
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

Component-based UI Web Development

Omendra Singh Rathore, Ms. Charu Puri

Department of Computer Science

P.G.D.A.V. College

Delhi University

Introduction

Internet is no longer a place surrounded by documents with static con-tent. As a big target platform, it has

many applications with massive infrastructures. During the past years, many drafts and approaches for

building web applications were introduced. One of the most used ones was using the server-side API

(Application Programming Interface) glued together with lightweight JavaScript UI (User Interface)

library called jQuery. It was the right solution, but only for specific applica-tions. As applications were

growing and many new ones were being introduced, certain limitations were discovered. Applications

were hardly scalable and maintainable, prototyping was not easy neither quick. However, jQuery and its

model had a high impact on which direction web front end development moved.
In the year 2013, a JavaScript library for building UIs called React was introduced by Facebook.

React’s infrastructure, like many other library infrastructures, e.g. Angular’s, Vue’s, LitElement’s,

Stencil’s, etc., was designed around reusable, self-contained, semantic build-ing blocks. These semantic

building blocks, also called components, were based on very similar ideas as Web Components

specification introduced by Alex Russell at Fronteers Conference in 2011 with these words:

Quote: Web Components are some new work that we are doing to make the DOM extensible. Russell [1]

By the time of writing this thesis, Web Components specification was not fully standardised into the

Web platform yet, and libraries like React took advantage of it, rapidly grew in the popularity and de-

facto determined the new way of writing web applications by the method called component-based UI web

development. Even though the core concepts of components build with React seem to be similar to the

specification ones, they differentiate after an in-depth examination.
Using components to build UIs for the web applications solves many problems that were web

developers facing in the past, but it also creates some new ones. One of the main issues of the component-

based UI web development, and arguably the most discussed one, is managing the common components

state. This act is also referred to as the state management. Because the Web is a very resilient and flexible

platform, many state management solutions were already introduced for React as well as for other

libraries. On the other hand, due to the ongoing standardisation process, Web Components themselves are

not widely used yet, and so just few state management solutions for pure Web Components exist.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

The goals of this thesis are:

• Provide a basic overview of component-based UI web develop-ment.

• Emphasise the core principles and differences between the Web Components specification,

Web Components libraries and React components.

• Provide an introduction to some of the available state manage-ment solutions for React.

• Discover whether some of the state management solutions for React can be used within Web

Components.

This thesis is divided into five chapters. In the first one is a basic overview of component-based UI

web development with description of its key principles. Next three of them are connected and are describ-

ing the fundamental principles and differences of Web Components, LitElement (a superset of Web

Component specification) and React.js library (as one of the popularisers of component-based UI web

devel-opment). The fifth chapter is named State management and it focuses on providing a basic

overview of state management problems and available solutions.

1 Component model

Quote: Component-based software engineering (CBSE), also called as component-based development

(CBD), is a branch of software engineering that emphasizes the sepa-ration of concerns with respect to

the wide-ranging func-tionality available throughout a given software system. It is a reuse-based approach

to defining, implementing and composing loosely coupled independent components into systems. This

practice aims to bring about an equally wide-ranging degree of benefits in both the short-term and the

long-term for the software itself and for organizations that sponsor such software. [2]

Nowadays, web architecture is changing every year. New ideas, approaches, frameworks and libraries

are appearing almost every day. In other words, it is a mess, but it does not necessarily mean that it is a

bad thing. The web is a very adaptive and resilient platform that enables to choose tons of different

approaches and have numerous possibilities.
In the last years, the increasing popularity of component-based UI development changed the way of

writing UIs. This model pushed out some more traditional approach as MVC (Model View Controller) or

MVVM (Model View ViewModel). In this chapter components as the basic building blocks of component-

based web architecture are described.

1.1 Predecessors

Web Components specification is not the first attempt to popularise the component model in markup

languages. In the past, there were few other attempts as i.e. HTCs (HTML Components) from 1998 by

Microsoft or XBL (XML Binding Language) from 2001 by Mozilla.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

1. Component model

1.2 Single page application

The component model goes well with Single page application model. Single page application is an

application that dynamically reacts to the user input without any need of refreshing the whole page and

thus retrieving it each time from the server. This approach allows mainly better UX (User Experience) by

avoiding the interruption between suc-cessive pages, making the Web application look and feel more like

a desktop or a mobile one.

1.3 Separation of concerns

Quote: It is what I sometimes have called "the separation of concerns", which, even if not perfectly

possible, is yet the only available technique for effective ordering of one’s thoughts, that I know of.

Dijkstra [3]

One of the most important design principles in component-based architecture is SoC (Separation of

Concerns). It focuses on the encapsu-lation on the level of components, making components self-

contained and loosely coupled with high cohesion. Thus making the software as much adaptable for

change, extensible, maintainable and reusable as possible.

1.4 Single responsibility

Another important principle that component-based architecture en-courages is the single responsibility

principle. In the context of com-ponents, single responsibility principle means that each component

should have only one function and should do it well.

2 Web Components specification

In 2011, Alex Russell, a man behind one popular JavaScript UI library called Dojo, proposed a vision of

the future. He asked himself the following questions:

Quote: What if DOM were extensible? - We could make our extensions crawlable? - DOM object didn’t
"feel" foreign to JS? Data binding and templating were part of the platform? Russell [1]

Based on these questions, he mentioned four different draft speci-fications:

• Custom elements - a way of defining and using custom HTML elements in the DOM

(Document Object Model).

• Scoped CSS - CSS encapsulation mechanism for a subtree of elements defined in its

scope.

• Shadow DOM - a method of combining multiple subtrees into one hierarchy and a way

how these trees interact with each other within a document.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

• HTML Templates - a method for declaring DOM subtrees and a way of manipulating

them to instantiate different document fragments with identical contents.

