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---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract -Constraint Satisfaction Problem is considered as an 

importantarea of the Mathematical Computation. Constraints are a 

set of conditions that must be true for some problems like 

cryptarithmetic problems. Cryptarithmetic problems are where 

numbers are changed with alphabetic or symbolic order. A popular 
problem in the field of Artificial Intelligence and the approach used 

in our paper is cryptarithmetic problems. We suggested a solution 

to this Genetic Algorithm problem in this paper and then improved 

it by using parallelism. This algorithm will find the solution using 

less memory more easily. 

Key Words:Artificial Intelligence, Constraint Satisfaction, 
Cryptarithmetic Problem, Parallel Genetic Algorithm, Depth-First 
Search. 

 

1.INTRODUCTION  
A puzzle consisting of an arithmetic problem in 

which the digits have been replaced by letters of the alphabet 
is Cryptarithm or Word Addition. The objective is to use the 
constraints to decode the letters (i.e., map them back to the 
digits) provided that no two letters can have the same 
numerical value[1].In the May 1931 issue of Sphinx, a Belgian 
recreational mathematics magazine, this form of problem was 
popularized and was translated by Maurice Kraitchik in 1942 
as "Cryptarithmetic." Fig. 1 demonstrates one of the well-
known Cryptarithm or Word Addition.[2] 

Y O U R 
+ Y O U 

------------- 
H E A R T 

Figure 1. Cryptarithm problem example 

For each message, the consumer must choose a 
numerical value such that the equation holds a good value. A 
reasonable solution which is arithmetically accurate would be 
to assign digits to letters in the following way.  E=0, H=1, 
U=2, A=3, O=4, R=6, T=8, and Y=9 indicate that this means 
thatFigure 2. An acceptable solution to problem in Fig 1. 

9 4 2 6  
+ 9 4 2 

------------ 
1 0 3 6 8 

Figure 2. An acceptable solution to the Cryptarithmetic problem  

2. RELATED WORK 

In this part, three parallel genetic algorithm 
applications are used as examples of work related to the 
current paper. 

In the first application of parallel processing systems, 
the maximization of system performance by task mapping is a 
fundamental consideration. 

An effective allocation strategy will enhance the use 
of resources and significantly improve the system's 
throughput.In order to meet performance criteria, such as 
minimizing execution time or communication delays, we 
show how to map the tasks between the processors. We rely 
on Local Neighborhood Search (LNS) as this approach has 
been shown to outperform a large number of heuristic-based 
algorithms. We call our LNS based mapping algorithm, 
Genetic Local Neighborhood Search (P-GLNS). All three of 
these map-ping strategies were implemented and compared. 
The experimental results show that 1) the GLNS algorithm is 
better than the LNS algorithm and 2). Near linear speedup is 
achieved by the P-GLNS algorithm [4] 

In the second application, a parallel genetic 
algorithm was developed to dynamically schedule 
heterogeneous tasks in a distributed environment for 
heterogeneous processors.It is known that the scheduling 
problem is NP complete. In this field, genetic algorithms, a 
meta-heuristic search technique, have been successfully 
used.The proposed algorithm uses multiple processors for 
scheduling with centralized control. Tasks are taken as 
batches and are planned to minimize the time of execution 
and balance the processors' loads.The proposed parallel 
genetic algorithm (PPGA) substantially reduces scheduling 
time without adversely affecting the max span of the resulting 
schedules, according to our experimental findings.[3] 

In the third application an investigation is done in 
embedded systems. Therefore, energy efficiency becomes one 
of the major design concerns for embedded systems. The 
technique of dynamic voltage scaling (DVS) can be exploited 
to reduce the power consumption of modern processors by 
slowing down the processor speed. The problem of static 
DVS scheduling in distributed systems such as the energy 
consumption of the processors is minimized while 
guaranteeing the timing constraints of the tasks is an NP hard 
problem. This paper describes a Parallel Genetic Algorithm 
(PGA) that improves over Genetic Algorithm (GA) for 
finding better schedules with less time by parallelizing the 
GA algorithms to run on a cluster [5]. 
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3. CONSTRAINT SATISFACTION PROBLEM 

Constraints of Cryptarithmetic problem are as follows: 

1. The arithmetic operations are in decimal; therefore, 
there must be maximum ten different letters in 
overall strings which are being used. 

