
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 1

DETECTION AND RECOGNITION OF NUMBER PLATES ON

VEHICLES USING MACHINE LEARNING

Er. Amaan, Department of Computer Science and Engineering, Punjabi University Patiala

Er. Sikander Singh Cheema, Assistant Professor, Department of Computer Science and Engineering,

Punjabi University Patiala

---***---
Abstract- License Plate Detection and number

recognition is a very powerful and advanced

application that needs Machine learning, Deep

Learning algorithms integrated with the Image

processing . This paper deals with both number plate

detection and recognition using Python, Numpy, Deep

Learning and Machine Learning algorithms. The work is

divided into three different parts, first, the number plate

is detected using OpenCV, Numpy and Keras libraries.

Secondly, we performed character segmentation of

license plates using python and machine learning

algorithms. Finally, after parsing the characters in the

previous section, we have performed character

recognition of license plates using deep learning

algorithms.

Keywords: OpenCV2, ALPR, Keras, Numpy, CNN,

ML, DNN

1.INTRODUCTION
These days there is constant advancement in Machine

Learning, particularly with Neural Networks and Open-

source Machine Learning libraries such as Keras,

Pytorch and so on. There are several other ways to

deploy such technologies, however, this paper defines

the setup rules for ALPR systems in association with

previously trained model using Wpod-Net and

Computer Vision along with OpenCV and Character

Recognition using Neural Networks. The research has

been classified into 3 broad categories. In the first stage,

the data has been taken from different countries to

implement the pre-trained data model for license plate

recognition system using Wpod-Net.

And, in second part, characters of license plate are

segmented with OpenCV.

Lastly, Neural Network is trained to predict the

character generated in the previous section.

1.1. Library and Tools Used during the

experiment

 Python 3.7

 Keras 2.3.1

 Tensorflow 1.14.0

 Jupyter Notebook

 Numpy 1.17.4

 Matplotlib 3.2.1

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 2

 OpenCV 4.1.0

2. Detection of License Plate using Wpod-Net

After installing the all the required libraries and loading

the pre-trained model, description of packages and

functions have been discussed as follows:

 CV2: CV2 or Computer Vision library, which is

also known as OpenCV. It is used to perform

image processing techniques.

 numpy: It is a library that supports multi-

dimensional arrays and matrix operations.

 matplotlib: This library supports plotting and

visualize the data.

 local_utils: This python script contains some

functions which is used to process the data from

Wpod-Net.

 os.path / glob: Operating system interface

package/library for python programming. We

will for directories and file system handling.

 keras.models: This package contains

model_from_json to load the model data

architecture in JSON format.

Next, the data model is loaded from the pre-trained

model.

Similarly, preprocess_image function needs to be

created in order to read and process the images of

license plate. By using this function, we can parse the

image and then convert into RGB format. After this, the

data needs to be normalized in the range between 0-1.

This will make the data compatible with matplotlib.

Apart from this, we will set resize=true because we need

to resize all the images for similar dimension i.e. width

is 224 and height is 224 as well.

In this, we will see the dataset of vehicle. The dataset

has images of 20 different vehicles along with plate data

that is gathered from different countries. The data is

collected from Germany, Japan, Vietnam, Thailand,

Saudi Arabia, Russia, United States of America, Korea,

India and China. In the following code, the information

is displayed in 5 column and 4 rows.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 3

Now, we will use get_plate function, which will process

the raw data. After this, the data is sent to the model and

return the plate image (LpImg) along with co-ordinates.

In case of null data, warning is shown. Therefore, we

need to change the Dimension values i.e. Dmin to

increase the overall dimension. The Wpod-Net only

parse the data having character in black color with white

background. Therefore, there might be failure in the

prediction if the image is not clear or there is any kind of

obstacle.

Next, we will draw bounding box using co-ordinates

generated previously as shown in the Figure.

At last, we will use get_plate function for all vehicles

images and then return the plate images to the model.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 4

3. Detect and Recognize Vehicle’s License Plate

with ML and Python: Plate character

segmentation with OpenCV

In this part, license plate recognition system is discussed

with different magnitude of colors. We will segregate

characters out of License Plate through Python and

OpenCV. After parsing the data, the data will be parsed

again using Convolutional Neural Network (CNN) in

part 3. For parsing the data, we will require python 3.7,

Jupyter Notebook, Matplotlib 3.2.1, Numpy and

OpenCV 4.1.

3.1. Processing of Image

For this process, first we are required to implement

different processing technique to mitigate the noise level

and enhance the features of character recognition. For

experiment, we will consider the image from

Plates_example/germany_car_plate.jpg

 Convert the image to 255 Scale: The extracted

image of license from Wpod-Net is translated as

0-1 range. Hence, we are required to convert

this into 8-bit scale.

