
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March-2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 1

---***---
Abstract -Constraint Satisfaction Problem is considered as an

importantarea of the Mathematical Computation. Constraints are a

set of conditions that must be true for some problems like

cryptarithmetic problems. Cryptarithmetic problems are where

numbers are changed with alphabetic or symbolic order. A popular
problem in the field of Artificial Intelligence and the approach used

in our paper is cryptarithmetic problems. We suggested a solution

to this Genetic Algorithm problem in this paper and then improved

it by using parallelism. This algorithm will find the solution using

less memory more easily.

Key Words:Artificial Intelligence, Constraint Satisfaction,
Cryptarithmetic Problem, Parallel Genetic Algorithm, Depth-First
Search.

1.INTRODUCTION
A puzzle consisting of an arithmetic problem in

which the digits have been replaced by letters of the alphabet
is Cryptarithm or Word Addition. The objective is to use the
constraints to decode the letters (i.e., map them back to the
digits) provided that no two letters can have the same
numerical value[1].In the May 1931 issue of Sphinx, a Belgian
recreational mathematics magazine, this form of problem was
popularized and was translated by Maurice Kraitchik in 1942
as "Cryptarithmetic." Fig. 1 demonstrates one of the well-
known Cryptarithm or Word Addition.[2]

Y O U R
+ Y O U

H E A R T

Figure 1. Cryptarithm problem example

For each message, the consumer must choose a
numerical value such that the equation holds a good value. A
reasonable solution which is arithmetically accurate would be
to assign digits to letters in the following way. E=0, H=1,
U=2, A=3, O=4, R=6, T=8, and Y=9 indicate that this means
thatFigure 2. An acceptable solution to problem in Fig 1.

9 4 2 6
+ 9 4 2

1 0 3 6 8

Figure 2. An acceptable solution to the Cryptarithmetic problem

2. RELATED WORK

In this part, three parallel genetic algorithm
applications are used as examples of work related to the
current paper.

In the first application of parallel processing systems,
the maximization of system performance by task mapping is a
fundamental consideration.

An effective allocation strategy will enhance the use
of resources and significantly improve the system's
throughput.In order to meet performance criteria, such as
minimizing execution time or communication delays, we
show how to map the tasks between the processors. We rely
on Local Neighborhood Search (LNS) as this approach has
been shown to outperform a large number of heuristic-based
algorithms. We call our LNS based mapping algorithm,
Genetic Local Neighborhood Search (P-GLNS). All three of
these map-ping strategies were implemented and compared.
The experimental results show that 1) the GLNS algorithm is
better than the LNS algorithm and 2). Near linear speedup is
achieved by the P-GLNS algorithm [4]

In the second application, a parallel genetic
algorithm was developed to dynamically schedule
heterogeneous tasks in a distributed environment for
heterogeneous processors.It is known that the scheduling
problem is NP complete. In this field, genetic algorithms, a
meta-heuristic search technique, have been successfully
used.The proposed algorithm uses multiple processors for
scheduling with centralized control. Tasks are taken as
batches and are planned to minimize the time of execution
and balance the processors' loads.The proposed parallel
genetic algorithm (PPGA) substantially reduces scheduling
time without adversely affecting the max span of the resulting
schedules, according to our experimental findings.[3]

In the third application an investigation is done in
embedded systems. Therefore, energy efficiency becomes one
of the major design concerns for embedded systems. The
technique of dynamic voltage scaling (DVS) can be exploited
to reduce the power consumption of modern processors by
slowing down the processor speed. The problem of static
DVS scheduling in distributed systems such as the energy
consumption of the processors is minimized while
guaranteeing the timing constraints of the tasks is an NP hard
problem. This paper describes a Parallel Genetic Algorithm
(PGA) that improves over Genetic Algorithm (GA) for
finding better schedules with less time by parallelizing the
GA algorithms to run on a cluster [5].

