
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

Deserialization in Web Application

Archana Mudaliar
1
 , Dr.Priyanka Sharma

2

1Student Master in Technology Cyber Security , 2Director (R&D) Raksha Shakti University

1Department of Information Technology and Telecommunication, Raksha Shakti University

Abstract - In recent years there is a surge of serialization-based

vulnerabilities in web applications which have resulted in

serious incidents such as exposing private data of millions of

individuals , logic manipulation or arbitrary code execution.

Although there have been some efforts in addressing this

problem, there is still no unified solution that is able to detect

implementation-agnostic vulnerabilities. We aim to help

penetration testers and students as well as to identify and test

serialization vulnerabilities on future penetration testing

engagements via consolidating research for serialization

penetration testing techniques. In addition to that, serialization

typically implemented in various platform application server

and also web Application. However, this technique had some

vulnerabilities and it was discovered in many application server,

methods in various web applications. Furthermore, we also

introduce the first deserialization test environment which can be

used to test deserialization vulnerability detection tools and for

educational purposes.

Keyword - Deserialization, Web application vulnerability, php,

java, python, serialization.

I. INTRODUCTION

Insecure deserialization is a vulnerability that occurs when

untrusted data are deserialized and used to abuse the

application logic, inflict denial of service (DoS) attacks, or

even execute arbitrary code. This class of vulnerabilities is

included in the ten most critical web application security

risks of OWASP. In order to understand what insecure

deserialization is, we first must understand what the

serialization and deserialization functionalities are. Complex

modern systems are highly distributed, as the components

communicate with each other and share information (such as

moving data between services, storing information, etc.), the

native binary format is not ideal for transmission.

Serialization, also known as marshaling, refers to a process

of converting a native binary object into a format that can be

easily stored (for example saved to a file or a database), sent

through data streams (for example stdout), or sent over a

network. The format in which an object is serialized into, can

either be binary or structured text (such as XML, JSON,

YAML, etc.) with JSON and XML being two of the most

commonly used serialization formats within web applications.

On the other hand, deserialization is the exact opposite of

serialization, that is, transforming serialized data coming

from a file, stream or network socket back to an object

identical to the one that the deserialized data came from.

Serialization operations are extremely common in

architectures that include APIs, microservices, and client-side

MVC (Model View Controller).

Fig 1. Serilization and Deserialization

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

Web applications make use of serialization and

deserialization regularly and most programming languages

even provide native features to serialize data (especially into

common formats like JSON and XML). This process is safe

as long as the data and objects used, come from trusted and

bug-free sources. Using data from any other provenance

poses the risk of a malfunction or a deserialization attack

since the incoming serialized data could potentially conceal

malicious instructions that will force the deserializing

program to execute them. It is frequently possible for an

attacker to abuse these deserialization features when the

application is deserializing untrusted data that the attacker

controls. Successful insecure deserialization attacks could

allow an attacker to carry out denial-of-service (DoS) attacks,

authentication bypasses and remote code execution attacks.

Deserialization attack occurrences are abundant both in the

past and in recent years where seven documented CVEs

related to insecure deserialization are presented, the most

recent one was in 2019. It should be noted that the large scale

data breach that happened to Equifax in 2017 rooted in

insecure deserialization of the struts framework. Furthermore

the researchers identified insecure deserialization as a core

threat to smart grid systems due to their nature, which

requires the transmission of data between nodes that should

be serialized and then unserialized in their destination, thus

providing a larger than usual attack surface.

Deserialization attacks, despite Java, also affect other

languages such as PHP and Python. A PHP Object Injection

vulnerability occurs when not sanitized input is used during

the deserialization of data in a given web application. The

PHP functionalities serialization and deserialization that

allow for data storage of any type in a simple string. This

format makes it easy to transfer complicated data structures

and is often misused to create multidimensional cookies and

similar data structures. Since PHP allows deserialization of

arbitrary objects, an attacker might be able to inject a

specially prepared object with an arbitrary set of properties

into the application. Depending on the application

implementation, an attacker could trigger internal PHP magic

functions which in turn could lead to several vulnerabilities

such as code injection, SQL injection, path traversal and

application denial of service, depending on the context.