These specifications together were initial steps of creating new W3C (World Wide Web Consortium)

meta-specification called Web Com-ponents introduced by Alex Rusell by these words:

Quote: Web Components are some new work that we’re doing to make the DOM extensible. Russell [1]

The current version (1) of the Web Components specification con-sists of the following four

specifications:

• Custom elements

2. Web Components specification

• HTML Template

• Shadow DOM

• ES Modules

2.1 Custom elements

Note: Living standard, maintained in the HTML Standard and DOM Standard (WHATWG).

Quote: Custom elements provide a way for developers to build their own fully-featured DOM elements.

Although authors could always use non-standard elements in their documents, with application-specific

behavior added after the fact by scripting or similar, such elements have histor-ically been non-

conforming and not very functional. By defining a custom element, authors can inform the parser how to

construct an element properly and how elements of that class should react to changes. [4]

Figure 2.1: Screenshot of G-mail application markup

The figure above (fig. 2.1) shows a markup of one of the most used applications in the world - G-

mail
1
. On first sight, it is not apparent

1. http://mail.google.com

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 5

2. Web Components specification

what the nested divs with generated class names mean. It is hardly understandable and readable for

human either for a machine. In this case, it is not a semantic document anymore. Custom elements are

solving this issue, allowing authors to write their own semantic HTML tags. In comparison, the example

with G-mail, might after rewriting with custom elements look somehow like this (fig. 2.2).

Figure 2.2: Semantic G-mail markup proposal

One of the main advantages of semantic elements is their reusabil-ity. When building new

applications, the whole components written in this way can be easily understood, edited and reused.

2.1.1 Autonomous custom element

An autonomous custom element is an element extending generic HTMLElement interface. For

demonstration purposes, a simple autonomous custom element, for switching between languages, is

introduced (fig.

2.3). Whenever the parser sees language-icon tag, it creates a new instance of LanguageIcon class, sets

language attribute to the internal state of the class and watches for changes to this attribute. From now on,

this custom element is functional, and it does only one thing - whenever its attribute changes, it calls an

alert function saying which attribute changed displaying its old and new value.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 6

2. Web Components specification

Figure 2.3: Autonomous custom element

There are also two other options on how to create a custom element (fig. 2.4):
1. programmatically using DOM API
2. programmatically using Custom element constructor

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 7

2. Web Components specification

Figure 2.4: Two other methods to create a Custom element

2.1.2 Customized built-in element

Customized built-in elements allow to reuse behaviour of already existing HTML elements and extend

them with some custom func-tionality. In contrast with autonomous custom elements, their classes are not

extending HTMLElement generic interface but a more concrete interface. For example, to extend the

element button, it is needed to extend a component class with HTMLButtonElement interface (fig. 2.5).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 8

2. Web Components specification

Figure 2.5: Customized built-in element

There are three native possibilities to construct Customized built-in element (fig. 2.6):
1. declaratively in the HTML
2. programmatically using DOM API
3. programmatically using constructor

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 9

2. Web Components specification

Figure 2.6: Three basic methods to create a Customized built-in ele-ment

2.1.3 Lifecycle

Every custom element has its lifecycle methods (fig. 2.7), which are invoked after certain events. The

current version 1 of Custom elements specification describes four different lifecycle methods:

1. connectedCallback – invoked after an element is appended into the DOM.

2. disconnectedCallback – invoked after an element is discon-nected from the DOM.

3. adoptedCallback – invoked each time an element is moved to a new document.

4. attributeChangedCallback – invoked each time an attribute of an element is changed.

For the performance reasons, the “observed” attributed has to be specified in the static get

observedAttributes method.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 10

2. Web Components specification

Figure 2.7: Web Component lifecycle

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 11

2. Web Components specification

2.2 HTML templates

Note: Living standard, maintained in the HTML Standard and DOM Standard (WHATWG).

As web applications grew in complexity, a requirement to display dynamically retrieved data on the

UI became an inseparable part of the Front-End development and web developers were often facing a

problem of how to display these kinds of data. In the following chapter, a few of the most popular

approaches for displaying dynamically retrieved data are described.

2.2.1 Background example

Note: In the examples, the main focus is given to the tem-plating part of a component. That is why the

rendering part of the template, the render function itself, is abstracted from the examples.

To demonstrate the syntactical differences between the selected approaches a simple example

implementation of dynamic UI, based on the retrieved data, is demonstrated for each approach.

Dynamically retrieved data are represented as the results object that is an array of four objects with the

same properties, but with distinct values (fig. 2.8).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 12

2. Web Components specification

To render these items, it is possible to put the results data into an unordered list, where each item in

this list represents one element in the results array (fig. 2.9).

Figure 2.9: Results as an unordered list

The code (fig. 2.9) contains much repetition. Each of the list item element is the same but has

different data (content property). Follow-ing the DRY (Don’t Repeat Yourself) principle, it is possible to

create only one, reusable template and fill it with the data as many time as required, creating as many

elements as required.

2.2.2 DOM API

Before the HTML Templates specification was standardised, there were two possible ways to create a

template while using only platform tools (fig. 2.10):

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 13

2. Web Components specification

1. Using the Element’s innerHTML property and string concatena-tion.

2. Using DOM manipulation method.

Figure 2.10: Two methods to create an reusable element

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 14

2. Web Components specification

Even though the DOM offered two different approaches to create a template, the

community was not satisfied with those solutions. One of the reasons was that this

approach was not well readable when coming to more complicated templates. That is

why third-party templating libraries gained popularity, and the new HTML template

element was introduced.

2.2.3 Mustache.js

Note: Mustache is named "Mustache" because of the use of curly braces

which resemble a sideway moustache.

Mustache.js is a web templating library which had a significant impact on the

creation of the HTML templates specification. It is available for many programming

languages such as Closure, Go, Java, JavaScript, .NET, Python, Ruby. It is described

as a "logic-less" template system because it lacks any explicit control flow state

statements as conditionals and loops.

