Test	Specified
No.			Results	Limits
1	Standard	%	25	-
	Consistency			
2	Fineness (%	30	50 Max
	Reside on 45			
	micron sieve)			
3	Initial Setting	Minutes	160	-
	Time			
4	Final Setting	Minutes	280	-
	Time			
5	7 Days CS	N/mm ²	30	-
6	28 Days CS	N/mm ²	47	-

C. Coarse Aggregate

Coarse-grained aggregates will not pass through a sieve with 4.75 mm openings (No. 4). Those particles that are predominantly retained on the 4.75 mm (No. 4) sieve and will pass through 3-inch screen, are called coarse aggregate. The coarser the aggregate, the more economical the mix. Larger

pieces offer less surface area of the particles than an equivalent volume of small pieces. Use of the largest permissible maximum size of coarse aggregate permits a reduction in cement and water requirements. Using aggregates larger than the maximum size of coarse aggregates permitted can result in interlock and form arches or obstructions within a concrete form. That allows the area below to become a void, or at best, to become filled with finer particles of sand and cement only and results in a weakened area.

Table No.3 - Sieve analysis for Coarse Aggregate

Fineness Modulus

Details	Result (20 mm)	
Fineness Modulus	8	

 Table No.4 - Specific Gravity & Water Absorption of 20mm Coarse

 Aggregate IS: 2386 (Part 3)

Sr.	Details	CA (20 mm)
No.		
1	Specific Gravity	2.64
2	Apparent Specific Gravity	2.76
3	Water Absorption	1.765

Table No.5 - Aggregate Impact Value IS: 2386 (Part-4)

Sr.	Details	CA (20 mm)
No.		
1	Aggregate Impact Value	18.6 %

Table No.6 - Flakiness and Elongation Test (IS) 2386 Part 1 (For 20mm Aggregate)

Aggregate)			
Sr.	Details	CA (20 mm)	
No.			
1	Flakiness Index%	35.17	
2	Elongation% Index	45.2	
3	Combined (EI+FI) %	80.37	

D. Fine Aggregate

Quality of sand is as much of importance as other materials for concrete. Aggregate most of which pass through 4.75 mm IS sieve is known as fine aggregate. Fine aggregate shall consists of natural sand, crushed stone sand, crushed gravel sand stone dust or arable dust, fly ash and broken brick (burnt clay). Fine aggregate is the essential ingredient in concrete that consists of natural sand or crushed stone. The quality and fine aggregate density strongly influence the hardened properties of the concrete.

Table No.7- Sieve Analysis for Fine Aggregate

Details	Crushed Sand
Fineness Modulus	2.8

Table No.8 - Specific Gravity & Water Absorption Fine Aggregate

Sr.	Details	Fine Aggregate
No.		
1	Specific Gravity	2.7
2	Apparent Specific Gravity	2.84
3	Water Absorption	2.24

E. Slag Sand

Slag sand obtained from JSW, Bellary District is used. Locally available natural sand is also used in the work. Slag sand and natural sand confirming to Zone II asper (IS 383-1970) are used The use of granulated slag as sand in the composition of concrete can meet two objectives that have a direct relationship with the cost of concrete: minimizing the amount of cement in the concrete composition and increasing the mechanical characteristic of concrete.

Table No.9- Sieve Analysis for Slag Sand

Details	Slag Sand
Fineness Modulus	3.357

Table No. 10 - Specific Gravity & Water Absorption Slag Sand

Sr.	Details	Slag Sand
No.		
1	Specific Gravity	2.65
2	Apparent Specific Gravity	2.85
3	Water Absorption	2.86

VII. CONCRETE MIXES

Table No. 11 - M 35 Conventional Concrete

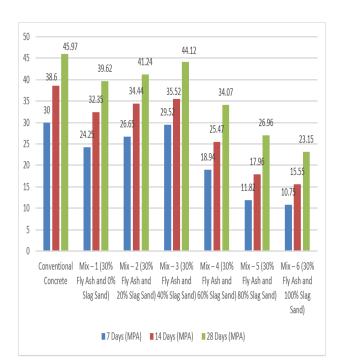
Sr.	Ingredients	Batch	Batch
No.			$0.04m^{3}$
1	Cement	394	15.76
2	Coarse Aggregate	1071.64	42.86
	20mm	6	
3	Crushed Sand	803.019	32.120
4	Water	195.114	7.804
5	Admicture	3.94	0.1576
	Total		98.70