2. All the same letters should be bound to a unique digit 
and no two different letters could be bounded to the 
same digit. 

3. As the words will represent numbers, the first letter 
of them could not be assigned to zero. 

4. The resulting numbers should satisfy the problem, 
meaning that the result of the two first numbers 
(operands) under the specified arithmetic operation 
(plus operator) should be the third number.[8] 
Search algorithms inspired by genetics and natural 

selection are Genetic Algorithms (GAs). These algorithms are 
effective search techniques that are used in many disciplines 
to solve difficult issues. Unfortunately, in terms of processing 
load and memory, they can be very demanding. Parallel 
Genetic Algorithms (PGAs) are parallel gas implementations 
that can deliver major performance and scalability gains. The 
most significant advantage of PGAs is that, even though 
parallelism is simulated on traditional machines, they have 
better performance in certain cases than single population-
based algorithms. In order to solve decimal Cryptarithmetic 
problems, this paper proposes an effective parallel genetic 
algorithm and contrasts the proposed algorithm with ordinary 
ways to solve them.[9] 
 

4.BASIC OF GENETIC ALGORITHMS 
Randomly generated individuals are present in the 

beginning. All those individuals create a population. 
Sometimes, the population is referred to as a generation. They 
are chosen by the operators according to their characteristics 
for the output of a new generation. The quality of the 
population increases or decreases and some constant limits are 
given. A chromosome represents each individual. As binary 
strings, chromosomes are also represented. Sometimes there 
are more strings which are not necessarily of a binary nature. 

The chromosome representation could be evaluated 
by a fitness function. Fitness is equal to the quality of a 
individual and is an important factor in the process of 
selection. During the run, the average fitness of a population 
improves gradually.Several operators are characterized by 
working on the population.Crossover performs an exchange 
of the substring within the pair with some probability after 
randomly selecting a pair of people. Many types of crossovers 
are specified, but there is a definition beyond the scope of this 
paper. 

Mutation is an operator in the population for a small 
shift in one individual /several individual. It is random, so it's 
against remaining at the minimum local level. 

A low parameter for mutation means a low likelihood of 
mutation. Option distinguishes individuals with fitness. The 
higher the fitness, the greater the probability of being a parent 
in the next generation. There are various patterns of selection, 
but the basic functionality is the same.[10] 
 

5. FORMULATION OF THE ALGORITHM 

 
A. Encoding Individuals 

The first part of using GA to solve a problem is to 
identify a way to encode chromosomes for individuals. 
Suppose we are dealing with decimal numbers, then we can 
use a 10-length sequence of characters with indices 0 through 
9; if we need to allocate a letter to a digit, we just put that 
letter to a letter, we just put that letter to the cell that has the 
array index. For example, in Fig. 3 we have assigned 3 to H. 

We should leave unassigned columns of the array 
empty and to show that they are empty cells we marked it 
with “- “letter as shown in Fig. 3. 

 
A R T H E Y O U - - 

0  1  2  3  4  5  6  7 8 9 

Figure 3. A sample chromosome 

Since each chromosome is a solution to the problem, 
it may lead us to another solution by chaining the position of 
the letters with each other or with empty cells. Test out Fig. 4. 

B.  Fitness Function 

Fitness function evaluates the quality of an individua. 
The fitness function for this problem is defined with the 
following formula: 

FITNESS = |R – (F + S) | 

Assuming R as the result of the operation, F as the 
first operand and S as the second operand. 

We will get better individuals as the health of 
individuals gets closer to zero. If an individual's fitness is 
exactly zero, then that person is the correct solution.  

Y O U R 
5  6  7 1 
+ Y O U 
   5  6  7 

-------------- 
H E A R T 
3  4  0  1  2 

 

FITNESS = |34012 – (5671 + 567) | = 27774 

Figure 4. shows the fitness of the chromosome  

C. Mutation 

Randomly, the mutation operator produces two 
numbers between 0 and 9 and exchanges the cell content of 
these two chromosome indices. The mutation operator should 
ensure that the exchange is not illegal, which means that an 
exchange that might result in any starting letter of the words 
being inserted in the chromosome's zero index should not be 
allowed. 

