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Abstract -In this paper, we propose a fully automatic 
method for reproducing black and white images as color 

images. The methodology used was Cycle-consistent 

Generative Adversarial Networks (CycleGAN), which are 

very powerful for image-to-image translations. Image-to-

image translation is a class of computer graphics and 

computer vision where we pass in an input image and get a 

reconstructed image as output. However, for this translation to 

happen, we need a paired image dataset which is not available 

for the problem of image colorization. This is where 

CycleGANs are powerful. CycleGANs are able to learn a 

mapping from an input domain A to another domain B 

without needing paired datasets. The model was trained on 

Intel Landscape Image dataset. The experiments show 

significant improvements on previously existing models, and 

gives a better, more general solution to the problem of Image 

Colorization 
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1.INTRODUCTION 

Automatic image colorization is the technology to 

automatically colour black-and-white images. It has 

been a popular area of research in the field of computer 

vision for several practical application areas including 

restoration and colorization of age-old images and 

videos, colorization of old black-and-white images, 

colorizing medical images such as chest X-rays, 

improving video quality of CCTV footages, etc. 

However, as most of the colors share similar gray 

values, the problem of effectively colorizing images is a 

very challenging. Traditional methods [1], [2], [3], [4], 

[5] are example-based colorization methods where 

example of colorized versions of grayscale images have 

to be provided while training. Methods [6], [16], [17], 

[18], are semi-automatic scribble-based approaches, 

where the user needs to provide some color hints to 

segment the images and also give information to color 

these segments. The user provides scribbles for the 

grayscale image which is then colorized through a 

colorization optimization alogirthm. However, example-

based image colorization has limitations aspaired 

training data might not always be available for tasks 

such as restoration of old black-and-white photos and 

movies. Semi-automatic approaches require human 

intervention which needs a lot of time and effort. 

In this paper, we use the CycleGAN architecture that 

can complete image translation from one domain to 

another without needing paired image datasets. Inspired 

by [12], [13], [14], our aim is to put out a more general 

model that can produce realistic colorization of 

grayscale images. The architecture comprises of two 

generators and two discriminators. The generator is 

responsible for transforming the image. The 

discriminators are convolutional neural networks that 

see the transformed image and judges them as real or 

fake. The model works on unpaired image datasets 

which makes the proposed method more generalized and 

easier than most of the existing methods.  

2. Methodology 

The CycleGAN architecture comprises of two 

generators – one for generating images from the first 

domain (Generator A -> Domain A) and the other for 

generating images from the second domain (Generator B 

-> Domain B), and two discriminators – one 

discriminator model that takes images from domain A 

and images generated by generator A and judges them as 

real or fake (Domain A -> Discriminator A -> 

Real/Fake) and the other discriminator that takes images 

from domain B and regenerated images generated by 

generator B and judges them as real or fake (Domain B -

> Discriminator B -> Real/Fake). The generators and 

discriminators are trained just like normal GANs – in a 

zero-sum process. The generator learns to better decieve 

the discriminator and the discriminator learns to judge 

better.  

Generator Network – The generator network consists of 

an encoder, a convolutional neural network and a 

decoder, a transpose convolutional neural network that 

converts a feature representation to a transformed image. 

The optimization of the generator network is done using 
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four outputs from four loss functions – Adversarial Loss, 

Forward Cycle Loss, Backward Cycle Loss, and Identity 

Loss. 

Discriminator Network – The two discriminators are 
CNNs that classify the generated image as real/fake. The 

model is optimized using mean squared error. The 

CycleGAN paper[10] suggested weighting the model to 
decelerate the changes to the discriminator. So, a 
weighting of 0.5 is used to have half the normal effect. 

The discriminator model is trained directly on the real 
and constructed images. 

 
Figure 1: Data flow of CycleGAN Architecture 

The output of the generator is fed to the discriminator as 

input. Assuming the source domain (Grayscale) is A and 
the target domain (Colored) is B, each domain consists 
of a pair of one generator and one discriminator namely 

Generator_AtoB, Discriminator A, Generator_BtoA, 
Discriminator B. The input image is fed into 
Generator_AtoB, giving an output of the colored image 

to discriminator B which then determines if the image is 

real or fake. A second input is fed into Generator AtoB 

which is expected to be output without any translation 
for identity mapping. Next, forward cycle loss is 
implemented by providing a grayscale image to 

Generator_AtoB which converts it to a colored output 
which is fed into Generator_BtoA in order to reconstruct 
it into grayscaled image again. Backward loss is 

implemented in the same process as above but in 
reverse, where the colored input is fed into 
Generator_BtoA to convert it to grayscale which is then 

reconstructed to a colored image by being passed 
through Generator_AtoB. These losses ensure 
transferring the underlying style in colored images and 

translate it in a realistic manner on grayscale images. 
The generator and discriminator models do not 
converge. The model is saved periodically and is used to 

generate sample image colorizations during training. An 

equilibrium is found between the discriminator and 

generator after sufficient training of both the models. 
 

3. Experiments and results 

 
The model was trained of the Intel landscape Image 

Dataset. The model took around 19 hours to train on 

approximately 8k images of size 256X256. Once the 
model is trained, getting colorizations was pretty fast. 

The results achieved are pretty good and can identify 
most objects like trees, marshy lands, daylight, cars, 
humans, snow, stars, and the sky and appropriately color 

them without needing any human assistance. The 

colorizations are not true, and may differ with original 
scenes, but are reasonable and realisitic. 
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However, the model struggles to pick up different colors 

of human skin as the data it was trained on isn’t 
sufficient for it to correctly discriminate skin colors. In 

order to overcome this drawback, the model can be 

trained and fine-tuned on a dataset that incorporates all 

possible scenarios in which the model can be used. This, 

however, would require huge computational power. 

 

4. CONCLUSIONS 

Automatic Image Colorization can be used in tasks like 

restoration of old black-and-white photos, colorization 

and enhancement of old movies, color amplification of 

medical images such as X-rays and MRIs for better 

diagnosis, colorization of low-quality CCTV footages, 

etc. A cycleGAN implementation makes the training and 

testing much more accessible with less constraints and 

provides a style transfer that is realistic in nature and 

appropriate in a real world setting which could be 

beneficial to enriching archival monochrome data be it 

image or video to appropriately mimic its long lost real 

life counterpart. 
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