VIII. SPECIMENS, CASTING AND CURING

An electric operated manual laboratory mixer of capacity 0.04 m3 was used for the concrete mixing. Initially, fly ash, Slag Sand, Aggregate and half of the mixing water were mixed in the mixer for two min. After that remaining portion of water mixed with the mixture for two minutes. The workability was measured for each batch in terms of slump. After completion of mixing. process, the obtained fresh concrete was put into the various types of designated moulds like cube, cylinders, beams and kept for a duration of 24 h and Demoulding was done after 24 h and the specimens were

cured under water at 7,14 and 28 days specified period of curing. Concrete specimens such as 150x150x150 mm cubes, 150x300 mm sized cylinders and 150x150x700 mm Beams.

IX. RESULTS AND DISCUSSION


Table No. 11 - Workability Test

Sr. No.	Details of Replacement	Slump
1	Conventional Concrete	125mm
2	Mix – 1 (30% Fly Ash and 0% Slag	125mm
	Sand)	
3	Mix – 2 (30% Fly Ash and 20% Slag Sand)	120mm
4	Mix – 3 (30% Fly Ash and 40% Slag Sand)	120mm
5	Mix – 4 (30% Fly Ash and 60% Slag Sand)	110mm
6	Mix – 5 (30% Fly Ash and 80% Slag Sand)	100mm
7	Mix – 6 (30% Fly Ash and 100% Slag Sand)	95mm
8	Mix – 7 (40% Fly Ash and 0% Slag Sand)	120mm
9	Mix – 8 (40% Fly Ash and 20% Slag Sand)	110mm
10	Mix – 9 (40% Fly Ash and 40% Slag Sand)	100mm
11	Mix – 10 (40% Fly Ash and 60% Slag Sand)	100mm
12	Mix – 11 (40% Fly Ash and 80% Slag Sand)	95mm
13	Mix – 12 (40% Fly Ash and 100% Slag Sand)	90mm

Table No. 12	- Compressive Strength Test
--------------	-----------------------------

Details of	7 Days	14 Days	28 Days
Replacement	(MPA)	(MPA)	(MPA)
Conventional	30	38.6	45.97
Concrete			
Mix - 1 (30% Fly	24.25	32.35	39.62
Ash and 0% Slag			
Sand)			
Mix - 2 (30% Fly	26.65	34.44	41.24
Ash and 20% Slag			
Sand)			
Mix - 3 (30% Fly	29.52	35.52	44.12
Ash and 40% Slag			
Sand)			
Mix - 4 (30% Fly	18.94	25.47	34.07
Ash and 60% Slag			

Sand)			
Mix - 5 (30% Fly	11.82	17.96	26.96
Ash and 80% Slag			
Sand)			
Mix - 6 (30% Fly	10.75	15.55	23.15
Ash and 100%			
Slag Sand)			
Mix - 7 (40% Fly	26.2	28.1	37
Ash and 0% Slag			
Sand)			
Mix - 8 (40% Fly	28.55	33.28	40.4
Ash and 20% Slag			
Sand)			
Mix – 9 (40% Fly	31.75	36.15	44.61
Ash and 40% Slag			
Sand)			
Mix - 10 (40%	14.7	23.72	31.2
Fly Ash and 60%			
Slag Sand)			
Mix – 11 (40%	10.75	16.71	24.2
Fly Ash and 80%			
Slag Sand)			
Mix - 12 (40%	11.93	13.06	20.2
Fly Ash and 100%			
Slag Sand)			

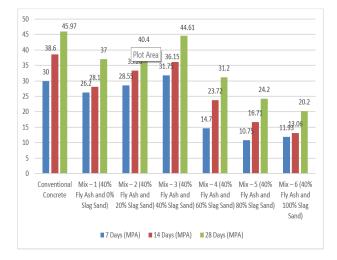
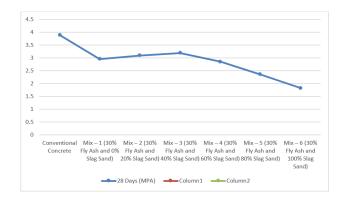



