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Abstract - Significance of Autoencoders are 
revolutionizing the data we process today. 
Dimensionality Reduction, Image 
Compression, Image Denoising, Feature 
Extraction, Image generation, Sequence to 
sequence prediction, Recommendation system 
and what not. This paper focuses on the 
Dimensionality Reduction part, specifically, 
extracting the Latent Variables. 

Several techniques of encoding and decoding 
have been used to extract latent variables, but 
this paper presents an entirely new technique 
of using the power of Autoencoders for 
extraction of Data. Machine learning is about 
capturing aspects of the unknown distribution 
from which the observed data are sampled (the 
data-generating distribution). For many 
learning algorithms and in particular in 
manifold learning, the focus is on identifying  
the regions (sets of points) in the space of 
examples where this distribution concentrates, 
i.e., which configurations of the observed 
variables are plausible. Unsupervised 
representation-learning algorithms try to 
characterize the data-generating distribution 
through the discovery of a set of features or 
latent variables whose variations capture most 
of the structure of the data-generating 
distribution. 

 
1. INTRODUCTION 

 
Affective Computing studies frequently 

collect rich, multimodal data from a 

number of different sources in order to be 

able to model and recognize human affect. 

These data sources — whether they are 

physiological sensors, smartphone apps, 

eye trackers, cameras, or microphones — 

are often noisy or missing. Increasingly, such 

studies take place in natural environments over long 

periods of time, where the problem of missing data 

is exacerbated. For example, a system trying to learn 

how to forecast a depressed mood may need to run 

for many weeks or months, during which time 

participants are likely to not always wear their 

sensors, and sometimes miss filling out surveys. 

While research has shown that combining more 

data sources can lead to better predictions, as each 

noisy source is added, the intersection of samples 

with clean data from every source becomes smaller 

and smaller. As the need for long-term multimodal 

data collection grows, especially for challenging 

topics such as forecasting mood, the problem of 

missing data sources becomes especially 

pronounced. While there are a number of techniques 

for dealing with missing data, more often than not 

researchers may choose to simply discard samples 

that are missing one or more modalities. This can 

lead to a dramatic reduction in the number of 

samples available to train an affect recognition 

model, a significant problem for data-hungry 

machine learning models. Worse, if the data are not 

missing completely at random, this can bias the 

resulting model. In this paper we propose a novel 

method for dealing with missing multimodal data 

based on the idea of denoising Autoencoders. A 

denoising autoencoder is an unsupervised learning 
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method in which a deep neural network is 

trained to reconstruct an input that has been 

corrupted by noise. In most cases, noise is 

injected by randomly dropping out some of 

the input features, or adding small Gaussian of 

those features that are computed using the data 

from a single modality. We demonstrate that 

by using a new model, which we call a 

Multimodal Autoencoder (MMAE), it is 

possible to accurately reconstruct the data 

from a missing modality, something that 

cannot be done with other techniques such as 

PCA. Further, we show that the MMAE can 

be trained with additional neural network 

layers designed to perform classification, 

effectively leveraging information from both 

unlabeled and labeled data. We present 

empirical results comparing MMAE to 

several other methods for dealing with 

missing data, and demonstrate that the 

MMAE consistently gives the best 

performance as the number of missing 

modalities increases. Results are shown for 

the task of predicting tomorrow’s mood, 

health, and stress, using data collected from 

physiological sensors, a smartphone app, and 

surveys. The goal of this research is to build a 

real-world system that can not only help 

participants predict their future mood and 

make adjustments to improve it, but also help 

detect early warning signs of depression, 

anxiety, and mental illness. However, the data 

inevitably contain samples with missing 

modalities, which can easily occur when a 

participant’s smartphone cannot log data, or 

when sensor hardware malfunctions. 

 

n real world data analysis tasks we analyze 

complex data i.e. multi dimensional data. We 

plot the data and find various patterns in it or 

use it to train some machine learning models. 

One way to think about dimensions is that 

suppose you have an data point x , if we 

consider this data point as a physical object 

then dimensions are merely a basis of view, 

like where is the data located when it is 

observed from horizontal axis or vertical axis. 

As the dimensions of data increases, the 

difficulty to visualize it and perform 

computations on it also increases. So, how to 

reduce the dimensions of a data- 

a. Remove    the     redundant     dimensions 
b. Only keep the most important dimensions. 

Variance is a measure of the variability or it 

simply measures how spread the data set is. 