Figure 2.11: Mustache.js example

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 15

2. Web Components specification

This method is getting the most of the power of HTML - its declar-ativity

together with minimal DOM API usage. On the other hand, there is one major

downside to this approach: dependency on the external library. In general,

dependencies have many disadvantages. They might change or might not be

supported in future, they might introduce some security issue, they need to be first

downloaded and parsed (which is also not ideal in case of performance and initial

load) and, from the developer perspective, the developers need to first learn how to

use them (in case of Mustache.js the special curly braces syntax). That is why HTML

templates specification was created, offering simi-lar functionality while being not

dependant on any external library, just using the internal platform tools.

2.2.4 HTML Templates

Quote: The HTML Content Template (<template>) ele-ment is a

mechanism for holding client-side content that is not to be rendered when

a page is loaded but may sub-sequently be instantiated during runtime

using JavaScript. [5]

The template element does the same thing as script element from the Mustache.js

example, and thus the elements inside of it are not being rendered by the browser by

default. However, in the previous example, the script element was not rendered

because of the unknown text/template type. This method seems to be a little

“workaround”, because the main purpose of the script tag, is not to hold an HTML

template. In the case of the template element, it does not require any workaround to

work. Not rendering itself is just its default behaviour known by the browsers.

Additionally, the content of the template element is parsed by the browser while

loading the page, ensuring content validity.

Quote: The template contents of a template element are not children of

the element itself. [6]

Which means, that content of the template element is not consid-ered to be in the

document at all. For example, the content cannot be

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 16

2. Web Components specification

found by document.querySelector() function, until it is cloned and appended into the

document by the script.

Quote: The template element is used to declare fragments of HTML that

can be cloned and inserted in the document by script. [6]

Figure 2.12: HTML Templates

On the first side, this (fig. 2.12) code looks more complicated, and it is even

longer than the Mustache.js example. However, a more ex-tended code is just one of

the tradeoffs when the highly abstract library

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 17

2. Web Components specification

is replaced with the low-level platform specification. Another tradeoff is that for each

result item the cloned node has to be queried to find value placeholders (fig. 2.13).

Figure 2.13: Necessary querying of cloned template

That might not be an issue in this example, but in the more massive templates,

where each one of the thousands cloned nodes is being queried multiple times, this

might cause some performance issues and it is something to be cautious about.

2.3 Shadow DOM

Note: Working draft, maintained mostly in DOM Standard

(WHATWG).

Quote: Shadow DOM is just normal DOM with two dif-ferences: 1) how

it’s created/used and 2) how it behaves in relation to the rest of the page.

Normally, you create DOM nodes and append them as children of

another ele-ment. With shadow DOM, you create a scoped DOM tree

that’s attached to the element, but separate from its actual children. This

scoped subtree is called a shadow tree. The element it’s attached to is its

shadow host. Anything you add in the shadows becomes local to the

hosting element, including <style>. This is how shadow DOM achieves

CSS style scoping. [7]

Being able to keep markup, styles and behaviour encapsulated from other code is

one of the most important aspects of component-based systems. Shadow DOM

specification introduces scoped styles

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 18

2. Web Components specification

to the Web platform, enabling encapsulation of styles on the level of components,

removing the possibility of multiple clashing styles and keeping the code cleaner.

Without tools or naming conventions, it is possible to bundle CSS with markup and

encapsulate the styles from the rest of the page.

Figure 2.14: The document tree and several shadow DOM subtrees.
2

2.3.1 Creating shadow DOM

To create a Shadow DOM, a shadow root element has to be created first. The shadow

root is an element that gets attached to the host element. Host element is an element

“hosting” Shadow DOM tree. To create a shadow root element, attachShadow()

function has to be called on the host element as shown below (fig. 2.15).

Note: Not every element is attachable! Elements like <input> and

<textarea> already have their own internal shadow DOM. Also it does not

make sense to attach shadow to a self enclosing element > that cannot

have children e.g.

,
.

2. https://www.sitepoint.com/the-basics-of-the-shadow-dom/

http://www.ijsrem.com/
https://www.sitepoint.com/the-basics-of-the-shadow-dom/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 19

2. Web Components specification

Figure 2.15: Creation of Shadow DOM

2.3.2 Composition

For the composition of elements can be used a <slot> tag, which acts as a placeholder

that can be filled by the authors’ defined markup. A basic example of how this works

is below (fig. 2.16).

2.3.3 Styles

• CSS selectors from the outer page do not apply inside the com-ponent.

• Styles defined are scoped to the host element.
• The host element can be styled using the :host selector.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 20

2. Web Components specification

Figure 2.16: Shadow DOM composition

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 21

2. Web Components specification

Figure 2.17: Styling Shadow DOM

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 22

2. Web Components specification

2.4 ES modules

ECMAScript modules bring standardised modules system to JavaScript. While

Node.js (JavaScript runtime built on Chrome’s v8 engine) has been using CommonJS

modules (a project to establish conventions on module ecosystem for JavaScript) for

years, browsers never had a module system. Before ES modules were standardised,

there were many other approaches to substitute the lack of modules functionality.

2.4.1 Multiple HTML script tags

It is possible to put include multiple <script> elements into an HTML (fig. 2.18), but

this method has many disadvantages:

• Scripts are synchronous – each script stops further processing while it is

executed.

• Multiple HTTP requests – each script creates a new HTTP re-quest, which

affects page performance.

• Order of the scripts is crucial – if scripts are dependent on each other and one

script fails, it breaks the further JavaScript pro-cessing. Also, each script can

override global defined variables or functions, that have been defined by its

precedent. It means that without the in-depth knowledge of each script

behaviour it was possible to break some functionality while appending the new

script.

Figure 2.18: Multiple HTML script tags

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 23

2. Web Components specification

2.4.2 Bundling

To solve some of the mentioned issued of multiple HTML script tags many projects

adopted a bundling approach. Webpack (fig 2.19), as one of the most popular module

bundlers, is, i.e. an inseparable part of React.js framework. Bundlers introduce a

compile step so JavaScript files can be concatenated into one file during the build

time.