Furthermore, python is also vulnerable to these same

exploitations through its deserialization functionality. More

specifically, an attacker that can control the input to a

deserialization python function (pickle.loads(serialized_data))

can forge serialized data that will force the system to run any

arbitrary code in the context of the web application. Object

injection in PHP is quite common and many recent

vulnerabilities have affected large scale applications. More

specifically, both WordPress (CVE-2018-20148) and Drupal

(CVE-2019-6338) were affected by object injection in

vulnerabilities that allowed attackers to execute code,

manipulate files and privilege escalation. Other web

applications affected include

PHPMailer(CVE-2018-19296),Alienvault (CVE-2016-8580)

and OpenPSA2(CVE-2018-1000525)

The risk raisers, when an untrusted deserialization user inputs

by sending malicious data to be de-serialized and this could

lead to logic manipulation or arbitrary code execution.

II. PROGRAMMING LANGUAGE SUPPORT SERIALIZATION

They are many Object-oriented programming support

serialization either by using syntactic sugar element or using

interface to implement it.This study consented on

deserialization vulnerabilities in Java, ruby and php as well

as how can these bugs detected, exploit, and Mitigations

techniques.

A) Deserialization vulnerability in Java

Java provides serialization where object represented as

sequence of bytes, serialization process is JVM independent,

which means an object can be serialized in a platform and

deserialized on different platform. Java implements

serialization using class interface Java.io.Serializable, to

serialize an object to implement classes ObjectInputStream ,

ObjectOutputStream those classes contains several

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

methods to write/read objects.readObject it is the vulnerable

method that leads to deserialization vulnerability it takes

serialized data without any blacklisting.

Fig 2. Difference between ObjectOutputStream and ObjectInputStream

B) Deserialization vulnerability in Python

Python also provides serialization objects like Java and

it has many modules including Pickle, marshal, shelve, yaml

and finally json it is a recommended module when doing

serialization and deserialization. We could observe

differences between Java and Python in deserialization

vulnerability, Python does not depend on code flow to create

payload it simply deserializes all classes this behavior may

lead to RCE Serialization which could be found in

parameters or cookies. Firstly we explore Pickle taking into

account what is mentioned in Python documentation. The

pickle module implements a fundamental, but powerful

algorithm for serializing and de-serializing a Python object

structure. Deserialized untrusted data can compromise the

application.

Warning: The pickle module is not secure against erroneous

or maliciously constructed data. Never un-pickle data

received from an untrusted or unauthenticated source.

Fig 3. Pickle module provides functions

C) Deserialization vulnerability in PHP

PHP is like Java and Python, PHP also supports

serialization and issues of using serialization it has two

methods to implement serialization and deserialization we

explore theme and also a case where we can make web

application vulnerable. Serialize it simply by converting

object to bytes that could be stored. unserialize it simply by

converting bytes to object again from here came vulnerability

like Python and Java which serializes untrusted data to

expose web application. Exploit deserialization in Java

depends on code flaw and in Python doesnt depend on any

flow in code, but in PHP depends on code flow inside magic

methods. Serialization could be found in parameters, cookies.

Magic method which are used are as follows.

 __reduce__ to reconstruct our payload when it

deserializes something like PHP but it depends

on code flaw after calling magic method.

 __sleep is called when an object is serialized

and must be returned to array.

 __wakeup is called when an object is

deserialized.

 __destruct is called when PHP script end and

object is destroyed.

 __toString uses object as string but also can be

used to read file or more than that based on

function call inside it.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

III. CONCLUSION

In this work, we analyzed the need for a more sound and

complete approach when it comes to detecting deserialization

vulnerabilities. Although this class of vulnerabilities has

produced large-scale attacks with a considerable economic

and social impact, there is still a lack when it comes to

complete and automatic deserialization vulnerability

detection tools and related research.

.

REFERENCES

[1]https://www.owasp.org/index.php/Deserialization_of_untr

usted_data

[2] Babak Amin Azad, Pierre Laperdrix, and Nick

Nikiforakis. 2019. Less is more: quantifying the security

benefits of debloating web applications. In 28
th

 { USENIX }

Security Symposium ({ USENIX } Security 19).

1697–1714.

[3] Davide Balzarotti, Marco Cova, Vika Felmetsger,

Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and

Giovanni Vigna. 2008. Saner: Composing static and dynamic

analysis to validate sanitization in web applications. In 2008

IEEE Symposium on Security and Privacy (sp 2008). IEEE,

387–401.

[4] https://github.com/mbechler/serianalyzer

[5] Brianwrf. 2015. hackUtils. Retrieved September 1,

2019 from https://github.com/ brianwrf/hackUtils

[6] https: //github.com/ikkisoft/SerialKiller

[7]

https://github.com/apache/commons-io/blob/master/src/main/

java/org/apache/commons/io/serialization/

http://www.ijsrem.com/