 
(a) Y O UH  - EA - T R 

0  1  2  3  4 5 6 7 8 9 

http://www.ijsrem.com/


            International Journal of Scientific Research in Engineering and Management (IJSREM) 

         Volume: 05 Issue: 03 | March-2021       ISSN: 2582-3930 

 

© 2021, IJSREM      |www.ijsrem.com   |        Page 3 

 

(b) Y O U – H E – A T R 

0  1  2  3 4  5  6 7 8  9 

(c) Y O – U H E – A T R 

 0  1 2  3  4  5 6 7  8  9  

Figure 5. Three chromosomes after mutation 

 

Here, the only restriction is that the letter should not 
be the starting letter of the chromosome at the start of a 
number in the problem. On the topic of Fig. 1. S and M cannot 
be 0. This is because they are the starting numbers in the 
problem.  Furthermore, a more efficient mutation operator 
should not allow the exchange of empty cells.[6] 

D. Making new Generations 

In this paper, we have used asexual genetic 
algorithms; thus, we do not have a crossover of two parents, 
and the method of generating new generations is simply to use 
mutation operations on selected individuals.[7] 

If we take more chromosomes, more computation 
will be required, and if we take less chromosomes, we will not 
be able to reach the solution in a limited time. We'll find the 
solution after generating several generations when the error in 
the chromosome is 0. The chromosome solution from Fig. 1 is 
shown in Fig. 6. 

E H U A O – R – T Y 
0 1  2  3  4  5 6 7 8  9 

 
Y O U R 
9 4 2 6 

+ Y O U 
    9 4 2 

-------------- 
H E A R T 
1  0  3  6 8 

 
FITNESS = |10368 -(9426 +942) = 0 

Figure 6. The Solution Chromosome 
 

E. Parallelization 

Parallelization is applied to the new generations' 
process of creation. There is a coordinator thread responsible 
for organizing, identifying and distributing the most relevant 
individuals and some generator threads responsible for 
producing new generations. There is an internal population of 
each thread.Each thread generates a random population of a 
fixed size at the beginning and includes them in its internal 
population. 

As the thread generates a new individual, it in the 
right place of its internal population by using insertion sort in 
an increasingly manner according to individuals ’ fitness. This 
way always the better individuals have lower indices and if 
there is a solution, it would be in index 0. 

When all of the threads generated new population, 
the coordinator thread picks a number of best individuals plus 
some randomly chosen individuals from each thread ’s 
internal population and accumulates them in a list and then 

distributes these chosen individuals over all the threads as the 
individuals that the threads use to generate a new population. 

During the process of selecting the best people from 
the internal population of each thread, this process continues 
until the coordinator thread finds an individual with a fitness 
equal to zero. 

 
6. PROPOSED ALGORITHM 
A. Main Algorithm  

1. Put the coordinator thread in wait state. 
2. Initialize N generator threads with an internal 

population of size P. 
3. In each generator thread do the following:  

3.1 If the inner population is empty generate a 
random population then go to 3.3, else go to 

3.2 Wait for a synchronization signal from 
coordinator thread and once it has been 
received, produce new children from the list of 
individuals which the coordinator has passed. 

3.3 Notify the coordinator that the current job is 
done and ready. Go to step 3.2. 

4. Wait for all generator threads to notify the 
coordinator threads. 

5. In coordinator thread, search the inner populations ’ 
first indices for the correct solution. If the solution 
has been found finish the algorithm else go to 6. 

6. In coordinator thread, pick R best and some 
randomly chosen individuals from all internal 
populations of threads and create a list with them. 

7. Distribute the chosen population to the generator 
threads, signal them, put coordinator thread in wait 
state and go to step 4. 
 

B. Individual with Fitness Algorithm 

1. Extract distinct letters from input strings and put 
them in a list name L. 

2. Repeat the following until the desired population 
size is reached: 
2.1  For each letter in L do the following: 
 2.1.1 Generate a random number between 0 

and 9. 
 2.1.2 If the random number is equal to zero 

and the letter is the beginning letter of the 
words (which should not be zero) go to 2.1.4. 

 2.1.3 If the cell that is corresponding the 
random number is empty, put the letter into that 
cell, else go to step 2.1.1. 

