
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

FLUTTER
Author: Deepti S

Co-Author: DR. Samitha Khaiyum

AUTHOR M.C.A. Post Graduate Students D.S.C.E
CO-AUTHOR M.C.A Associate Professor & HOD D.S.C.E

---***---

Abstract:

In general, developing a mobile application may be a complex and challenging task. There are many frameworks

available to develop a mobile application. Android provides a native framework supported Java language and iOS

provides a native framework supported Objective-C / Swift language. This paper walks through the fundamentals

of Flutter framework, installation of Flutter SDK, fixing Android Studio to develop Flutter based application,

architecture of Flutter framework and developing all form of mobile applications using Flutter framework.

1.Introduction:

Flutter is an open source framework to form top

quality, high performance mobile applications across

mobile operating systems - Android and iOS. It provides

an easy, powerful, efficient and straightforward to know

SDK to put in writing mobile application in Google’s

own language, Dart.

Flutter – an easy and high-performance framework

supported Dart language, provides high performance by

rendering the UI directly within the operating system’s

canvas instead of through native framework.

Flutter also offers many able to use widgets (UI) to form

a contemporary application. These widgets are

optimized for mobile environment and designing the

applying using widgets is as simple as designing HTML.

Flutter application is itself a widget. Flutter widgets also

supports animations and gestures. the applying logic is

predicated on reactive programming. Widget may

optionally have a state. By changing the state of the

widget, Flutter will automatically (reactive

programming) compare the widget’s state (old and new)

and render the widget with only the mandatory changes

rather than re-rendering the entire widget.[1]

NOTE:

The kind of apps built using Flutter:

I. Flutter is optimized for 2D mobile applications

that want to run on both Android and iOS.

II. Applications that need to offer branded designs

are particularly suitable for Flutter. However,

apps that should look like stock platform apps

can also be created with Flutter.

III. You can create complete applications with

Flutter, including camera, geolocation, network,

storage, third-party SDKs and more.

How Flutter came into Existence:

Previously, where the Flutter frame did not exist, there

were other frames that were popular. Other frameworks

such as Xamarin, PhoneGap, React Native Apache

Cordova, Titanium and many others have been used

before those which are being introduced currently. Then

the flutter appeared and became the best of all frames

It is believed that the problem with other frameworks

before launching the flutter framework is the user

experience. Well, I'm not saying they were slow or

something, but they lacked something like the user

experience in a native app. On the other hand, flutter

already had everything the other framework lacked at

the time or didn't support. Flutter also has better

development speed and native UX than its user expects.

Most Flutter application development companies now

use Flutter application development to build a cross-

platform application for their customers.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

2. Body of Paper:

Prerequisites:

Before starting Flutter, the readers should already bear

in mind about what a Framework is which the readers

have a sound knowledge on Object Oriented

Programming and basic knowledge on Android

framework and Dart programming. If you're a beginner

to any of those concepts, we advise you bear tutorials

associated with these first, before you begin with Flutter.

Flutter Installation:

a) Get the Flutter SDK

b) Download the installation package to get the

latest stable version of the Flutter SDK.

c) Extract the zip file and place the floating content

in the desired installation location for the Flutter

SDK (for example, C: \ src \ flutter; do not

install Flutter in a directory like C: \ Program

Files \ which requires high privileges).

d) Run flutter doctor

a. C:\src\flutter>flutter doctor

e) Android Setup: Install Android Stdio

f) Start Android Studio and go through the

Android Studio setup wizard. This installs the

latest Android SDK, the Android SDK

command line tools, and the Android SDK build

tools, which are required by Flutter during

development for Android.

g) Setup Android Device

h) Setup Android Emulator

3. Flutter Databases:

Flutter supports two databases:

➢
 SQLITE

➢
 Firebase database

SQLITE:
The SQLite database [5] is the de facto and standard

SQL-based integrated database engine. It is a small,

proven database engine. The SQLite package provides

many features to work effectively with the SQLite

database.

Steps to create a database:

Create a new file, Database.dart.

