Analysis of Rolling Process with different Rolling Speed and Roller distance to predict Stress and Plastic Strain effects

Rohit Yadav ${ }^{1}$, Prof. Tanmay Awasthi ${ }^{2}$
${ }^{1}$ M.Tech.Scholar, Department of Mechanical Engineering ${ }^{1}$, SIRTE, Bhopal, India
${ }^{2}$ Professor, Department of Mechanical Engineering ${ }^{2}$, SIRTE, Bhopal, India

Abstract

In the current work, the CAD model of rolling process with different roller distance profile has been developed in ABAQUS (CAD) domain, the model had been simulated using ABAQUS software on structural domain, in order to predict various parameters influencing the formability of aluminium 6056 material during deep drawing process with different roller distance. Six type of configuration of rolling process with different roller distance including validation model have been considered. The simulation of the optimized models i.e. 4.5 mm of roller distance gives nominal value of stress and plastic strain at different rolling speed of 50, 60, 70, 80, 90 and $100(\mathrm{~mm} / \mathrm{sec})$ which has optimized and converged result as compared to respected models of different roller distance model in rolling process. The configuration of optimized model gives maximum convergence on all parameters amongst all the configurations used.

Keywords - Rolling Process, Vonmises stress, Plastic strain, Rolling speed, Aluminium 6056.

I. INTRODUCTION

1.1 Rolling Process

Rolling works concerning equal so anybody other metallic co nstructing process. When a compressive force utilized through a set regarding rolls on in got or someone other product as blooms then billets, plastic deformation takes vicinity as decrease its go quantity region then alter it within required shape.

II. TYPES OF ROLLING PROCESS

2.1 Application of rolling:

Rolling is chronic because making hole seamless tubes, rods etc.

- Large extent pass sections are evolved through rolling process.
- It is usage because of article production regarding threaded parts as screw, bolts etc.
- Gears perform lie cut on tools blank by using rolling process.
- Construction material, cantonment panels, part beams, railroads, etc. are rolling product.
- It is aged in car industries because of generation more than a few parts.
- Rings of turbines, hold then ignoble machines are rolling product.
- Steel sheets, plates are committed by using rolling process.

III. RESEARCH METHODOLOGY

3.1 Procedure for solving the problem

- Modeling of the geometry.
- Meshing of the created model.
- Define material properties and boundary conditions.
- Running the solution of domain.
- Obtaining the results.

3.2 Preparation of the CAD models

Figure 1 - model of roller for rolling process

Figure 2 - model of rolling material for rolling process

3.3 Meshing of the Domain

Figure 3: Mesh model of roller.

Figure 4: Mesh model of rolling material.

Figure 5: Mesh model of rolling components.

3.4 Description of material properties

Aluminium 6056

Table 1: Materials Properties

Physical Properties	
Young's Modulus (Pa)	$7.00 \mathrm{e}+013$
Poission's Ratio	0.33
Density $(\mathrm{Kg} / \mathrm{m} 3)$	2700

IV. RESULTS \& ANALYSIS

Table 2 - Validation result for rolling process structure at different rolling speed.

Roller distance (3mm) (Validation)		
Rolling (mm/sec) (Validation)	Stress (MPa) (Validation)	Plastic Strain (Validation)
50	73.8	1.28
60	76.2	1.36
70	79.4	1.43
80	82.6	1.56
90	85.3	1.68
100	87.9	1.73

Result obtained from ABAQUS for roller distance of 3.5 mm with different rolling.

Table 3 - Result for rolling process with roller distance of 3.5 mm at different rolling speed.

Roller distance (3.5mm)		
Rolling speed $(\mathrm{mm} /$ sec $)$ Roller distance $(3.5 \mathrm{~mm})$	Stress (Mpa) Roller distance $(3.5 \mathrm{~mm})$	Plastic Strain Roller distance (3.5mm)
50	71.6	1.26
60	74.1	1.34
70	77.3	1.39
80	80.6	1.54
90	83.9	1.63
100	86.8	1.66

Figure 6 - Comparison of stress with roll distance of 3.5 mm at different rolling speed.

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 09 |Sept - 2021

Figure 7 - Stress for rolling process structure at roller distance of 3.5 mm with different rolling speed.