• Only one script.

• Reduces the number of HTTP requests.

• Allows the use of the alternative syntax as, i.e. not standardised imports,

TypeScript or JSX. Before the bundling process, a tran-spile process can be

run. In case of not standardised imports, the dependency tree is built to resolve

all the possible dependencies and thus removes the order of the scripts problem.

Figure 2.19: Webpack bundling process
3

2.4.3 ES modules

ECMAScript modules allow importing one file to another, without the need to use

any pre-processing. Everything inside of a module is private to the module and only

explicitly selected parts are exported outside. ES Modules are bringing the following

advantages:

3. http://www.pro-react.com/materials/appendixA/
3. https://developers.google.com/web/fundamentals/primers/modules

http://www.ijsrem.com/
http://www.pro-react.com/materials/appendixA/
https://developers.google.com/web/fundamentals/primers/modules

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 24

2. Web Components specification

Figure 2.20: Scripts execution
4

• Separation-of-concerns – the module itself lives in its own world and thus can

be easily reused, maintained and extended.

• Add possibility to load modules dynamically – only when are they needed.

• Strict mode is enabled by default – enables more advanced static code analysis.

• The defer attribute is used by default – enables parallel HTML and script load

(fig 2.20).

The following figure (fig. 2.21) shows the basic ES modules syntax:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 25

2. Web Components specification

Figure 2.21: ES Modules syntax

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 26

2. Web Components specification

2.5 Support

Web Components are supported in almost every evergreen browser, and their support

is getting better almost every day for other browsers (i.e. Microsoft Edge). For older

browsers and backwards compatibility, polyfills are available. Even though they

support many features out of the box, full support is not possible because some of the

specifications are not fully polyfill-able (i.e. Shadow DOM).

Figure 2.22: Web Components browser support
5

5. https://dev.to/thepassle/ing--web-components-aef

http://www.ijsrem.com/
https://dev.to/thepassle/ing--web-components-aef

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 27

2. Web Components specification

2.6 Conclusion

Even though Web Components bring many advantages, writing the code like this

becomes tedious and hard to maintain over time. For example, if it would be needed

to add 15 properties to the component, for each of the property would have to be

written getter and setter. More so, if half of the properties would need to be reflected

to at-tributes as well, there would need to add a lot of repeating boilerplate code to

achieve such functionality. It is possible to add everything in one component, but that

would require a lot of error-prone boilerplate code. That is why other libraries are

becoming popular, removing unnecessary boilerplate, providing higher abstraction

and bringing many other improvements based on the low-level Web Components API

with only a tiny addition of JavaScript page load sizes.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 28

3 LitElement

Note: Released in 2017, maintained by Google.

LitElement is a library for writing Web Components on a higher abstract level,

providing performance benefits, more declarative way of writing components and

overall better developer experience. It follows the Web Components specification and

uses only platform standardised syntax, thus makes the components reusable without

any need of transpilation. Because LitElement is a superset of Web components

specification, only the key differences between LitEle-ment library and Web

Components specification are described in this chapter.

3.1 Components

A class extending LitElement base class represents a LitElement com-ponent. In

addition to Web Components specification, LitElement supports type-safe observable

properties that cause an element to up-date with many useful options. Observable

properties can be written in either vanilla JavaScript or TypeScript style (in this case,

components needs to be first transpiled to work correctly). Other advanced features as

batching changed properties and attributes and asynchronous ren-dering are also

supported, reducing the overhead and keeping the state consistent.

3.1.1 Lifecycle

LitElement implements basic Web Component lifecycle methods. In addition, to

provide a higher abstraction and more functionality over the Web Components

specification, it extends component update life-cycle by many by method in following

call order:
1. someProperty.hasChanged
2. requestUpdate
3. performUpdate
4. shouldUpdate
5. update

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 29

3. LitElement

6. render
7. firstUpdated
8. updated
9. updateComplete

Figure 3.1: LitElement component

3.2 Templates

LitElement templates are based on Lit-html library. Lit-html is a lightweight templating

library that is adding a layer of abstraction on the top of the already existing <template>

tag. Lit-html solution is focusing on

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 30

3. LitElement

the declarative usage of HTML templates in JavaScript, efficient render and update

of the DOM and better overall development experience.

Figure 3.2: lit-html template

The main idea behind this library is to use the latest ES6 feature, called tagged

template literals. It reduces the need to query the cloned document to find the

placeholders for values, while still supporting HTML syntax checking and using only

platform features (unlike Mus-tache.js curly braces syntax). Lit-html also remembers

the placeholders placements and only updates the parts of the template that changes.

This high-level approach uses the newest platform features and does not require any

other dependency than relatively small 3.5kB (com-pared to the other approaches)

library.

3.3 Styles

Based on the Shadow DOM API, LitElement supports component en-capsulated

styles. The recommended way of defining the styles is using the static style property.

Static style property supports Constructable

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 31

3. LitElement

Stylesheets, which is a specification that is allowing browsers to parse styles exactly

ones and reuse the stylesheet as many times as required for maximum efficiency.
To define a static styles property (fig. 3.3) following steps are needed:

• Import of the css tagged literal function from LitElement mod-ule.

• Creation of static style property returning a tagged template literal or an array

of tagged literals with style defined in plain

CSS

Figure 3.3: Styling LitElement component

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 32

3. LitElement

3.4 Imports

LitElement uses the standard ES modules described in the previous chapter.

3.5 Support

LitElement claims to support all major browsers including Chrome, Firefox, IE,

Edge, Safari and Opera.