Import necessary import statement in Database.dart

Import 'dart:async';

import 'dart:io';

import 'package:path/path.dart';

import 'package:path_provider/path_provider.dart';

import 'package:sqflite/sqflite.dart'; import

'Product.dart’;

Next declare a singleton based, static
SQLiteDbProvider object

class SQLiteDbProvider {

SQLiteDbProvider. _();

static final SQLiteDbProvider db =

SQLiteDbProvider. _();

static Database _database;}

Create a method to get database products

Future<List<Product>>

getAllProducts() async {

final db = await database;

List<Map> results = await

db.query("Product", columns:Product.columns,
orderBy:

"Id ASC");

List<Product> products = new List ();

results.forEach((result) {

Product product = Product.fromMap(result);

products.add(product); }); return products;

Cloud Fire store:
Firebase is a platform for developing BaaS applications.

It provides many features to accelerate the development

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

of mobile applications such as authentication service,

cloud storage, etc. One of the main features of

Firebase is Cloud Fire store, a real-time cloud-based

NoSQL database.

Steps to create a database:

• Create a new Flutter app in Android

studio, product_firebase_app.

• Replace the default start code (main.dart)

with our product_rest_app code.

• Copy the Product.dart file from

product_rest_app to the lib folder.

class Product {

final String name;

final String description;

final int price;

final String image;

Product (this.name, this.description, this.price,

this.image);

factory Product.fromMap(Map<String, dynamic> json)

{return Product (

json['name'],

json['description'],

json['price'],

json['image'],

); }}

4. Features of Flutter:

❖
 Flutter framework offers the subsequent features to

developers

❖
 Open-Source: Flutter may be a free and open-source

framework for the event of mobile applications

❖
 Cross-platform: This feature allows Flutter to put in

writing code once, maintain it and run on different
platforms. It saves developers time, effort and money.

❖
 Hot Reload: Whenever the developer makes

changes within the code, then these changes will be
seen instantaneously with Hot Reload. It means the
changes immediately visible within the app itself.
it's a really handy feature, which allows the
developer to mend the bugs instantly.

❖
 Accessible native features and SDKs: This feature

enables an easy and enjoyable application
development process due to native Flutter code,
third-party integration and platform APIs. So, we
will easily access the SDKs on both platforms.

❖
 Minimal code: The Flutter application is developed

by the Dart programing language, which uses JIT
and AOT compilation to boost overall startup time,
operation and accelerates performance. JIT
improves the event system and refreshes the
programme without making any extra effort to form
a brand new one.

❖
 Widgets: The Flutter framework offers widgets,

which may develop customizable specific designs.
most significantly, Flutter has two sets of widgets:
Material Design and Cupertino widgets that help to
supply a glitch-free experience on all platforms.[1]

NOTE:

Flutter provides a tool, flutter doctor to test that each one

the need of flutter development is met. flutter doctor

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

NOTE:

What makes Flutter Unique?

I. Flutter is different from most other mobile app

creation options because Flutter does not use

WebView or the OEM widgets that come with

the device. Instead, Flutter uses its own high-

performance rendering engine to draw widgets.

II. In addition, Flutter is different because it only has a

thin layer of C / C ++ code. Flutter implements most of

its system (compositing, gestures, animation,

framework, widgets, etc.) in Dart (a modern, concise

and object-oriented language) that developers can

easily approach to read, modify, replace or delete. This

gives developers enormous control over the system,

while drastically lowering the accessibility bar for the

majority of the system.[2]

5. Architecture of Flutter:

a) The core concept of the Flutter framework is In

Flutter, everything may be a widget. Widgets are

basically programme components accustomed

create the programme of the applying.

b) In Flutter, the applying is itself a widget. the

applying is that the top- level widget and its UI

is build using one or more children (widgets),

which again build using its children widgets.