Figure 8 - plastic strain for rolling process structure at roller distance of 3.5 mm with different rolling speed.

Result obtained from ABAQUS for roller distance of 4 mm with different rolling.

Table 4 - Result for rolling process with roller distance of 4 mm at different rolling speed.

Roller distance (4mm)			
Rolling ($\mathbf{m m} / \mathbf{s e c}$)Speed distance (4mm)Stress (MPa) Roller (4mm)	Plastic distance	Strain (4mm)	
50	70.5	1.23	
60	73.8	1.29	
70	76.9	1.32	
80	81.4	1.38	
90	82.3	1.42	
100	85.6	1.51	

Figure 9 - Comparison of stress with roll distance of 4 mm at different rolling speed.

Figure 10 - Stress for rolling process structure at roller distance of 4 mm with different rolling speed.

Figure 11 - plastic strain for rolling process structure at roller distance of 4 mm with different rolling speed.

Result obtained from ABAQUS for roller distance of 4.5 mm with different rolling.

International Journal of Scientific Research in Engineering and Management (IJSREM)

Table 5 - Result for rolling process with roller distance of 4.5 mm at different rolling speed.

Roller distance (4.5mm)			
Rolling (mm/sec) distance (4.5mm)	speed Roller	Stress Roller (4.5mm)	
50	68.9	(MPa) distance	
60	72.3	Plastic Roller distance (4.5mm)	
70	76.8	1.25	
80	78.9	1.28	
90	81.7	1.32	
100	83.4	1.36	

Figure 12 - Comparison of stress with roll distance of 4.5 mm at different rolling speed.

Figure 13-Stress for rolling process structure at roller distance of 4.5 mm with different rolling speed.

Figure 14 - plastic strain for rolling process structure at roller distance of 4.5 mm with different rolling speed.

International Journal of Scientific Research in Engineering and Management (IJSREM)

Overall comparison of stress and plastic strain of rolling process including different roller.

Figure 15-overall comparison of stress in (MPa) with respect to rolling speed (N) in different roller distance in rolling process.

Figure 16-overall comparison of plastic strain with respect to rolling speed (N) in different roller distance in rolling process.

Conclusion

1. The different roller distance in rolling model was developed on ABAQUS modelling domain and analysis was done using the ABAQUS software (Structural domain).
2. The stress distribution is the effective parameter in the structure stability of different roller distance profiles with different rolling speed i.e. 50, 60, 70, 80,90 and $100 \mathrm{~mm} / \mathrm{sec}$.
3. In the study rolling process with different roller distance i.e. 3 mm (validation), $3.5 \mathrm{~mm}, 4 \mathrm{~mm}, 4.5 \mathrm{~mm}$ and 5 mm are the key geometric parameter on the performance of structural formability of aluminium 6056 material under different rolling speed with an implementation on rolling process with the developed stresses and structure homogeneity effect are improved.
4. The optimum result is observed in 4.5 mm of roller distance with different rolling speed, it concludes that at rolling speed of between 70 to $80(\mathrm{~mm} / \mathrm{sec})$, the obtained stresses are optimum as compared to other roller distance of rolling process.
5. The simulations of ABAQUS model of rolling process with roller distance show a good relation with base paper results presented in the literature [22].
6. It is also observed that roller distance of 3 mm , 3.5 mm and 4 mm exhibits higher stress with high plastic strain which is higher due to this defect in rolling material is observed.
7. The roller distance of 4.5 mm exhibits optimum stress and optimum plastic strain at each rolling speed which induces fewer defects in rolled material during rolling process. thus, these parameter could be considered for manufacturing process in rolling.
8. It could be concluded that rolling process with rolling distance of 4.5 mm exhibits higher convergence in stress and plastic strain.