 Convert into grayscale: we need to remove the

colors from the license plate. By doing so, we

can increase the efficacy of the system.

 Image Blur: In order to reduce the noise and

other unrequired data, image blurring technique

is taken into account. We will use Gaussian Blur

method for this.

 Image Thresholding: In this, we set a

minimum threshold value for computation of

image. Below the threshold value, the data is

converted into 255. This technique is also called

inverse binary thresholding.

 Dilation: By using this methodology, we can

raise the white region area of the image.

3.2. Determining the contour of License Plate

characters

Further to this, we will implement findContours function

of OpenCV technique to collect the co-ordinates of

characters. Contours is a collection of continuous points

having same intensity and color. The sort_contours sorts

the contours from left to right position. It is imperative

for ordering the sequence of character. The ratio is

equivalent to the height divided by contour width.

Besides this, we can filter out the irrelevant information

of image. So, we will set the ratio value between 1 to

3.5. Since we already know the minimum height of the

image, we can use additional filters for better

performance. Next to this, we will be drawing bounding

box having the contour passes through the filters. Also,

we will apply binary thresholding techniques and attach

them to crop_characters.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 5

3.3. Visualizing the segmented characters

The crop_characters now have the segemented character

value. We can see this using a library matplotlib.

4. Detect and Recognize Vehicle’s License Plate

with ML and Python: Recognize plate license

characters with OpenCV and Deep Learning

After parsing the characters in 2
nd

 and 3
rd

 section of this

paper, we extracted the License plate information which

was easy to perceive. However, it contains black and

white characters which is not optimal for digital

optimization. Therefore, in this portion, we will parse

the data with Neural Network model. There are plethora

of eminent Neural Network architectures are available

readily such as ResNet, Inception, DenseNet and many

more. For this experiment, we will use MobileNets. It is

light in weight with higher accuracy.

For computation, we will use python 3.7, Jupyter

Notebook, OpenCV, Numpy, Keras, sklearn and

Matplotlib. The model dataset contains 34,575 different

images, which are further classified into 36 classes.

4.1. Pre-processing of Data

Now, we are required to process the data:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 6

 Line 2 ~ 14: Input data is arranged along with

their corresponding labels. The size of the

original image 224* 224 for MobileNets. But

we were required to change the dimensions to

80*80. With such configuration setting, the

accuracy improves significantly to 98%.

 Line 20 ~ 26: we will consider converting the

labels as first-dimensional array to one-hot

encoding labels. This enables the representation

of labels in more optimal way. The classes of

labels are stored locally to improve performance

and inverse transformation.

 Line 29: Split the dataset into two parts i.e.

training set (90%) and validation set (10%). It

allows us to monitor accuracy and avoiding

overfitting.

 Line 33: Using basic transforming techniques,

we create data augmenting such as shifting,

rotating, zooming and so on. This technique

needs to be handled with utmost precision

otherwise data may be manipulated.

4.3. Initializing the MobileNet architecture along

with pre-trained weights

In this section, the MobileNets architecture is being

constructed in association with pre-trained datasets. We

can import the data directly from Keras packages.

 Line 4~5: Output layers are being ignored in

MobileNets model, and we replace those layers

with our output according to our needs. In the

output layer, there are 36 nodes which are

associated with 36 different characters. Also, we

need to configure the input layer.

 Line 16 ~ 23: Once thetraining datasets are set

to true, base_model needs to be defined in each

layer along with decay values, learning rate,

metrices and precision.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 7

4.4. Training and evaluation of model

The BATCH_SIZE value can be adjusted according the

specification of the system. The larger is the

BATCH_SIZE, the fewer samples are trained. Thus, the

overall performance of the model declines sharply.

However, the computation power increases with the

increase in BATCH_SIZE.

There are callback functions, which are programmed to

better utilization of the resources. EarlyStopping

function can halt the training process if the val_loss fails

after 5 epochs. The ModelCheckpoint saves the model

weight. It is analyzed that after 5 epochs, the model

successfully attained more than 95% of accuracy rate.

By the completion, 99% of accuracy has been achieved,

The model architecture is stored and saved to avoid

reconstruction of base architecture.

4.5. Collaborating the model

In order to merge the outcomes of Part 1,2 and 3,

reconstruction of the model is necessary as in the initial

phase the data was extracted and segmented in the next

stage.