This composability feature helps us to form a

programme of any complexity.

c) MyApp is the user created widget and its build

using the Flutter native widget, MaterialApp.

d) MaterialApp has a home property to specify the

programme of the house page, which is again a

user created widget, My Homepage.

e) My Homepage is build using another flutter

native widget, Scaffold

f) Scaffold has two properties – body and appBar

g) body is accustomed specify its main

programme and appBar is accustomed specify

its header programme

h) Header UI is build using flutter native widget,

AppBar and Body UI is build using Center

widget.

i) The Center widget features a property, Child,

which refers the particular content and its build

using Text widget [2]

Dart Platform:
 Flutter applications are written in the Dart language and
use many more advanced features of the language. On
Windows, macOS and Linux via the semi-official
Flutter Desktop Embedding project, Flutter runs in the
Dart virtual machine which has an execution engine just
in time. When writing and debugging an application,
Flutter uses Just in Time compilation, enabling "hot
reload", with which changes to source files can be
injected into a running application. Flutter extends this
with support for stateful hot reload, where in most cases
changes to the source code can be immediately reflected
in the current application without requiring a restart or
loss of state. This functionality, as implemented in
Flutter, has received much praise

The release versions of the Flutter applications are

compiled with advance compilation (AOT) on Android

and iOS, making the high performance of Flutter

possible on mobile devices.[5]

Flutter Engine:
The Flutter engine, written primarily in C ++, provides

low-level rendering support using Google’s Skia graphics

library. In addition, it interfaces with platform-specific

SDKs such as those provided by Android and iOS. [9] The

Flutter engine is a portable runtime engine for hosting

Flutter applications. It implements basic Flutter libraries,

including animation and graphics, file and network I / O,

accessibility support, plugin architecture and Dart runtime

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 5

and compilation tools in chain. Most developers will

interact with Flutter via the Flutter Framework, which

provides a modern and responsive framework, and a rich

set of platform, layout, and foundation widgets.[5]

6. Web Support for Flutter:
In addition to mobile applications, Flutter supports the

generation of rendered web content using standard

web technologies: HTML, CSS and JavaScript. With

web support, you can compile existing Flutter code

written in Dart into a client experience that can be

integrated into the browser and deployed to any web

server. You can use all of Flutter's features and you

don't need a browser plug-in.

Adding web support to Flutter involved

implementing the main drawing layer of Flutter on

top of standard browser APIs, in addition to

compiling Dart in JavaScript, instead of the ARM

machine code used for mobile applications. Using a

combination of DOM, Canvas and CSS, Flutter can

deliver a high-quality, high-performance portable

user experience on modern browsers. We fully

implemented the main drawing layer in Dart and

used Dart's optimized JavaScript compiler to

compile the kernel and the Flutter framework with

your application in a single reduced source file that

can be deployed to any web server.[3]

Create a new project using web support:

1. Setup

$ flutter channel beta

$ flutter upgrade

$ flutter config –enable-web

2. Create and run

$ flutter create

demo $ cd demo

$ flutter run -d chrome

3. Build

$ flutter build web

4. Add web support to an existing app

$ flutter create.

$ flutter run -d chrome

7. Widgets in Flutter:

Widgets are basically programme components

accustomed create the programme of the applying.

Widgets are everything in Flutter Framework. [4]

Stateful and Stateless Widgets:

I. A widget is stateful or stateless. If a widget can

change - when a user interacts with it, for

example - it is stateful.

II. A stateless widget never changes. Icon,

IconButton and Text are examples of stateless

widgets. StatelessWidget subclass of stateless

widgets.

III. A stateful widget is dynamic: for example, it can

change its appearance in response to events

triggered by user interactions or when it receives

data. Checkbox, Radio, Slider, InkWell, Form

and TextField are examples of stateful widgets.

Widgets of the StatefulWidget subclass.

IV. The state of a widget is stored in a State object,
separating the state of the widget from its

appearance. The state consists of values that can
change, such as the current value of a cursor or if

a check box is checked. When the widget's state
changes, the state object calls setState (), telling
the framework to redraw the widget.

Types of Widgets: ⦁ Platform specific widgets ⦁ Layout widgets ⦁ State maintenance widgets ⦁ Platform independent / basic widgets

Layout Widgets:

In Flutter, a widget will be created by composing one or

more widgets. To compose multiple widgets into one

widget, Flutter provides sizable number of widgets with

layout feature.