Table No. 13 - Split Tensile Test

Details of Replacement	28 Days (MPA)
Conventional Concrete	3.89
Mix – 1 (30% Fly Ash and 0%	2.95
Slag Sand)	
Mix – 2 (30% Fly Ash and	3.09
20% Slag Sand)	
Mix – 3 (30% Fly Ash and	3.19
40% Slag Sand)	
Mix – 4 (30% Fly Ash and	2.85
60% Slag Sand)	
Mix – 5 (30% Fly Ash and	2.35
80% Slag Sand)	
Mix – 6 (30% Fly Ash and	1.82
100% Slag Sand)	
Mix – 7 (40% Fly Ash and 0%	2.97
Slag Sand)	
Mix – 8 (40% Fly Ash and	3
20% Slag Sand)	
Mix – 9 (40% Fly Ash and	3.25
40% Slag Sand)	
Mix - 10 (40% Fly Ash and	2.66
60% Slag Sand)	
Mix – 11 (40% Fly Ash and	2.16
80% Slag Sand)	
Mix – 12 (40% Fly Ash and	1.63
100% Slag Sand)	

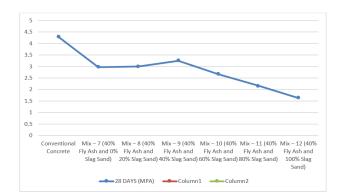
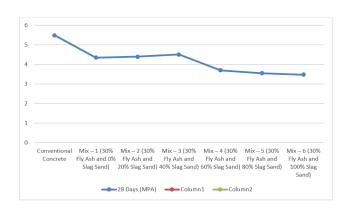
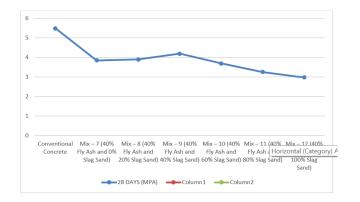


Table No. 14 - Flexural Test


Details of Replacement	28 Days (MPA)
Conventional Concrete	5.49
Mix – 1 (30% Fly Ash and 0%	4.35
Slag Sand)	
Mix – 2 (30% Fly Ash and	4.39
20% Slag Sand)	
Mix – 3 (30% Fly Ash and	4.5
40% Slag Sand)	
Mix – 4 (30% Fly Ash and	3.7
60% Slag Sand)	
Mix – 5 (30% Fly Ash and	3.55
80% Slag Sand)	
Mix – 6 (30% Fly Ash and	3.48
100% Slag Sand)	
Mix - 7 (40% Fly Ash and 0%	3.85
Slag Sand)	
Mix - 8 (40% Fly Ash and	3.89
20% Slag Sand)	
Mix – 9 (40% Fly Ash and	4.19
40% Slag Sand)	
Mix – 10 (40% Fly Ash and	3.69
60% Slag Sand)	
Mix - 11 (40% Fly Ash and	3.25
80% Slag Sand)	
Mix - 12 (40% Fly Ash and	2.98
100% Slag Sand)	



INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 04 ISSUE: 10 | OCT -2020

ISSN: 2582-3930

X. COST ANALYSIS

 Table No. 14 - Cost for Conventional Concrete

Elements	Quantity	Price/kg	Total price
Cement	394	4.35	1713.9
Coarse Aggregate 20mm	1071.646	0.4	428.65
Crushed Sand	803.019	1.96	1573.91
Water	195.114	1	195.11
Admixture	3.94	41	161.54
Total			4073.11

Table No. 14	- Cost per m ³ (3	0% Fly Ash and 40	% Slag Sand)
--------------	------------------------------	-------------------	--------------

Elements	Quantity	Price/kg	Total price
Cement	275.8	4.35	1199.73
Fly Ash	118.2	2.08	245.85
Coarse Aggregate 20mm	1071.646	0.40	428.65

Crushed Sand	481.73	1.96	944.19
Slag Sand	329.116	1.5	493.67
Water	197.268	1	197.26
Admixture	2.758	41	113.078
Total			3622.428

Elements	Quantity	Price/kg	Total price
Cement	236.4	4.35	1028.34
Fly Ash	157.6	2.08	327.808
Coarse Aggregate 20mm	1071.646	0.40	428.658
Crushed Sand	481.73	1.96	944.19
Slag Sand	319.116	1.5	478.67
Water	197.286	1	197.28
Admixture	2.364	41	96.92
Total			3501.866

XI. COCNCLUSION

The compressive, flexural performance, Split tensile strength with Fly Ash and Slag Sand will be investigated in detail in phase 2 of this report. The mass content of Fly Ash considered will be 30% and 40% by weight of total cement. The Slag Sand will be partly replaced by 0%, 20%, 40%, 60%, 80%, 100%. This experimental investigation is carried out under mix proportion i.e. M35 and the test results are compared with the same mix proportionated concrete cubes –

- The Workability property of concrete property decreases as the percentage of replacement of slag sand increases. The slump varies from 90 mm to 125 mm for different mixes. By addition of GGBS, the slump is improved and all the concrete mixes were homogenous and cohesive in nature.
- 2. The compressive strength of cubes are increased with addition of Fly Ash and Slag Sand. The Optimum

percentages of replacements obtained are – 30% Fly Ash replaced by cement and 40 % slag sand replaced withNatural sand. Similarly for 40% Fly Ash and 40% slag sand replacement the compressive strength is higher than all other mixes.

