
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

Booting Testcase Development for XILINX FPGA Devices
Dr. Anwar Bhasha Pattan, Ch.Yugasri Devi, K.Bhavani Sai Pooja, G.Manisha, Ch.Rohini Reddy

BVRIT HYDERABAD College of Engineering for Women

Rajiv Gandhi Nagar, Bachupally, Hyderabad

Abstract—
This paper focuses on developing the booting test cases

for XILINX FPGA devices like ZYNQ and ZYNQMP.

Booting is the process of starting a device. It can be

initiated by hardware such as a button press, or by a

software command. The heart of booting process is a

file which can be of the extension .bin/.mcs specifically

for XILINX FPGA devices. This file is called as

“BOOTIMAGE” which is responsible for whole

booting process of the device. A boot image contains the

complete data (also called as partition), optionally

contains the secure cases (if user seeks for secure

process).

Keywords— Booting, Boot Image, ZYNQ, ZYNQM P

I INTRODUCTION

 In present day market, the XILINX FPGA devices that are

getting released are gaining huge positive response from

the customers because of the good secure performance of

the product/device. Xilinx FPGAs and system-on-chip

(SoC) devices typically have multiple hardware and

software binaries used to boot them to function as designed

and expected. These binaries can include FPGA bit

streams, firmware images, boot loaders, operating systems,

and user-chosen applications that can be loaded in both

non-secure and secure methods. In this paper we focus on

developing the booting test cases for the Xilinx FPGA

devices like ZYNQ and ZYNQMP.

The heart of booting process is a file which can be of the

extension .bin/.mcs specifically for XILINX FPGA

devices. This file of the format .bin/.mcs is called as the

“BOOTIMAGE”. The tool that generates BOOTIMAGE is

“BOOTGEN”. The secure boot of Xilinx devices uses

public and private key cryptographic algorithms.

BOOTGEN also supports encryption and authentication.

Each partition can be encrypted and authenticated with the

BOOTGEN. The output is a single file that can be directly

programmed into the boot flash memory of the system.

BOOTGEN comes with both a GUI interface and

command line option.[2] The tool as integrated into the

software development toolkit, SDK, for generating basic

boot images using a GUI, but the majority of BOOTGEN

options are command line-driven. Command line options

can be scripted. The BOOTGEN tool is driven by a boot

image format (BIF) file configurations file with a file

extension of *.bif.

II BOOTIMAGE LAYOUT

To build any BOOTIMAGE, there are two steps:

1) Create .bif file

2) Run the BOOTGEN executable to get BOOTIMAGE

Each device requires files in a specific format to generate a

boot image for that device. Fig:1 shows ZYNQMP BootImage

Layout. For ZYNQ device, the layout is similar to that of

ZYNQMP, but PUF Helper Data partition is absent.

Fig1: The boot image layout for Xilinx ZYNQMP devices

Boot Header:
The Boot Header is a structure that contains information

related to booting the primary boot loader, such as the FSBL

[3].

Register Initialization Table:

The Register Initialization Table in BOOTGEN is a structure

of 256 address-value pairs used to initialize PS registers for

MIO multiplexer and flash clocks [3].

Image Header Table:

BOOTGEN creates a boot image by extracting data from ELF

files, bit stream, data files, and so forth. These files, from

which the data is extracted, are referred to as images [3]. Each

image can have one or more partitions. The Image Header

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

table is a structure, containing information which is common

across all these images.

Authentication Certificate:
The Authentication Certificate is a structure that contains all

the information related to the authentication of a partition.

III ENCRYPTION

Encryption is the most effective way to achieve data security.

We use a key to encrypt the data which we get from AES

algorithm. Any key generated from this algorithm is generally

called as AES key. Symmetric key Cryptography exits in this

process. Single key (same key) is used for both encryption &

decryption. AES key is used to encrypt the partitions. AES

key is stored either in EFUSE or BBRAM in the device, for

decryption purpose.

Fig 2: Block diagram showing the process of Encryption and

Decryption

While developing the test cases for ZYNQMP devices, there

is an extra secure step that can be used during encryption and

decryption. ZYNQMP devices support multiple keys. They

are:

 EFUSE RED KEY

 EFUSE BLACK KEY

 EFUSE GREY KEY

 BBRAM RED KEY

 BLACK KEY in BootHeader

 GREY KEY in BootHeader

For better understanding, Fig: 4, Fig: 5, Fig: 6 are

describing encryption and decryption process in ZYNQMP

RedKey:

 Fig 3: Encryption using redkey

 Fig 4: Decryption

BlackKey:

Fig 5: Encryption and Decryption using black key

GreyKey:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

Fig 6: Encryption and Decryption using grey key

IV AUTHENTICATION

Encryption provides the basic design security to protect the

design from copying or reverse engineering,

while authentication provides assurance that the bitstream

provided for the configuration of the FPGA was the

unmodified bitstream created by an authorized user.[7]

Authentication technology provides access control for systems

by checking to see if a user's credentials match the credentials

in a database of authorized users or in a data authentication

server [4].

In the process of authentication keys can be generated using

either ECDSA algorithm or RSA algorithm. The key that we

use for signing the partition will not be used while verifying.

This is the reason why the data is more secured. In

authentication, there exists Asymmetric key cryptography.

Two different keys are used, one for signing and other for

verifying – Primary key, Secondary key.