3.6 Conclusion

Even though LitElement is still a relatively new library, it already brings many

advantages over pure Web Components. It makes a tiny abstraction over Web

Components specification, enabling writing Web Components with less overhead and

just a tiny addition of JavaScript page load size (3,5 kB). LitElement is still strictly

dependent on the Web platform, which enables usage of already built-in developer

tools. On the other hand, because of this dependency on the platform, the

functionality and the level of abstraction is still limited by the platform.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 33

4 React.js

Note: Released in 2013, maintained by Facebook.

React.js library is a JavaScript library that allows the creation of reusable

components. It is one of the biggest popularisers of component-based UI development,

introducing many patterns and best practices possibly usable by other component-

based approaches.

Figure 4.1: React component

At first sight, the React component (fig. 4.1) looks syntactically similar to the

LitElement component (fig. 3.1). However, on the inside,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 34

4. React.js

both of them work quite differently. In this chapter, React approaches for solving

common component-based problems are described as a contrast to Web Components

specification and LitElement library.

4.1 Main concepts

4.1.1 Compiled code

React components are not natively supported by browsers and have to be transpiled to

JavaScript by tools called transpilers. Even though that transpiled React components

have much common with Web Com-ponents, they are not based on Web Components

specification.

Note: Transpilation is a type of S2S (source-to-source com-pilation),

which is a type of compilation that produces the equivalent source code

in the same (i.e. older version of the language) or a different language.

Figure 4.2: React transpilation process
1

1. https://www.codeproject.com/Articles/1028182/ Getting-

Started-with-React-ES?msg=5125189

http://www.ijsrem.com/
https://www.codeproject.com/Articles/1028182/Getting-Started-with-React-ES?msg=5125189
https://www.codeproject.com/Articles/1028182/Getting-Started-with-React-ES?msg=5125189
https://www.codeproject.com/Articles/1028182/Getting-Started-with-React-ES?msg=5125189

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 35

4. React.js

4.1.2 Virtual DOM

VDOM (Virtual DOM) is a concept of storing a lightweight virtual DOM in memory

used by React. It is enabling performance benefits, more declarative API and an

overall higher abstraction over the na-tive DOM. VDOM is a concept to keep the UI

in memory and sync it together with the real DOM only when necessary. It also only

ren-ders the part of the DOM that is necessary to be re-rendered, not the whole DOM

tree. This process of syncing the VDOM with the real DOM is called reconciliation

and allows such things as the in-cremental rendering and thus splitting the whole

rendering process into multiple chunks and spreading it over multiple frames, while

increasing the rendering performance (React Fiber
2
). In contrast with the native

DOM, virtual DOM abstracts out attribute manipulation, manual DOM updates and

event handling.

Figure 4.3: VDOM reconciliation process
3

2. https://medium.com/react-in-depth/inside-fiber-in-depth-overview-of-the-new-

reconciliation-algorithm-in-react-e1c04700ef6e

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 36

4. React.js

4.1.3 One-way data flow

One-way data flow (fig. 4.4) is a pattern recommended to use by React, allowing only

one-way data transfer. Which means that data from a parent component can be passed

to the child component only via props (React component attributes), and only in the

direction parent-children. The key advantages of this pattern are:

• Less error prone – more control over data than other approaches as two-way data

binding

• Easier to debug – precisely knowing which data comes from which direction

• More efficient – this approach tends to be more efficient than, i.e. two-way data

binding

The disadvantage of this pattern is described as a prop-drilling problem in the State

management section.

Figure 4.4: One-way data flow
4

3. https://programmingwithmosh.com/react/react-virtual-dom-explained/

http://www.ijsrem.com/
https://programmingwithmosh.com/react/react-virtual-dom-explained/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 37

4. React.js

4.2 Components

React component is a component that accepts data (called props) and returns a React

element describing the UI. There are two types of com-ponents: Stateless and Statefull.

Stateless component is just a function accepting props and returning React element.

Statefull component is either a class extending React. Component interface (or function

while following new React Hooks API). In the contrast with stateless components,

statefull components can manage their local state via component lifecycle methods (fig.

4.5).

4.2.1 Lifecycle

Because of VDOM and overall higher abstraction, React lifecycle (fig. 4.5) differs from

Web Component lifecycle. On the other, the level of abstraction is and provided

lifecycle callbacks are similar to the LitElement one.

4. https://almerosteyn.com/2017/11/id24-accessible-react-tips-tools-tricks#
/

http://www.ijsrem.com/
https://almerosteyn.com/2017/11/id24-accessible-react-tips-tools-tricks##/
https://almerosteyn.com/2017/11/id24-accessible-react-tips-tools-tricks##/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 38

4. React.js

Figure 4.5: React component lifecycle

4.3 Templates

JSX is popular templating alternative introduced to React. It is an XML-like syntax

extension to JavaScript. It does not necessarily need to be used with React, but it is

recommended for better developer experience.
This approach is trying to move out of the platform as far as possi-ble. Introducing

its simplified syntax. There is no need to use double

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 39

4. React.js

curly braces, neither template literals. On the other hand, this syntax all has its pitfalls.

Even though it looks on the first site familiar to the JavaScript developer, it is not

standardised into ECMAScript code and thus has several dissimilarities. It is not

supported by browser out of the box, and a transpiler has to be used to transform it into

the standard ECMAScript tokens.

Figure 4.6: Two identical React elements - JSX vs React.createElement()

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 40

4. React.js

4.4 Styles

React does not use Shadow DOM for encapsulating styles, but because it uses Virtual

DOM, styles can be defined as a JavaScript object and passed to the predefined style

prop, which at the end creates the encap-sulated styles for a component and thus provide

similar functionality as Shadow DOM.

Figure 4.7: Styling React component

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 41

4. React.js

4.5 Imports

React, uses CommonJS instead of ES Modules, which is a module specification used by

Node.js for working with modules. That is why React has to be compiled before it can

be shipped into the production by module bundler as i.e. widely used Webpack module

bundler.

4.6 Other features

Because of the abstraction out of the platform, React supports many other features

almost out of the backs, that would be hardly achievable just with pure imperative Web

Components.