- 3. Split tensile strength of Mix 3 (30% Fly Ash +40%SS) and Mix 8 (40%Fly Ash+40%SS) has highest strength as compared to conventional concrete.
- 4. The Flexural strength of concrete is also maximum for 30% replaced by cement and 40% slag sand replaced by natural sand. However 40% Fly Ash and 40% slag sand shows highest flexural strength values.
- The cubes, cylinder and beam, the conclusion is that the optimum replacement can be done in two combinations: Mix 3- 30% Fly Ash can be replaced by cement along with 40% slag sand by natural sand. Mix 9- 40% Fly Ash can be replaced by cement along with 40% slag sand by natural sand.
- Due to high glass content slag sand the higher replacements show decrease in strength of concrete(Mix 4,5,6,10,11,12).
- Hence, it can be recommended that the GGBS and Slag Sand can satisfactorily utilize as Combined partial replacement for Cement and Natural sand respectively in concrete.

RFERENCES

1) V.R. Prasath Kumar, K. Gunasekaran, T. Shyamala -Characterization study on coconut shell concrete with partial replacement of cement by GGBS - Journal of Building Engineering 26 (2019) 100830

2) Rami A. Hawileh , Jamal A. Abdalla, Fakherdine Fardmanesh, Poya Shahsana, Abdolreza Khalili -Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement - Archives of Civil and Mechanical Engineering 17 (2017) 511 – 519

3) Sorabh Saluja , Kulwinder Kaur , Shweta Goyal , Bishwajit Bhattacharjee - Assessing the effect of GGBS content and aggregate characteristics on drying shrinkage of roller compacted concrete - Construction and Building Materials 201 (2019) 72–80

4) Gaurav Singh, Souvik Das, Abdulaziz Abdullahi Ahmed, Showmen Saha, Somnath Karmakar - Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure - Procedia - Social and Behavioral Sciences 195 (2015) 2272 – 2279

5) Meriem Senani , Noureddine Ferhoune , Abdelhamid Guettal - Substitution of the natural sand by crystallized slag of blast furnace in the composition of concrete - Alexandria Engineering Journal (2016)

6) Aissa Bouaissi , Long-yuan Li , Mohd Mustafa Al Bakri Abdullah , Quoc-Bao Bui - Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete - Construction and Building Materials 210 (2019) 198–209

7) K. Ramakrishnan, G. Pugazhmani, R. Sripragadeesh, D. Muthu, C. Venkatasubramanian -Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supplementary cementitious materials - Construction and Building Materials 156 (2017) 739–749

8) An Cheng, Ran Huang, Jiann-Kuo Wu, Cheng-Hsin Chen - Influence of GGBS on durability and corrosion behavior of reinforced concrete - Materials Chemistry and Physics 93 (2005) 404–411

9) A. Oner, S. Akyuz - An experimental study on optimum usage of GGBS for the compressive strength of concrete -Cement & Concrete Composites 29 (2007) 505–514

10) Aliakbar Gholampour, Togay Ozbakkaloglu -Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag - Journal of Cleaner Production 162 (2017) 1407e1417

11) Sina Dadsetan , Jiping Bai - Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash - Construction and Building Materials 146 (2017) 658–667

12) P.J. Wainwright , N. Rey - The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete - Cement & Concrete Composites 22 (2000) 253-257

13) Jianhe Xie, Junjie Wang, Bingxue Zhang, Chi Fang, Lijuan Li - Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete - Construction and Building Materials 204 (2019) 384–398

14) Syamak Tavasoli , Mahmoud Nili, Behrad Serpoosh -Effect of GGBS on the frost resistance of self-consolidating concrete - Construction and Building Materials 165 (2018) 717–722

15) P. Ganesh , A. Ramachandra Murthy - Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material

16) ZemeiWu, CaijunShi,WenHe - Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes - Construction and Building Materials 136 (2017) 307–313

