
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 1

DISTRIBUTED COMPUTING: AN OVERVIEW

Abhishek Jena

Dayananda Sagar College of Engineering

Abstract:

The decline in hardware costs and advances in

communication technology have led to an increase in

interest in the use of large compatible and distributed

computer systems. Distributed computer systems provide

the ability to improve performance and resource sharing. In

this paper we have made a complete view of the

distributed computer. In this paper we have studied the

differences between computer-like distribution, computer-

distributed terms, distribution of computer-based

operations and distributed computer systems, uniformly

distributed algorithm models and the benefits of

distributed computer and distributed computer scope.

Keywords – Distributed computing, execution time, shared

memory, throughput.

Introduction:

Distributed computer refers to two or more computers

connected together that share the same computer

function. The purpose of computer distribution is to share

work between multiple computers. A distributed network is

very different in nature in the sense that processing nodes,

network topology, network connectivity, and operating

system can differ from a different network that is widely

distributed around the world. In order for the system to

work properly a lot of workload must be distributed

between the areas above the network.

Therefore the issue of load balancing became very popular

due to the existence of distributed memory systems. The

network will have high-speed computer nodes and slow

computing nodes. If we do not take into account the

processing speed and connection speed (bandwidth), the

performance of the entire system will be limited by the

slow drive of the network. Thus load balancing techniques

measure loads across areas by preventing nodes from

working and other nodes can be overcome. In addition,

load balancing techniques eliminate the malfunction of any

node during operation.

History:

The use of complementary communication systems has the

roots of operating system structures studied in the 1960s.

The first widely distributed systems were local networks

such as Ethernet, founded in the 1970's. The ARPANET, one

of the forerunners of the Internet, was introduced in the

late 1960's, and the ARPANET email was established in the

early 1970's. Email became the most successful use of

ARPANET, and is probably the first example of a widely

distributed app. In addition to the ARPANET (and its

successor, the global Internet), other world-class computer

networks including Usenet and FidoNet since the 1980s,

both of which have been used to support distributed chat

systems.

The study of distributed computing became its branch of

computer science in the late 1970s and early 1980s. The

first conference in the field, the Symposium on Principles of

Distributed Computing (PODC), dates back to 1982, and it’s
International Symposium on Distributed Computing (DISC)

partner was first held in Ottawa in 1985 as an International

Workshop on Distributed Algorithms on Graphs.

The Client/Server model:

The most common way to organize software that will work

on distributed applications is to divide tasks into two parts:

clients and servers. A client is a program that uses the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 2

services that other programs provide. Programs that

provide services are called servers. The client requests a

service, and the server performs that service. Server

operations often require the management of specific

resources, where the server synchronizes and controls

access to the application, and responds to customer

requests with data or status information. Client programs

often manage user interactions and often request data or

initiate certain data modifications on behalf of the user.

The client is separated from the need to know anything

about the resource manager himself. If you change the

database you are using, the server may need to be

modified, but the client does not need to be modified.

Because there are usually fewer copies of the server than

the client, and because the servers tend to be in easy-to-

update locations (for example, on central machines instead

of PCs running on user desks), the upgrade process is also

simplified. Also, this method provides additional security.

Only servers, not clients, require access to data managed by

the resource manager.

Clients can also access various servers, and the servers

themselves can act as clients on other servers. Exactly how

tasks are distributed on servers is a decision of the

application. For example, a single server can provide all the

services a client needs, or a client can access multiple

servers to make various requests. The app designer must

consider factors such as scalability, location, and security.

For example, are clients and servers located locally or is the

system still widely distributed? Do the servers need to be

physically protected? Such design decisions are outside the

scope of the introduction.

Some servers are part of an application and are called

application servers. Some servers are not part of a specific

application. Instead, any app can use them. For example,

CICS® Structured File Server (SFS) provides access to record-

directed file access to applications.

Architectural patterns for distributed systems:

Common architectural patterns for organizing the

architecture of a distributed system:

1. Master-slave architecture:

Master-slave properties are often used in real-time

systems where contact response times are

required. There may be different processors

related to data acquisition from system

environment, data processing and actuator

calculations. The 'master' process is usually

responsible for integration, coordination and

communication and governs the 'slave' processes.

'Slave' processes are dedicated to specific actions,

such as data retrieval from multiple lists.

2. Two-tier client-server architecture:

With the creation of two client clients, the system

is used as one logical server and an infinite number

of clients using that server.

A thin client model, in which the presentation

layer is performed on the client and in all other

layers (data management, application processing

and data), is performed on the server. There are

very few requests for small clients where all

processing is done on a remote server.

Fat client model, where some or all of the app

processing is done to the customer. Data

management and data operations are performed

on the server.

However, the distinction between the properties

of small and oblivious customers is blurred.

JavaScript allows local processing in the browser so

that other parts of the 'fat customer' function can

be made available without software installation.