Cryptarithmetic Algorithm and Parallel Genetic Algorithm Using for

Constraint Satisfaction Problems
1ZinMinnThant, 2SiSiSann, 3YiYiWin, 4KhaingZarMyintAung

1Faculty of Computer Science, University of Computer Studies (Kalay)
2Faculty of InformationTechnology Support and

Maintenance, University of Computer Studies (Kalay)
3Faculty of Computer Science,University of Computer Studies (Pakokku)

4 Computer Department, Myanmar Aerospace Engineering University(Meikhtilar)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March-2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 2

3. CONSTRAINT SATISFACTION PROBLEM

Constraints of Cryptarithmetic problem are as follows:

1. The arithmetic operations are in decimal; therefore,
there must be maximum ten different letters in
overall strings which are being used.

2. All the same letters should be bound to a unique digit
and no two different letters could be bounded to the
same digit.

3. As the words will represent numbers, the first letter
of them could not be assigned to zero.

4. The resulting numbers should satisfy the problem,
meaning that the result of the two first numbers
(operands) under the specified arithmetic operation
(plus operator) should be the third number.[8]
Search algorithms inspired by genetics and natural

selection are Genetic Algorithms (GAs). These algorithms are
effective search techniques that are used in many disciplines
to solve difficult issues. Unfortunately, in terms of processing
load and memory, they can be very demanding. Parallel
Genetic Algorithms (PGAs) are parallel gas implementations
that can deliver major performance and scalability gains. The
most significant advantage of PGAs is that, even though
parallelism is simulated on traditional machines, they have
better performance in certain cases than single population-
based algorithms. In order to solve decimal Cryptarithmetic
problems, this paper proposes an effective parallel genetic
algorithm and contrasts the proposed algorithm with ordinary
ways to solve them.[9]

4.BASIC OF GENETIC ALGORITHMS
Randomly generated individuals are present in the

beginning. All those individuals create a population.
Sometimes, the population is referred to as a generation. They
are chosen by the operators according to their characteristics
for the output of a new generation. The quality of the
population increases or decreases and some constant limits are
given. A chromosome represents each individual. As binary
strings, chromosomes are also represented. Sometimes there
are more strings which are not necessarily of a binary nature.

The chromosome representation could be evaluated
by a fitness function. Fitness is equal to the quality of a
individual and is an important factor in the process of
selection. During the run, the average fitness of a population
improves gradually.Several operators are characterized by
working on the population.Crossover performs an exchange
of the substring within the pair with some probability after
randomly selecting a pair of people. Many types of crossovers
are specified, but there is a definition beyond the scope of this
paper.

Mutation is an operator in the population for a small
shift in one individual /several individual. It is random, so it's
against remaining at the minimum local level.

A low parameter for mutation means a low likelihood of
mutation. Option distinguishes individuals with fitness. The
higher the fitness, the greater the probability of being a parent
in the next generation. There are various patterns of selection,
but the basic functionality is the same.[10]

5. FORMULATION OF THE ALGORITHM

A. Encoding Individuals

The first part of using GA to solve a problem is to
identify a way to encode chromosomes for individuals.
Suppose we are dealing with decimal numbers, then we can
use a 10-length sequence of characters with indices 0 through
9; if we need to allocate a letter to a digit, we just put that
letter to a letter, we just put that letter to the cell that has the
array index. For example, in Fig. 3 we have assigned 3 to H.

We should leave unassigned columns of the array
empty and to show that they are empty cells we marked it
with “- “letter as shown in Fig. 3.

A R T H E Y O U - -

0 1 2 3 4 5 6 7 8 9

Figure 3. A sample chromosome

Since each chromosome is a solution to the problem,
it may lead us to another solution by chaining the position of
the letters with each other or with empty cells. Test out Fig. 4.

B. Fitness Function

Fitness function evaluates the quality of an individua.
The fitness function for this problem is defined with the
following formula:

FITNESS = |R – (F + S) |

Assuming R as the result of the operation, F as the
first operand and S as the second operand.