Previously, we configured the input layer to accept

images having the shape sizes (80,80,3). Therefore, we

again need to reconvert the image data to the original

size along with channel. There is a loop for every image

character, which is stored in crop_characters. The

final_result predicts and plots every image according to

the co-relative prediction.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 8

3. CONCLUSIONS
In this paper, we conducted an experiment which is

capable of detecting and recognizing the license plate of

vehicles. While experimenting this, there were some

obstacles we encountered. Firstly, Wpod-Net system

may detect and recognize panels of advertising along

with license plate, which could be a cumbersome

situation. Further to this, in the segmentation stage,

conventional system can be affected by certain climatic

circumstances such as illumination, angular perspective,

object obstacles and so on. The model is capable to

parse the information written or present in Latin

language. There are countries like China, Korea, Japan

and Saudi Arabia, where Non-Latin characters of license

plate are used. However, this problem can be curtailed

down by simply adding the additional data into training

dataset and re-training the model. Overall, the system

has much higher accuracy with greater computational

speed which enable this system as optimal.

REFERENCES

1) Polishetty, R., Roopaei, M., Rad, P.: ‘A next-

generation secure cloud-based deep learning license

plate recognition for smart cities’. IEEE Int. Conf. on

Machine Learning and Applications, Anaheim, United

States of America, 2016, pp. 286–294.

2) Caltech: ‘Computational vision: archive’, Available at

http://www.vision.caltech.edu/html-files/archive.html,

accessed August 2018.

3) Selmi, Z., Halima, M., Alimi, A.: ‘Deep learning

system for automatic license plate detection and

recognition’. Int. Conf. on Document Analysis and

Recognition, Kyoto, Japan, 2017, pp. 1132–1138.

4) Liu, W., Anguelov, D., Erhan, D., et al: ‘SSD: single

shot MultiBox detector’, Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics),

Amsterdam, Netherlands, 2016, vol. 9905, pp. 21–37.

5) Yépez, J., Ko, S.: ‘Improved license plate localization

algorithm based on morphological operations’, IET

Intell. Transp. Syst., 2018, 12, (6), pp. 542–549.

6) Laroca, R., Severo, E., Zanlorensi, L., et al: ‘A robust

real-time automatic license plate recognition based on

the YOLO detector’. Int. Joint Conf. on Neural

Networks (IJCNN), Rio de Janeiro, Brazil, 2018.

7) Laroca, R., Zanlorensi, L., Gonçalves, G., et al: ‘An

efficient and layout-independent automatic license plate

recognition system based on the YOLO detector’,
arXiv.org: 1909.01754v2, accessed October 2018.

8) Karthikeyan, V., Vijayalakshmi, V., Jeyakumar, P.:

‘License plate detection using morphological operators’,
Available at

http://www.academia.edu/2554097/License_Plate_Segm

entation_Based_on_Connected_Component_Analysis,

accessed October 2018.

9) Jeffrey, Z., Ramalingam, S., Bekooy, N.: ‘Real-time

DSP-based license plate character segmentation

algorithm using 2D haar wavelet transform’, in Baleanu,

D. (Ed.): ‘Advances in wavelet theory and their

applications in engineering, physics and technology’
(IntechOpen, Welwyn Garden City, UK, 2012, 1st edn.),

pp. 3–22.

10) Kasaei, S., Kasaei, S.: ‘Extraction and recognition of

the vehicle license plate for passing under outside

environment’. Proc. European Intelligence and Security

Informatics Conf., Athens, Greece, 2011, pp. 234–237.

11) Abderaouf, Z., Nadjia, B., Saliha, O.: ‘License plate

character segmentation based on horizontal projection

and connected component analysis’. World Symp. on

Computer Applications & Research, Sousse, Tunisia,

2014, pp. 1–5.

12) Bulan, O., Kozitsky, V., Ramesh, P., et al:

‘Segmentation- and annotation-free license plate

recognition with deep localization and failure

identification’, IEEE Trans. Intell. Transp. Syst., 2017,

18, (9), pp. 2351–2363.

13) Yépez, J., Castro-Zunti, R., Ko, S.: ‘Deep learning-

based embedded license plate localisation system’, IET

Intell. Transp. Syst., 2019, 13, (10), pp. 1569–1578.

14) Bengio, Y.: ‘Learning deep architectures for AI,

now foundations and trends’ (Now Publishers, Montreal,

Canada, 2009, 1st edn.).

15) Montazzolli, S., Jung, C.: ‘Real-time Brazilian

license plate detection and recognition using deep

convolutional neural networks’. Conf. on Graphics,

Patterns and Images, Niteroi, Brazil, 2017, pp. 55–62.