Mobile applications enable local processing to

reduce network needs. Auto-update of apps

reduces management problems.

3. Multi-tier client-server architecture:

The multi-tier server client build, the various layers

of the system, namely presentation, data

management, application processing, and

database, are different processes that can work on

different processors. This avoids problems with

disability and performance when choosing a two-

client model, or system management problems

when using an oily client model.

Usage case: where there is a high volume

transaction to be processed by the server.

4. Distributed component architecture:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 3

There is no difference in the structure of

distributed elements between customers and

servers. Each distributed business is a segment

that provides services in some areas and receives

services in other areas. Object communication is

done through a middleware program. Used when

resources from various systems and domains need

to be integrated, or as an implementation model

for multiple client-service programs Benefits

include:

 Allows the app designer to delay decisions

about where and how services should be

provided.

 It is a very open way to build a system

that allows new resources to be added as

needed.

 The system is flexible and scalable.

 You may need to reconfigure the system

with items that cross the network as

needed.

5. Peer-to-peer architecture:

Peer to peer (p2p) systems are distributed systems

where calculations can be performed by any

network. The complete system is designed to take

advantage of computer power and the

maintenance of a large number of connected

computers.

Most p2p programs have been personal programs

but there is a growing business use of this

technology. Used when clients exchange

information stored locally and the role of the

server is to introduce clients to each other.

Examples:

 File-sharing programs based on the

BitTorrent protocol

 Messaging programs such as Jabber

 Payment systems, e.g. Bitcoin

 Information details, e.g. Freenet is a

separate database

 Phone applications, e.g. Viber

 Calculation systems.

P2P structures are used there:

 The system is very computer-friendly and

it is possible to split the required

processing into a large number of

independent computers.

 The system primarily involves the

exchange of information between

individual computers in the network and

there is no need for this information to be

stored or handled centrally.

Security issues:

 Security concerns are the main reason

why p2p architecture is not widely used.

 Lack of centralized management means

that malicious nodes can be set up to

deliver spam and malware to other nodes

in the network.

 P2P connections need to be carefully set

to protect location information and if not

done properly, this is exposed to other

peers.

Three-tiered client/server architecture:

The standard design of customer / server systems uses

three categories:

 User-connected client

 An application server that contains the business

concept of an application

 Data resource manager

Advantages of Distributed Computing:

 Reliability, high tolerance error: System crashes on

one server do not affect other servers.

 Failures: In computer distribution systems you can

add as many machines as needed.

 Flexibility: It makes it easy to install, use and debug

new resources.

 Fast Speed Calculator: A distributed computer

system can have the computing power of many

computers, making it faster than other programs.

 Openness: Being an open system, it can be

accessed locally and remotely.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 4

 High Performance: Compared to mid-range

computer network collections, they can offer

higher performance and better cost efficiency.

Disadvantages of Distributed Computing:

 Troubleshooting: Troubleshooting and diagnostics

are extremely difficult due to distribution across

multiple servers.

 Limited software support: Low software support is

a major problem for distributed computer

systems.

 High infrastructure costs: Basic network setup

problems, including transfers, overload, and data

loss.

 Security issues: The features of open source

systems enable data security and risk sharing on

distributed computer systems.

Conclusion:

A distributed computer helps improve the performance of

large projects by combining the power of multiple

machines. It's awesome and allows users to add computers

depending on the needs of the growing load. Although

distributed computing has its drawbacks, it offers

unparalleled consistency, better performance and greater

reliability, making it a better solution for businesses facing

high workloads and big data.

References:

1. Y. Jadeja and K. Modi, "Cloud computing -

concepts, architecture and challenges," 2012

International Conference on Computing,

Electronics and Electrical Technologies (ICCEET),

2012, pp. 877-880, doi:

10.1109/ICCEET.2012.6203873.

2. Svobodova L. (1985) Client/Server Model of

Distributed Processing. In: Heger D., Krüger G.,

Spaniol O., Zorn W. (eds) Kommunikation in

VerteiltenSystemen I. Informatik-Fachberichte, vol

95. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-70285-3_29

3. https://en.wikipedia.org/wiki/Distributed_computi

ng#History

4. Thoke, V. D., &Sangli, V. (2015). THEORY OF

DISTRIBUTED COMPUTING AND PARALLEL

PROCESSING WITH ITS APPLICATIONS,

ADVANTAGES AND DISADVANTAGES.

5. Taylor, I., Shields, M., & Wang, I. (2003, April).

Distributed p2p computing within triana: A galaxy

visualization test case. In Proceedings International

Parallel and Distributed Processing Symposium

(pp. 8-pp). IEEE.

http://www.ijsrem.com/
https://doi.org/10.1007/978-3-642-70285-3_29
https://en.wikipedia.org/wiki/Distributed_computing#History
https://en.wikipedia.org/wiki/Distributed_computing#History