Mathematically, it is the average squared 

deviation from the mean score. 
PCA finds a new set of dimensions (or a set of 

basis of views) such that all the dimensions 

are orthogonal (and hence linearly 

independent) and ranked according to the 

variance of data along them. It means more 

important principle axis occurs first. (more 

important = more variance/more spread out 

data) 
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2.METHOD 

 
The MMAE was developed to ameliorate the 

likely problem where a number of contiguous 

features from the same modality go missing at 

once. We start by normalizing all of the 

features to be in the range [0, 1]. We then 

represent a missing modality by filling all 

features from that modality with the special 

value −1. It is important to use a special value 

to indicate missing data that must be filled, 

rather than fill with a value such as 0 which 

could actually occur in the real data. To train 

the MMAE, we first use samples that have 

data from every modality to provide the 

ground truth noise-free X. At training time, for 

every sample X, we compute Xe by adding 

noise using two methods. First, we add simple 

masking noise to 5% of the features. Second, 

we randomly select one or more modalities 

and set all of the feature values for that 

modality to −1; essentially, masking entire 

modalities at once. The model is then trained 

to reproduce X from Xe. Effectively, this 

means that the model must learn to predict 

reasonable values for the missing modality 

from the rest of the features. For example, it 

may use the participant’s physiology and 

location patterns to predict her survey 

responses, such as how much time she spent 

in class, or whether she drank caffeine. After 

training the autoencoder portion of the 

network with the clean, unsupervised 

examples for which all sensors are available, 

we then begin a second phase of training for 

classification. main interest are modalities of 

high complexity. We consider models based on 

variational autoencoders (VAEs, Kingma & 

Welling, 2014; Rezende et al., 2014). Standard 

VAEs learn a latent representation z ∈ Z for a set 

of observed variables x ∈ X by modelling a joint 

distribution p(x, z) = p(z)p(x|z). In the original 

VAE, the intractable posterior q(z|x) and 

conditional distribution p(x|z) are approximated 

by neural networks trained by maximising the 

ELBO loss taking the form 

 
L = Eq(z|x) [log p(x|z)] − DKL(q(z|x) k N (0, I)) 

- (1) 

 
with respect to the parameters of the networks 

modelling q(z|x) and p(x|z). Here DKL(·  k · ) 

denotes the KullbackLeibler divergence. Bi- 

modal VAEs that can handle a missing modality 

extend this approach by modelling q(z|x1, x2) as 

well as q1(z|x1) and q2(z|x2), which replace the 

single q(z|x). Multimodal VAEs may differ in 1) 

the way they approximate q(z|x1, x2), q1(z|x1) 

and q2(z|x2) by neural networks and/or 2) the 

structure of the loss function, see Figure 1. 

Typically, there are no conceptual differences in 

the decoding, and we model the decoding 

distributions in the same way for all methods 

considered in this study. Suzuki et al. (2017) 

introduced a model termed JMVAE (Joint 

Multimodal VAE), which belongs to the class of 

approaches that can only learn from the paired 

training samples (what we refer to as the (fully) 

supervised setting). It approximates q(z|x1, x2), 

q1(z|x1) and q2(z|x2) with three corresponding 

neural networks and optimizes an ELBO type 

loss of the form – 

 
L = Eq(z|x1,x2) [log p1(x1|z) + log p2(x2|z)] − 

DKL(q(z|x1, x2) k N (0, I)) − DKL(q(z|x1, x2) k 

q1(z|x1)) − DKL(q(z|x1, x2) k q2(z|x2))      - (2) 
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3.IMPLEMENTATION 

 
While using MSE is easy and most common, 

we found that using a cross-entropy (CE) 

reconstruction loss reliably led to better 

results for the MMAE than using MSE. We 

created an image reconstruction dataset based 

on MNIST digits (LeCun et al., 1998). The 

images were These regions are considered as 

different input modalities. In the above notion 

of “AND” and “OR” tasks we implicitly 

assume an be guessed from only one part of 

the image makes the new MNIST-Split 

benchmark a mixture of an “AND” and an 

“OR” task. This is in contrast to the MNIST-

SVHN task described below, which can be 

regarded as an almost pure “OR” task. Since 

cross- entropy is appropriate for binary 

values, before applying this loss we first 

normalized all of our features to the [0,1] 

range. In addition, we experimented with 

implementing the MMAE as a Variational 

Autoencoder (VAE) [20], which constrains 

the features in the embedding to follow K 

independent Gaussian distributions. This 

makes it more likely that a random 

embedding sampled from a K-dimensional 

multivariate Gaussian with mean 0 and 

variance 1, will actually correspond to a 

plausible sample when passed through the 

decoder; in other words, it makes it possible 

to generate new samples by interpolating in 

the embedding space. While this ability to 

generate realistic-looking samples of data is 

interesting, we conducted experiments using 

the VAE version of our MMAE and found it 

did not improve reconstruction or 

classification performance. To assess the 

MMAE, we compared it to two other 

dimensionality reduction techniques: PCA, 

and a supervised feature selection technique 

in with the features with the highest ANOVA 

F-value with the classification label in the 

training data were selected. We constrained 

each method to reduce the original 343 

features to 100 dimensions to enable fair 

comparison; this allowed the PCA to capture 

98% of the variance in the data, assuring a 

fair comparison. We also compared MMAE 

to four ways of dealing with missing data,  

including discarding the data when training 

the model, filling it with a special value like - 

1, filling it with the average for that feature,  

and filling it using a PCA reconstruction. 