We will get better individuals as the health of
individuals gets closer to zero. If an individual's fitness is
exactly zero, then that person is the correct solution.

Y O U R
5 6 7 1
+ Y O U
 5 6 7

H E A R T
3 4 0 1 2

FITNESS = |34012 – (5671 + 567) | = 27774

Figure 4. shows the fitness of the chromosome

C. Mutation

Randomly, the mutation operator produces two
numbers between 0 and 9 and exchanges the cell content of
these two chromosome indices. The mutation operator should
ensure that the exchange is not illegal, which means that an
exchange that might result in any starting letter of the words
being inserted in the chromosome's zero index should not be
allowed.

(a) Y O UH - EA - T R

0 1 2 3 4 5 6 7 8 9

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March-2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 3

(b) Y O U – H E – A T R

0 1 2 3 4 5 6 7 8 9

(c) Y O – U H E – A T R

 0 1 2 3 4 5 6 7 8 9

Figure 5. Three chromosomes after mutation

Here, the only restriction is that the letter should not
be the starting letter of the chromosome at the start of a
number in the problem. On the topic of Fig. 1. S and M cannot
be 0. This is because they are the starting numbers in the
problem. Furthermore, a more efficient mutation operator
should not allow the exchange of empty cells.[6]

D. Making new Generations

In this paper, we have used asexual genetic
algorithms; thus, we do not have a crossover of two parents,
and the method of generating new generations is simply to use
mutation operations on selected individuals.[7]

If we take more chromosomes, more computation
will be required, and if we take less chromosomes, we will not
be able to reach the solution in a limited time. We'll find the
solution after generating several generations when the error in
the chromosome is 0. The chromosome solution from Fig. 1 is
shown in Fig. 6.

E H U A O – R – T Y
0 1 2 3 4 5 6 7 8 9

Y O U R
9 4 2 6

+ Y O U
 9 4 2

H E A R T
1 0 3 6 8

FITNESS = |10368 -(9426 +942) = 0

Figure 6. The Solution Chromosome

E. Parallelization

Parallelization is applied to the new generations'
process of creation. There is a coordinator thread responsible
for organizing, identifying and distributing the most relevant
individuals and some generator threads responsible for
producing new generations. There is an internal population of
each thread.Each thread generates a random population of a
fixed size at the beginning and includes them in its internal
population.

As the thread generates a new individual, it in the
right place of its internal population by using insertion sort in
an increasingly manner according to individuals ’ fitness. This
way always the better individuals have lower indices and if
there is a solution, it would be in index 0.

When all of the threads generated new population,
the coordinator thread picks a number of best individuals plus
some randomly chosen individuals from each thread ’s
internal population and accumulates them in a list and then

distributes these chosen individuals over all the threads as the
individuals that the threads use to generate a new population.

During the process of selecting the best people from
the internal population of each thread, this process continues
until the coordinator thread finds an individual with a fitness
equal to zero.

6. PROPOSED ALGORITHM
A. Main Algorithm

1. Put the coordinator thread in wait state.
2. Initialize N generator threads with an internal

population of size P.
3. In each generator thread do the following:

3.1 If the inner population is empty generate a
random population then go to 3.3, else go to

3.2 Wait for a synchronization signal from
coordinator thread and once it has been
received, produce new children from the list of
individuals which the coordinator has passed.

3.3 Notify the coordinator that the current job is
done and ready. Go to step 3.2.

4. Wait for all generator threads to notify the
coordinator threads.

5. In coordinator thread, search the inner populations ’
first indices for the correct solution. If the solution
has been found finish the algorithm else go to 6.

6. In coordinator thread, pick R best and some
randomly chosen individuals from all internal
populations of threads and create a list with them.

7. Distribute the chosen population to the generator
threads, signal them, put coordinator thread in wait
state and go to step 4.