• Server-side rendering – rendering React component on the server and outputting

pure HTML content

• Non-blocking rendering – concurrent mode introduced to Re-act watches if there

is some action with higher priority than rendering itself. It there is such an action

(i.e. user input), Re-act automatically pauses rendering and let other things finish

before.

• Mobile platform support (React Native) – thanks to the Reacts’ level of

abstraction, it is possible to build mobile applications using React style JavaScript

4.7 Support

React supports all popular browsers back to Internet Explorer 9. More so, React supports

rendering on the server (Node.js) and mobile ap-plication development (React Native).

4.8 Conclusion

React focuses on different things than Web Components. Even though it offers similar

functionalities as Web Components libraries (i.e. LitEle-ment), it focuses on even

greater abstraction out of the platform. Its

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 42

4. React.js

goal is to write components completely in a declarative way, without any need for DOM

manipulation. It introduces many abstractions as Virtual DOM or JSX. Because of these

abstractions, React is capa-ble of such things as non-blocking rendering, dynamic UI

loading, server-side rendering or powering mobile apps almost out of the box. However,

Even though Web Components and React components differ, they differ mostly on the

level of abstraction of component model im-plementation. Furthermore, because the

Web Components are browser standards, it is straightforward to use a Web Component

inside of the React component, and also React component in a Web Compo-nent

(currently with some limitations
5
), making the two of them not necessarily mutually

exclusive. That is why many approaches, best practices and libraries introduced to React

are possibly usable by Web Components themselves, making Web Components or rather

Web Component libraries a powerful competitor or a powerful ally for React itself.

5. https://custom-elements-everywhere.com/libraries/react/results/results.html

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 43

5 State management

This chapter introduces state management problem as one of the hard-est problems

regarding web component-based development. Because Web Components are relatively

new technology, not many state man-agement solutions for them actually exist, and if

they do exist, they are simple ports of state management solutions introduced to React.

That is why are in this chapter few of the most popular state management solutions for

React analysed and based on this analysis, a new state management library for Web

Components is proposed.

Quote: One of the hardest parts of software development is managing state.

Life could be so simple if the user couldn’t interact with the application at

all, but that sounds like a 90s website and most of us are building interactive

appli-cations, so we’ve got to put state somewhere. [8]

5.1 Component state

Generally speaking, a component state is any data living inside a component. In the case

when a class represents a component, the state could be a set of values of properties of

the class.

Note: The state depends on defined constraints, level of abstraction and

point of view. For example, React defined state as a state property with

setState helper function, to render the element properly (because of the

VDOM).

For example, this is how a counter component with a state can look like (fig. 5.1).
Many things can be achieved just with the component state. Where things start to

break down, is when multiple components want to share the same state or the state has

to passed down many components deep into the component tree.

1. https://kentcdodds.com/blog/application-state-management-with-react

http://www.ijsrem.com/
https://kentcdodds.com/blog/application-state-management-with-react

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 44

5. State management

Figure 5.1: React statefull component
1

5.2 Props drilling

Note: This problem is mostly connected to solutions using VDOM or a

higher abstraction over the DOM as Lit-html, because only them allow to

pass pure unstringified objects through the component tree.

Props drilling (fig. 5.2, fig. 5.3) often occurs, when multiple com-ponents need to

share a common state or the props need to be passed down many levels deep into the

component tree.

2. https://javascriptplayground.com/context-in-reactjs-applications/
3. https://kentcdodds.com/blog/application-state-management-with-react

http://www.ijsrem.com/
https://javascriptplayground.com/context-in-reactjs-applications/
https://kentcdodds.com/blog/application-state-management-with-react

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 45

5. State management

Figure 5.2: Props drilling problem - graph
2

Figure 5.3: Props drilling problem - example
3

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 46

5. State management

The approach of passing down the props through the components that do not

necessarily need them is cumbersome and introduces many possible bugs in the future

while deteriorating maintainability. That is why many other patterns and approaches to

solve this issue were proposed.

5.3 Singleton pattern

To create a Singleton in JavaScript it is possible to use ES modules as a state holder and

export getters and setter like on the following figure (fig. 5.4).

Figure 5.4: Singleton pattern for managing state
4

Rather than drilling props in the component tree, this solution enables components

to import the state module and update or get the data that they need. To make this

pattern work, the components need to listen for changes to appropriately re-render

themselves. This option is suitable for solving props drilling problem in Web

Components and React components. When coming to advanced features like server-side

rendering, singleton pattern cannot be used any longer.

4. https://kentcdodds.com/blog/application-state-management-with-react

http://www.ijsrem.com/
https://kentcdodds.com/blog/application-state-management-with-react

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 47

5. State management

5.4 Redux

Redux is a Flux library utilising uni-directional data flow and thus solving the props

drilling problem. It focuses on clean separation-of-concerns, single source of truth,

immutability and functional pro-gramming concept while providing predictable state

flow and state debuggability. Redux is mainly useful in large applications, where

multiple people work on the same project and where testability and debugging are one of

the most important criteria.

Figure 5.5: Communcation between component without and with Redux

5. https://codingthesmartway.com/learn-redux-introduction-to-state-

management-with-react/

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 48

5. State management

Figure 5.6: Redux data flow
5

5.5 Context API

Figure 5.7: React Context API - graph
6

6. https://javascriptplayground.com/context-in-reactjs-applications/

http://www.ijsrem.com/
https://javascriptplayground.com/context-in-reactjs-applications/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 49

5. State management

Context API is an API introduced to React. It also focuses on solving the prop-

drilling problem, without any need to implement emitters as in Singleton pattern way

and its all declarative. However, Context API is mainly useful while passing the same

props to many different components deep into the component tree structure. Context

API consists of two components: Provider and Consumer. An example follows (fig.

5.8).