PCA reconstruction of missing data was 

conducted by applying the inverse 

transformation learned by PCA to the 100- 

dimensional principle components vector. We 

also compared the MMAE’s classification 

performance to three other machine learning 

algorithms including Support Vector 

Machines (SVM), Logistic Regression (LR), 

and a feedforward neural network (NN). For 

all models we performed a grid search over  

possible hyperparameter settings, optimizing 

for performance on the validation set. 
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Fig(1) shows the variance in the linear regression 

validation through the PCA 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(2) shows the density of input and latent space through 

dimension reduction in ELBO and InfoVAE. 
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4.RESULT 
 
 
 

 
Fig(3) shows the retrieved values of reconstructed pixel. 

 

An autoencoder is an unsupervised learning 

technique in which a deep neural network is 

trained to reproduce an input X based on the 

reconstruction error between X and the 

network’s output X0 ; e.g. if using squared 

reconstruction error, the model would be 

trained to optimize the following loss 

function: 

 
L(X, Y) = ||X – Y||^2 

 
The MMAE was developed to ameliorate the 

likely problem where a number of 

contiguous features from the same modality 

go missing at once. We start by normalizing 

all of the features to be in the range [0, 1]. 

We then represent a missing modality by 

filling all features from that modality with the 

special value −1. It is important to use a 

special value to indicate missing data that 

must be filled, rather than fill with a value 

such as 0 which could actually occur in the 

real data. To train the MMAE, we first use 

samples that have data from every modality to provide 

the ground truth noise-free X. At training time, for every 

sample X, we compute Xe by adding noise using two 

methods. First, we add simple masking noise to 5% of 

the featuresSecond, we randomly select one or more 

modalities and set all of the feature values for that 

modality to −1; essentially, masking entire modalities at 

once. The model is then trained to reproduce X from Xe. 

Effectively, this means that the model must learn to 

predict reasonable values for the missing modality from 

the rest of the features. For example, it may use the 

participant’s physiology and location patterns to predict 

her survey responses, such as how much time she spent 

in class, or whether she drank caffeine. After training the 

autoencoder portion of the network with the clean, 

unsupervised examples for which all sensors are 

available, we then begin a second phase of training for 

classification. 
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5.Discussion and Conclusion 

 
We have described a new method for 

restoring missing sensor data, which is 

frequently lost in multimodal, realworld data 

collection settings. Empirical results 

demonstrate that the MMAE can accurately 

reproduce data from a lost modality, while 

other methods such as PCA cannot. The 

MMAE offers valuable new advantages for 

Affective Computing researchers who would 

like to train unbiased models on noisy data, 

accurately cluster noisy samples, or make 

robust predictions in the face of real-world 

data loss. The MMAE has potential benefits 

in terms of providing enhanced flexibility and 

privacy to users of a mood prediction system. 

Because it can make accurate mood 

predictions even when data is lost, it could 

allow users to opt-out of providing data for all 

modalities. This could be particularly enticing 

to certain users, e.g. those who are 

uncomfortable wearing sensors throughout 

the day, or those who are concerned about 

privacy issues surrounding location data. The 

MMAE also provides an effective feature 

reduction method that may enhance privacy; 

the embeddings learned by the MMAE can be 

used to provide roughly equal classification 

performance to the raw features, meaning that 

the raw features would not have to be stored 

once the embeddings are computed. The 

embeddings could potentially allow the highly 

sensitive personal data collected from this 

study to be shared with other researchers in a 

non-identifiable way. SVAE resembles 

VAEVAE in the need for additional networks 

besides one encoder per each modality and 

the structure of ELBO loss. It does, however, 

solve the problem of learning the joint embeddings in a 

way that allows to learn the parameters of approximated 

q(z|x1, x2) using all available samples, i.e., both paired 

and unpaired. If q(z|x1, x2) is approximated with the 

joint network that accepts concatenated inputs, as in 

JMVAE and VAEVAE (b), the weights of q(z|x1, x2) 

can only be updated for the paired share of samples. If 

q(z|x1, x2) is approximated with a PoE of decoupled 

networks as in SVAE 
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