B. Individual with Fitness Algorithm

1. Extract distinct letters from input strings and put
them in a list name L.

2. Repeat the following until the desired population
size is reached:
2.1 For each letter in L do the following:
 2.1.1 Generate a random number between 0

and 9.
 2.1.2 If the random number is equal to zero

and the letter is the beginning letter of the
words (which should not be zero) go to 2.1.4.

 2.1.3 If the cell that is corresponding the
random number is empty, put the letter into that
cell, else go to step 2.1.1.

 2.1.4 If the current letter is the last letter of L
and the length of L is 10 then generate a
random number between 1 and 9 exchange the
place of the letter from that cell to the index of
zero and the current letter to that position. Keep
doing it until the second letter is not a
beginning letter of the words. Else go to step
2.1.1.

2.2 Calculate the fitness of this new individual.
2.3 Add the individual into the right place in the

inner population list.
C. Making New Generation Algorithm

1. Get the chosen parent and generate two random
numbers.

2. If the two random numbers are not the same or not
indicating two empty cells in the parent and will not

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March-2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 4

lead us to numbers beginning with zeros, exchanges
the content of the cells corresponding by the
random numbers. Else go to step 1.

3. Calculate the fitness of the new individual, put it in
the right place in the inner population and remove
the worst individual from the population.

7. EXPERIMENTAL RESULTS

This project was effective in solving cryptarithmetic
problems. The use of the parallel genetic algorithm and
depth-first search showed that within an acceptable one, we
can even find the result of large instances of this
problem.Each issue has been checked a hundred times and
the average time has been gathered. Table 1 through 5
displays in detail the outcomes.

TABLE 1. RESULT OF A FIVE VARIABLE PROBLEM

Problem (per 100 runs) DAN + NAN = NORA

Answer 921+121 =1042

Variable 5

Minimum Time (ms) 16

Maximum Time (ms) 172

Average T ime (ms) 62

5 generator threads are used in the problem outlined
in Table 1.

TABLE 2. RESULT OF A SIX VARIABLE PROBLEM

Problem (per 100 runs) TWO +TWO = FOUR

Answer 836 +836=1672

Variable 6

Minimum Time (ms) 57

Maximum Time (ms) 224

Average T ime (ms) 148

12 generator threads are used in the problem
outlined in Table 2.

TABLE 3. RESULT OF A SEVEN VARIABLE PROBLEM

Problem (per 100 runs) BASE+BALL =GAMES

Answer 7483+7455 =14938

Variable 7

Minimum Time (ms) 230

Maximum Time (ms) 960

Average T ime (ms) 506

14 generator threads are included in the problem
outlined in Table 3.

TABLE 4. RESULT OF A EIGHT VARIABLE PROBLEM

Problem (per 100 runs) CAT+RUN =AWAY

Answer 517+ 693 =1210

Variable 8

Minimum Time (ms) 510

Maximum Time (ms) 2130

Average T ime (ms) 1155

5 generator threads were used in the problem
outlined in Table 4.

TABLE 5. RESULT OF A TEN VARIABLE PROBLEM

Problem (per 100 runs) BROWN+YELLOW=PURPLE

Answer 52813+649981=702794

Variable 10

Minimum Time (ms) 430

Maximum Time (ms) 3632

Average T ime (ms) 2421

25 generator threads are included in the problem
outlined in Table 5.

Another experiment was to calculate the average
time for problem sizes to solve Cryptarithmetic. Different
instances of various variable numbers have been resolved
hundreds of times and the average time has been calculated
for each problem size. The results of this experiment are
shown in Table 6.

TABLE 6. THE RESULT OF DIFFERENT PROBLEMS SIZES

Variable Number Average Time(ms)
5 112
6 325
7 877
8 1155

10 3511

Fig 7. Illustrate the comparison between the

proposed algorithm (PGA) and the depth-first search

algorithm (DFS). It is clear from Fig 7. That the PGA has far

better results than DFS.