 Fig 7: Signing the Partition

 Fig 8: Verifying the Partition

In Xilinx SoCs, two sets of key pairs are used in this

process

– Primary Key Pair

• Primary Public Key (PPK)

• Primary Secret Key (PSK)

– Secondary Key Pair

• Secondary Public Key (SPK)

• Secondary Secret Key (SSK)

Primary key pair is used to authenticate the secondary key

pair. Secondary key pair authenticates the actual partition.

V TEST CASES DEVELOPED

Zynq:

(1) ENCRYPTION:

the_ROM_image:

{

 [keysrc_encryption] bbram_red_key

 [aeskeyfile] vnc_bbram_7020.nky

 [bootloader,encryption=aes] zynq_fsbl.elf

 [encryption=aes] system.bit

 [encryption=aes] hello_world_a9_0.elf

}

The code above is the encrypted bif file to create

BOOTIMAGE for booting ZYNQ device. The storage

location of the encrypting key here in this example is BBRAM

and vnc_bbram_7020 is the key used. File zynq_fsbl.elf is the

boot loader. Partitions in this .bif file are system.bit,

hello_world_a9_0.elf.

(2) AUTHENTICATION:

the_ROM_image:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

{

 [pskfile] pskfile.txt

 [sskfile] sskfile.txt

 [bootloader, authentication=rsa] zynq_fsbl_rsa.elf

 [authentication=rsa] hello_world_a9_0.elf

}

The code above is the authenticated bif file to create

BOOTIMAGE for booting zynq device. Primary and

Secondary keys used to authenticate the partitions are present

in the text files pskfile.txt and sskfile.txt. ELF (Extensible

Linking Format) file zynq_fsbl_rsa.elf is the boot loader

which holds the information of the device specifications and

other required information for loading data into the device.

Partition in this .bif file is hello_world_a9_0.elf, this file hold

the hello world application data .

ZynqMp:

(1) ENCRYPTION:

(a) the_ROM_image:

 {

 [keysrc_encryption] bbram_red_key

 [aeskeyfile] vnc_bbram_7020.nky

 [bootloader,encryption=aes] zynqmp_fsbl.elf

 [encryption=aes] system.bit

 [encryption=aes] hello_world_a53_0.elf

 }

(b) the_ROM_image:

 {

 [keysrc_encryption] bbram_red_key

 [aeskeyfile] vnc_bbram_7020.nky

 [bootloader,encryption=aes] zynqmp_fsbl.elf

 }

The code given above are two examples showing encrypted

bif file to create BOOTIMAGE for booting ZYNQMP device.

The storage location of the encrypting key here in this

example is BBRAM and vnc_bbram_7020 is the key used.

File zynqmp_fsbl.elf is the boot loader. Partitions in given .bif

files are system.bit, hello_world_a53_0.elf. Partition is

optional, can be seen in second example (i.e (b)).

(2) AUTHENTICATION:

the_ROM_image:

{

 [pskfile] pskfile.txt

 [sskfile] sskfile.txt

 [bootloader, authentication=rsa]

 zynqmp_fsbl_rsa.elf

 [authentication=rsa] hello_world_a53_2.elf

}

The code given above is the authenticated bif file to create

BOOTIMAGE for booting ZYNQMP device. Primary and

Secondary keys used to authenticate the partitions are

pskfile.txt and sskfile.txt. File zynqmp_fsbl_rsa.elf is the boot

loader. Partition in this .bif file is hello_world_a53_2.elf.

VI CONCLUSION

In this paper the development of the test cases have been done

for few FPGA devices. The FPGA devices that are chosen in

this work belong to Xilinx FPGA devices which are ZYNQ,

ZYNQMP. All the test cases for ZYNQ and ZYNQMP are

done for encryption and authentication. Developed test cases

thereby sent as input to the BOOTGEN tool then generated

boot images and program flashed (Run on board) on the

family of devices of ZYNQ (zc702, zc706 etc) and ZYNQMP

(zc1715, zc102 etc).

Boot images generated from ZYNQ and ZYNQMP test cases

mentioned in this paper are running successfully without any

errors. ZYNQ boot images are tested on zc702,zc706 boards

of ZYNQ family and ZYNQMP are tested on zc1715,zc102

boards of ZYNQMP family.

This study can be applied on more problems to generate new

test cases for various FPGA devices. The scope of the test

case development in today’s world is more as industries (like

Intel, Qualcomm etc) of various sectors give importance in

testing their device before releasing into the market.

REFERENCES

[1] The Zynq Book: Embedded Processing with the ARM

Cortex-A9 on the Xilinx Zynq-7000. All Programmable

SoC - by Louise H. Crockett.

[2] Bootgen user guide – ug1283 document.

[3] Xilinx Software command line tool (XSCT) –

document.

[4] Network security in ‘Identify and access management’,
Search security website.

[5] Xilinx Developer Forum (XDF)-2018- Introducing-the-

versal-architecture.pdf

[6] ZynqMp book: Exploring ZYNQMP SoC with pynq

and machine learning applications – by University of

Strathclyde Glasgow

[7] Using Encryption and Authentication to Secure an

UltraScale/UltraScale+ FPGA Bitstream - Author: Kyle

Wilkinson

http://www.ijsrem.com/

	[1] The Zynq Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000. All Programmable SoC - by Louise H. Crockett.