Figure 5.8: React Context API - example

5.6 Context API for Web Components

Context API is a breakthrough in state management for React, be-cause it solves the

only problem with uni-directional data flow (props-drilling) and solves it well. However,

nothing like pure Context API

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 50

5. State management

was proposed for Web Components specification yet. That is why a solution usable with

Web Components was designed in the scope of this thesis. It implements the same API

as the React Context API ver-sion, however, it is usable with pure, standardised Web

components. The solution was inspired by haunted
7
 library, which implements also

Context API, but only in the Hook API
8
 version.

Figure 5.9: Context API for Web Components

7. https://github.com/matthewp/haunted
8. https://reactjs.org/docs/hooks-reference.html

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 51

Conclusion

Web Components specification brings many improvements to the Web platform itself,

that were either not possible to do before or were only solvable by some other, often

more complicated approaches. On the other hand, Web Components are only low-level

specifications and us-age of their API becomes cumbersome over time. That is why

libraries like LitElement are being introduced, trying to make abstraction over the

specifications with minimal increase of JavaScript page load size.
On the other side, libraries like React.js are offering similar func-tionalities as Web

Components libraries (i.e. LitElement), focusing on even greater abstraction out of the

platform. React’s goal is to write components completely in a declarative way, without

any need for DOM manipulation. It introduces many abstractions as Virtual DOM or

JSX. Because of these abstractions, React is capable of such things as non-blocking

rendering, dynamic UI loading, server-side rendering or powering mobile apps almost

out of the box.
Furthermore, because the Web Components are browser standards, it is

straightforward to use a Web Component inside of a React com-ponent and vice versa
(currently with some limitations

9
), making the two of them not necessarily mutually

exclusive.
One of the hardest problems to solve in component-based applica-tions is how to

manage its state. React promotes one-way data flow as a more convenient way of

passing data in the application. Even though this approach brings many advantages, it

also has disadvan-tages. While the application grows, the component tree becomes too

big and passing the data one-way hardly maintainable. That is why community and

React itself answered with many possible solutions solving this problem.
Web Components and React implement a similar component model. Because of that,

many of the solutions designed primarily for React can be reused with Web

Components. To prove this statement, one of the newest React approach for solving state

management problem called React Context API was implemented for Web Components

as part of this thesis.

9. https://custom-elements-everywhere.com/libraries/react/results/results.html

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 52

5. State management

There are many possible ways to extend this thesis. One of them might be to include

a deep comparison of rendering performance of Web Components compared to other

solutions. Another possible extension might be to add a more in-depth analysis of

possible state management solutions that were not mentioned in this thesis.

An appendix

A.1 Context API for Web Components

A proof of concept of Context API for Web Components, inspired by haunted library,

can be found under web-component-context-api directory. This directory includes one

JavaScript file exporting one function called createContext. A simple example of the

usage can be found in the example folder.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 53

Bibliography

1. RUSSELL, Alex. Web Components and Model Driven Views [on-line]. Fronteers, 2011

[visited on 2019-13-05]. Available from: https://vimeo.com/33430613.

2. Component-based software engineering [online]. Wikipedia, 2019 [visited on 2019-13-

05]. Available from: https://en.wikipedia.org/wiki/ Component-

based_software_engineering.

3. DIJKSTRA, Edsger W. Selected Writings on Computing: A Personal Perspective.

Heidelberg: Springer-Verlag Berlin, 1982. ISBN 0–387–90652–5.

4. Custom elements [online]. WHATWG, 2005–2019 [visited on 2019-15-04]. Available

from: https : / / html . spec . whatwg . org / multipage/custom-elements.html#custom-

elements-intro.

5. <template>: The Content Template element [online]. Mozilla documenta-tion network,

2005–2019 [visited on 2019-15-04]. Available from: https : / / developer . mozilla .

org / en - US / docs / Web / HTML / Element/template.
6. HTML standard - The template element [online]. WHATWG, 2005– 2019 [visited on

2019-15-04]. Available from: https : / / html . spec . whatwg . org / multipage /

scripting . html # the - template - element.

7. Shadow DOM v1: Self-Contained Web Components [online]. Google De-velopers, 2019

[visited on 2019-13-05]. Available from: https:// developers . google . com / web /

fundamentals / web - components / shadowdom#intro.
8. DODDS, Kent C. Application state managemnt [online]. 2019 [visited on 2019-15-04].

Available from: https://kentcdodds.com/blog/ application-state-management.

9. RIGBY, Michael. Component-Based Software Engineering: Software Archi-tecture.

CreateSpace Independent Publishing Platform, 2016. ISBN 978-1541035614.

10. STRIMPEL, Jarrod Overson Jason. Developing Web Components: UI from jQuery to

Polymer. O’Reilly Media, 2015. ISBN 978-1491949023.

http://www.ijsrem.com/
https://vimeo.com/33430613
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-intro
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-intro
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-intro
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://developers.google.com/web/fundamentals/web-components/shadowdom#intro
https://developers.google.com/web/fundamentals/web-components/shadowdom#intro
https://developers.google.com/web/fundamentals/web-components/shadowdom#intro
https://developers.google.com/web/fundamentals/web-components/shadowdom#intro
https://kentcdodds.com/blog/application-state-management
https://kentcdodds.com/blog/application-state-management

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 54

BIBLIOGRAPHY

11. PATEL, Sandeep Kumar. Learning Web Component Development. Packt Publishing,

2015. ISBN 9781784393649.

12. SOUSA ANTONIO, Cassio de. 978-1484212615. Apress, 2015. ISBN 978-

1484212615.

13. SCHILP, Pascal. ING Web Components [online]. 2019 [visited on 2019-15-04].

Available from: https://medium.com/ing-blog/ing-%EF%B8%8F-web-components-

f52aacc71d7a.

14. HALPERN, Ben. Why the React community is missing the point about Web Components

[online]. Dev.to, 2018 [visited on 2019-15-04]. Available from: https : / / dev . to / ben

/ why - the - react - community - is - missing-the-point-about-web-components-1ic3.
15. ABRAMOV, Dan. You Might Not Need Redux [online]. Medium.com, 2016 [visited on

2019-15-04]. Available from: https://medium.com/ @dan_abramov/you-might-not-

need-redux-be46360cf367.