REFERENCES

[1]. YaoChen et al. "Study on optimization of nozzle for copper-aluminium clad plate twin-roll cast-rolling", Journal of Materials Research and Technology, Volume 10, January-February 2021, Pages 1075-1085.
[2]. Jun-RenZhao et al. "Effects of heat treatment on a novel continuous casting direct rolling 6056 aluminum alloy: cold rolling characteristics and tensile fracture properties",

Journal of Materials Research and Technology, Volume 11, March-April 2021, Pages 535-547.
[3]. ShokouhAttarilar et al. "An insight into the vibrationassisted rolling of AA5052 aluminum alloy: Tensile strength, deformation microstructure, and texture evolution", Materials Science and Engineering: A, Volume 803, 28 January 2021, 140489.
[4]. Mohammad MehdiAMIRI et al. "Influence of roll speed difference on microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling process", Transactions of Nonferrous Metals Society of China, Volume 31, Issue 4, April 2021, Pages 901-912.
[5]. XiaoyuFan et al. "Improved mechanical anisotropy and texture optimization of a 3 xx aluminum alloy by differential temperature rolling", Materials Science and Engineering: A, Volume 799, 2 January 2021, 140278.
[6]. HuijingZhang et al. "Effect of high frequency impacting and rolling on fatigue crack growth of 2 A 12 aluminum alloy welded joint", International Journal of Fatigue, Volume 147, June 2021, 106172.
[7]. FeiGuo et al. "Nanocrystalline structure fabricated by cryogenic temperature rolling of AA 2099 aluminum alloy", Journal of Alloys and Compounds, Volume 864, 25 May 2021, 158293.
[8]. HadiPirgazi et al. "Semi in-situ observation of crystal rotation during cold rolling of commercially pure aluminum", Materials Characterization, Volume 171, January 2021, 110752.
[9]. Yeau-RenJeng et al. "Effects of operation parameters of cold rolling on surface finish of aluminum", Tribology International, Volume 148, August 2020, 106321.
[10].HongweiLiu et al. "Residual stresses in high-speed twodimensional ultrasonic rolling 7050 aluminum alloy with thermal-mechanical coupling", International Journal of Mechanical Sciences, Volume 186, 15 November 2020, 105824.
[11].Mark Y.Amegadzie et al. "Effect of asymmetric rolling on the microstructure and mechanical properties of wrought 6061 aluminum", Materials Today Communications Volume 25, December 2020, 101283.
[12]. GangYang et al. "The microstructure evolution of 6061 aluminum alloy during dieless rolling thermal deformation", Procedia Manufacturing, Volume 50, 2020, Pages 51-55.
[13]. JiaweiYan et al. "Saturation controlled softening/hardening in pure aluminum processed by surface rotation rolling", Scripta Materialia, Volume 182, June 2020, Pages 104-108.
[14].T.K.Akopyan et al. "Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties", Materials Science and Engineering: A, Volume 786, 1 June 2020, 139424.
[15].JiubaWen et al. "Numerical Simulation and Experimental Research of the Aluminum Alloy Rolling Edge Crack at Room Temperature", Materials Science and Engineering: A, Volume 786, 1 June 2020, 139424.
[16].XiaotongLu et al. "Two-step foaming process combined with hot-rolling in fabrication of an aluminium foam sandwich panel", Materials Science and Engineering: A, Volume 786, 1 June 2020, 139424.
[17].XingchenXu et al. "Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling", Journal of

Materials Science \& Technology, Volume 40, 1 March 2020, Pages 88-98.
[18].JianglongGu et al. "Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling", Materials \& Design, Volume 186, 15 January 2020, 108288.
[19].XiaolianZhao et al. "Effect of Contact Heat Transfer on Hot Rolling of Aluminum Alloy", Procedia Manufacturing, Volume 37, 2019, Pages 91-96.
[20]. YapengLi et al. "In-plane elastic anisotropic constants (IEACs) measurement of rolling aluminum plate at different depth using ultrasonic LCR wave", Applied Acoustics, Volume 149, June 2019, Pages 59-67.
[21].PujunHao et al. "Formation mechanism and control methods of inhomogeneous deformation during hot rough rolling of aluminum alloy plate", Archives of Civil and Mechanical Engineering, Volume 18, Issue 1, January 2018, Pages 245-255.
[22].Jun-Ren Zhao et al. "Effects of heat treatment on a novel continuous casting direct rolling 6056 aluminum alloy: cold rolling characteristics and tensile fracture properties", journal of materials research and technology 2021; 11: 535 e547.