Figure 7. Comparison of DFS and PGA run times

8. CONCLUSION

This paper focused on the effective method of
Cryptarithmetic problems. The use of the parallel genetic
algorithm it has been shown that within an acceptable time,
we can also find the result of large instances of this problem.
The proposed algorithm uses multiple processors for
scheduling with centralized control.Tasks are taken as
batches and scheduled to minimize the time of execution and
balance the processors' load. Clearly, by systematically
searching for possible assignments of values to the letters by
deducting search space, we can easily find solutions to
cryptarithmetic problems.

Furthermore, the operation can be extended to
subtract, multiply, division and we can have more than two
operands.

5 6 7 8 10

DFS Time 30,24 151,2 604,8 70,8 3628,8

PGA Time 0,112 0,325 0,877 30,6 3,511

0

500

1000

1500

2000

2500

3000

3500

4000

Comparisom of DFS and PGA

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March-2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 5

ACKNOWLEDGEMENT
First and foremost, I'd like to thank my

advisors, Daw Yi Yi Win, Daw Si SiSann and
DawKhaingZarMyint Aung, for their guidance,
motivation, enthusiasm, and profound experience
during the research and writing this paper.

REFERENCES

[1] Vinod Goel, Sketches of thought, MIT Press,1 995, pp.87 and 88.
[2] Bonnie Adverbach and Orin Chein, Problem Solving Through

Recreational Mathematics, Courier Dover Publications, 2000, pp. 156.
[3] S.MounirAlaoui, O. Frieder, and T .El-Ghazawi, “A Parallel Genetic

Algorithm for task mapping on parallel machines”. IPPS/SPDP
Workshops 1999.

[4] R.Neduchelian, K.Koudhik, N.Meiyappan, V.Raghu, “Dynamic Task
Scheduling Using Parallel Genetic Algorithms for Heterogeneous
Distributed Computing”, Proceeding of 2006 International Conference
on Grid, Las Vegas, Nevada, USA,2006.

[5] Man Lin, Chen Ding, “Parallel Genetic Algorithms for DVS
Scheduling of Distributed Embedded Systems”, HPCC,2007.

[6] Abu Sayef Md. Ishaque, Md. Bahlul Haider, Muhammed Al Mahmud
Wasid, Shah Mohammed Alaul, Md. Kamrul Hassan, Tanveer Ahsan,
Md. Shamsul: “An Evolutionary Algorithm to Solve Cryptarithmetic
Problem”. International Conference on Computational Intelligence
2004: 494-496.

[7] MM Naoghare, VM Deshmukh: “Comparison of Parallel Genetic
Algorithm with Depth First Search Algorithm for solving Verbal
Arithmetic Problems”. International Conference and Workshop on
Emerging Trends in Technology (ICWET 2011)-TCET.

[8] David Goldberg, “Genetic Algorithms in Search, Optimization and
Machine,” Addison-Wesley, Reading, MA 1989.

[9] Mariusz Nowostawski, Riccardo Poli, “Parallel Genetic Algorithm
Taxonomy”, KES’99.

[10] Konfrst, Z, “Parallel Genetic Algorithms: Advances, Computing
Trends, Applications and Perspective,” Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18 th International 26-30
Apirl 2004.

BIOGRAPHIES (Optional not mandatory)

Zin Minn Thant
Lecturer
Faculty of Computer Science
University of Computer Studies,
(Kalay), Myanmar

Si SiSann
Lecturer
Faculty of Information Technology
Support and Maintenance
University of Computer Studies,
(Kalay), Myanmar

Yi Yi Win
Lecturer
Faculty of Computer Science
University of Computer Studies,
(Pakokku), Myanmar

KhaingZarMyint Aung
Lecturer
Computer Department
Myanmar Aerospace Engineering
University

http://www.ijsrem.com/

	2. RELATED WORK