16. DODSON, Rob. Custom Elements Everywhere [online]. 2019 [visited on 2019-15-04].

Available from: https : / / custom - elements - everywhere.com/.

17. DIMANDT, Dmitrii. The broken promise of Web Components [online]. 2017 [visited on

2019-15-04]. Available from: https://dmitriid. com/blog/2017/03/the-broken-promise-

of-web-components/.

18. @polymer/lit-element - A simple base class for creating fast, lightweight web

components [online]. The Polymer Project, 2019 [visited on 2019-15-04]. Available

from: https://www.webcomponents.org/ element/@polymer/lit-element.
19. lit-html - An efficient, expressive, extensible HTML templating library for JavaScript

[online]. The Polymer Project, 2019 [visited on 2019-15-04]. Available from:

https://lit-html.polymer-project.org/.
20. LitElement - A simple base class for creating fast, lightweight web compo-nents [online].

The Polymer Project, 2019 [visited on 2019-15-04]. Available from: https://lit-

element.polymer-project.org/.

21. BUCKLER, Craig. Understanding ES6 Modules [online]. SitePoint, 2018 [visited on

2019-15-04]. Available from: https://www.sitepoint. com/understanding-es6-modules/.

http://www.ijsrem.com/
https://medium.com/ing-blog/ing-%EF%B8%8F-web-components-f52aacc71d7a
https://medium.com/ing-blog/ing-%EF%B8%8F-web-components-f52aacc71d7a
https://medium.com/ing-blog/ing-%EF%B8%8F-web-components-f52aacc71d7a
https://dev.to/ben/why-the-react-community-is-missing-the-point-about-web-components-1ic3
https://dev.to/ben/why-the-react-community-is-missing-the-point-about-web-components-1ic3
https://dev.to/ben/why-the-react-community-is-missing-the-point-about-web-components-1ic3
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://custom-elements-everywhere.com/
https://custom-elements-everywhere.com/
https://dmitriid.com/blog/2017/03/the-broken-promise-of-web-components/
https://dmitriid.com/blog/2017/03/the-broken-promise-of-web-components/
https://dmitriid.com/blog/2017/03/the-broken-promise-of-web-components/
https://www.webcomponents.org/element/@polymer/lit-element
https://www.webcomponents.org/element/@polymer/lit-element
https://lit-html.polymer-project.org/
https://lit-element.polymer-project.org/
https://lit-element.polymer-project.org/
https://www.sitepoint.com/understanding-es6-modules/
https://www.sitepoint.com/understanding-es6-modules/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 10 | Oct -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 55

BIBLIOGRAPHY

22. BYNENS, Addy Osmani Mathias. Using JavaScript modules on the web [online].

Google Developer [visited on 2019-15-04]. Available from:

https://developers.google.com/web/fundamentals/primers/ modules.

23. IHRIG, Colin. The Basics of the Shadow DOM [online]. SitePoint, 2012 [visited on

2019-15-04]. Available from: https://www.sitepoint. com/the-basics-of-the-shadow-

dom/.

24. ALL STANDARDS AND DRAFTS [online]. W3C, 2019 [visited on 2019-15-04].

Available from: https://www.w3.org/TR/.

25. React - A JavaScript library for building user interfaces [online]. Facebook, 2019

[visited on 2019-15-04]. Available from: https : / / reactjs . org/.

26. VRUAB VAUGHN, Andrew Ckarj abd. Concurrent Rendering in React [online]. React

Conf, 2018 [visited on 2019-13-05]. Available from:

https://www.youtube.com/watch?v=ByBPyMBTzM0.

27. ABRAMOV, Dan. Beyond React 16 [online]. JSConf, 2018 [visited on 2019-13-05].

Available from: https://www.youtube.com/watch?v= nLF0n9SACd4.

28. ABRAMOV, Dan. Live React: Hot Reloading with Time Travel [online]. React Europe,

2015 [visited on 2019-13-05]. Available from: https:

//www.youtube.com/watch?v=xsSnOQynTHs.

29. RUSSELL, Alex. Web Components: Just in the Nick of Time [online]. Poly-mer Summit,

2017 [visited on 2019-13-05]. Available from: https: //www.youtube.com/watch?v=y-

8Lmg5Gobw.

30. AZIMINIA, Ana Cidre Sherry. Web Component Architecture and Pat-terns [online]. We

are developers, 2018 [visited on 2019-13-05]. Avail-able from:

https://www.youtube.com/watch?v=hdSz1EKjK10.

31. SPLITT, Martin. Building web applications with Web Components [online]. Devoxx,

2017 [visited on 2019-13-05]. Available from: https://www.

youtube.com/watch?v=0FstJG9t5v0.

http://www.ijsrem.com/
https://developers.google.com/web/fundamentals/primers/modules
https://developers.google.com/web/fundamentals/primers/modules
https://www.sitepoint.com/the-basics-of-the-shadow-dom/
https://www.sitepoint.com/the-basics-of-the-shadow-dom/
https://www.sitepoint.com/the-basics-of-the-shadow-dom/
https://www.w3.org/TR/
https://reactjs.org/
https://reactjs.org/
https://www.youtube.com/watch?v=ByBPyMBTzM0
https://www.youtube.com/watch?v=nLF0n9SACd4
https://www.youtube.com/watch?v=nLF0n9SACd4
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=y-8Lmg5Gobw
https://www.youtube.com/watch?v=y-8Lmg5Gobw
https://www.youtube.com/watch?v=y-8Lmg5Gobw
https://www.youtube.com/watch?v=hdSz1EKjK10
https://www.youtube.com/watch?v=0FstJG9t5v0
https://www.youtube.com/watch?v=0FstJG9t5v0