16) How, D., Sahari, K.: ‘Character recognition of

Malaysian vehicle license plate with deep convolutional

neural networks’. IEEE Int. Symp. on Robotics and

Intelligent Sensors, Tokyo, Japan, 2016, pp. 1–5.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov-2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 9

BIOGRAPHIES (Optional not mandatory)

Description about the author1

(in 5-6 lines)

1’st
Author

Photo

http://www.ijsrem.com/

	And, in second part, characters of license plate are segmented with OpenCV.
	Lastly, Neural Network is trained to predict the character generated in the previous section.
	1.1. Library and Tools Used during the experiment
	2. Detection of License Plate using Wpod-Net
	After installing the all the required libraries and loading the pre-trained model, description of packages and functions have been discussed as follows:
	Next, the data model is loaded from the pre-trained model.
	Similarly, preprocess_image function needs to be created in order to read and process the images of license plate. By using this function, we can parse the image and then convert into RGB format. After this, the data needs to be normalized in the rang...
	In this, we will see the dataset of vehicle. The dataset has images of 20 different vehicles along with plate data that is gathered from different countries. The data is collected from Germany, Japan, Vietnam, Thailand, Saudi Arabia, Russia, United St...
	Now, we will use get_plate function, which will process the raw data. After this, the data is sent to the model and return the plate image (LpImg) along with co-ordinates. In case of null data, warning is shown. Therefore, we need to change the Dimens...
	Next, we will draw bounding box using co-ordinates generated previously as shown in the Figure.
	At last, we will use get_plate function for all vehicles images and then return the plate images to the model.
	3. Detect and Recognize Vehicle’s License Plate with ML and Python: Plate character segmentation with OpenCV
	In this part, license plate recognition system is discussed with different magnitude of colors. We will segregate characters out of License Plate through Python and OpenCV. After parsing the data, the data will be parsed again using Convolutional Neur...
	3.1. Processing of Image
	For this process, first we are required to implement different processing technique to mitigate the noise level and enhance the features of character recognition. For experiment, we will consider the image from Plates_example/germany_car_plate.jpg
	 Convert the image to 255 Scale: The extracted image of license from Wpod-Net is translated as 0-1 range. Hence, we are required to convert this into 8-bit scale.
	 Convert into grayscale: we need to remove the colors from the license plate. By doing so, we can increase the efficacy of the system.
	 Image Blur: In order to reduce the noise and other unrequired data, image blurring technique is taken into account. We will use Gaussian Blur method for this.
	 Image Thresholding: In this, we set a minimum threshold value for computation of image. Below the threshold value, the data is converted into 255. This technique is also called inverse binary thresholding.
	 Dilation: By using this methodology, we can raise the white region area of the image.
	3.2. Determining the contour of License Plate characters
	3.3. Visualizing the segmented characters

	4. Detect and Recognize Vehicle’s License Plate with ML and Python: Recognize plate license characters with OpenCV and Deep Learning
	For computation, we will use python 3.7, Jupyter Notebook, OpenCV, Numpy, Keras, sklearn and Matplotlib. The model dataset contains 34,575 different images, which are further classified into 36 classes.
	4.1. Pre-processing of Data
	4.3. Initializing the MobileNet architecture along with pre-trained weights
	In this section, the MobileNets architecture is being constructed in association with pre-trained datasets. We can import the data directly from Keras packages.
	 Line 4~5: Output layers are being ignored in MobileNets model, and we replace those layers with our output according to our needs. In the output layer, there are 36 nodes which are associated with 36 different characters. Also, we need to configure ...
	 Line 16 ~ 23: Once thetraining datasets are set to true, base_model needs to be defined in each layer along with decay values, learning rate, metrices and precision.
	4.4. Training and evaluation of model
	The BATCH_SIZE value can be adjusted according the specification of the system. The larger is the BATCH_SIZE, the fewer samples are trained. Thus, the overall performance of the model declines sharply. However, the computation power increases with th...
	There are callback functions, which are programmed to better utilization of the resources. EarlyStopping function can halt the training process if the val_loss fails after 5 epochs. The ModelCheckpoint saves the model weight. It is analyzed that after...
	The model architecture is stored and saved to avoid reconstruction of base architecture.
	4.5. Collaborating the model
	In order to merge the outcomes of Part 1,2 and 3, reconstruction of the model is necessary as in the initial phase the data was extracted and segmented in the next stage.
	Previously, we configured the input layer to accept images having the shape sizes (80,80,3). Therefore, we again need to reconvert the image data to the original size along with channel. There is a loop for every image character, which is stored in cr...