 2.1.4 If the current letter is the last letter of L 
and the length of L is 10 then generate a 
random number between 1 and 9 exchange the 
place of the letter from that cell to the index of 
zero and the current letter to that position. Keep 
doing it until the second letter is not a 
beginning letter of the words. Else go to step 
2.1.1. 

2.2 Calculate the fitness of this new individual. 
2.3 Add the individual into the right place in the 

inner population list. 
C.  Making New Generation Algorithm 

1.  Get the chosen parent and generate two random 
numbers. 

2. If the two random numbers are not the same or not 
indicating two empty cells in the parent and will not 
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lead us to numbers beginning with zeros, exchanges 
the content of the cells corresponding by the 
random numbers. Else go to step 1. 

3. Calculate the fitness of the new individual, put it in 
the right place in the inner population and remove 
the worst individual from the population. 

 
7. EXPERIMENTAL RESULTS 

This project was effective in solving cryptarithmetic 
problems. The use of the parallel genetic algorithm and 
depth-first search showed that within an acceptable one, we 
can even find the result of large instances of this 
problem.Each issue has been checked a hundred times and 
the average time has been gathered. Table 1 through 5 
displays in detail the outcomes. 

 
TABLE 1. RESULT OF A FIVE VARIABLE PROBLEM  
 

Problem (per 100 runs) DAN + NAN = NORA 

Answer  921+121 =1042 

Variable 5 

Minimum Time (ms) 16 

Maximum Time (ms) 172 

Average T ime (ms) 62 

5 generator threads are used in the problem outlined 
in Table 1. 
 
TABLE 2. RESULT OF A SIX VARIABLE PROBLEM 
 

Problem (per 100 runs) TWO +TWO = FOUR 

Answer  836 +836=1672 

Variable 6 

Minimum Time (ms) 57 

Maximum Time (ms) 224 

Average T ime (ms) 148 

12 generator threads are used in the problem 
outlined in Table 2. 
 
TABLE 3. RESULT OF A SEVEN VARIABLE PROBLEM 
 

Problem (per 100 runs) BASE+BALL =GAMES 

Answer  7483+7455 =14938 

Variable 7 

Minimum Time (ms) 230 

Maximum Time (ms) 960 

Average T ime (ms) 506 

14 generator threads are included in the problem 
outlined in Table 3. 

 
TABLE 4. RESULT OF A EIGHT VARIABLE PROBLEM 
 

Problem (per 100 runs) CAT+RUN =AWAY 

Answer  517+ 693 =1210 

Variable 8 

Minimum Time (ms) 510 

Maximum Time (ms) 2130 

Average T ime (ms) 1155 

5 generator threads were used in the problem 
outlined in Table 4. 
 
TABLE 5. RESULT OF A TEN VARIABLE PROBLEM 
 

Problem (per 100 runs) BROWN+YELLOW=PURPLE 

Answer  52813+649981=702794 

Variable 10 

Minimum Time (ms) 430 

Maximum Time (ms) 3632 

Average T ime (ms) 2421 

25 generator threads are included in the problem 
outlined in Table 5. 

Another experiment was to calculate the average 
time for problem sizes to solve Cryptarithmetic. Different 
instances of various variable numbers have been resolved 
hundreds of times and the average time has been calculated 
for each problem size. The results of this experiment are 
shown in Table 6. 

 
TABLE 6. THE RESULT OF DIFFERENT PROBLEMS SIZES 
 

Variable Number Average Time(ms) 
5 112 
6 325 
7 877 
8 1155 

10 3511 

 

Fig 7. Illustrate the comparison between the 

proposed algorithm (PGA) and the depth-first search 

algorithm (DFS). It is clear from Fig 7. That the PGA has far 

better results than DFS. 

 

Figure 7. Comparison of DFS and PGA run times 

8. CONCLUSION 

This paper focused on the effective method of 
Cryptarithmetic problems. The use of the parallel genetic 
algorithm it has been shown that within an acceptable time, 
we can also find the result of large instances of this problem. 
The proposed algorithm uses multiple processors for 
scheduling with centralized control.Tasks are taken as 
batches and scheduled to minimize the time of execution and 
balance the processors' load. Clearly, by systematically 
searching for possible assignments of values to the letters by 
deducting search space, we can easily find solutions to 
cryptarithmetic problems. 

Furthermore, the operation can be extended to 
subtract, multiply, division and we can have more than two 
operands.  
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