Widgets and Layout Widgets

The heart of Flutter's layout mechanism is made up of

widgets. In Flutter, almost everything is a widget - even

the layout templates are widgets. The images, icons a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 6

text you see in a Flutter app are all widgets. But the things

you don't see are also widgets, such as rows, columns, and

grids that organize, constrain, and align visible widgets.To

create a Layout design using Widgets we need to follow

some of the following steps:

Selecting a Layout Widgets:

Choose the Layout Widgets based on how we need to

align or constrain the visible widget.

Creating a visible Layout Widgets:

1. To create a Text Widgets:

Ex: Text ('Good Morning'),

2. To create an Image

Widgets: Ex: Image.asset(
'images/xyz.jpg',

fit: BoxFit.cover,

),

3. To create an Icon

Widgets: Ex: Icon (
Icons.star,
color: Colors.red[500],

),

Next Add Visible Widgets to the Layout Widgets:

• All the layout widgets have one of the following:

• A child's property if they take only one child

For Ex: for example, Center or Container

• A property for children if they take a list of

widgets

For Ex: Row, Column, List View, or Stack.

Adding the Text widget to the Center widget:

Ex: Center (

child: Text(‘abc'),

),

Add the layout widget to the page:
A Flutter application is itself a widget, and most widgets

have a build () method. Instantiating and returning a

widget in the build () method of the application displays

the widget.

NOTE: While we are creating a flutter app, we come

across with two types of apps

• Material apps

• Non-Material apps\

Material apps
For a Material application, you can use a Scaffold

widget; it provides a default banner, background color

and has an API to add drawers, snack bars and back

sheets. Then you can add the Center widget directly to

the body property of the home page.

Ex:

class MyApp extends StatelessWidget {

@override

Widget build (BuildContext context) {

return MaterialApp(

title: 'Flutter layout demo',

home: Scaffold (

appBar: AppBar(

title: Text ('Flutter layout demo'),

),

body: Center (

child: Text(‘abc'),

),),);}}

Note:
A scaffolding widget provides a framework that

implements the basic hardware design visual layout

structure of the Flutter application. It provides APIs to

display drawers, snack bars and bottom sheets.

Non-Material apps

For a non-material application, you can add the Center

widget to the application's build () method: [7]

Ex:
class MyApp extends StatelessWidget {

@override

Widget build (BuildContext context) {

return Container (

decoration: BoxDecoration(color: Colors.white),

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 7

child: Center (

child: Text (

'Good Morning',

textDirection: TextDirection.ltr,

style: TextStyle (

fontSize: 32,

color: Colors.red,),),),), } }

Layout Widgets are of two types:

• Single-child layout widgets

• Multi-child layout widgets

Single-child layout widgets

ALIGN layout widget:

This widget will be as large as possible if its dimensions

are constrained and width Factor and height Factor are

null.[8]

Center (

child: Container (

height: 150.0,

width: 150.0,

color: Colors. Red [50],

child: Align (

alignment: Alignment (0.7, 0.6),

child: Flutter Logo (

size: 60,

),),),)

Multi-child layout widgets:

Column Class
A widget that displays its children in a vertical table. To

have a child expand to fill the available vertical space,

wrap him in an expanded widget. [8]

Column (

children: <Widget> [

Text ('Flutter response'),

Text('Welcome'),

Expanded (

child: FittedBox(

fit: BoxFit.contain,

child: const FlutterLogo(),

),),],)

Flutter Gesture:

Gestures are mainly a way for a user to interact with a

mobile application (or any touch device). Gestures are

generally defined as any physical action / movement of a

user in order to activate a specific control of the mobile

device. Gestures are as simple as touching the screen of

the mobile device for more complex actions used in

game applications.[6]

body: Centre (

Child: GestureDetector(

onTap: () {

_showDialog(context);

},

Child:Text(‘Welcome to flutter gesture’,)

)),

8. Animations in Flutter:

I. Flutter's animation system is based on typed

animation objects. Widgets can either

incorporate these animations into their build

functions directly by reading their current value

and listening to their state changes, or they can

use the animations as a basis for more elaborate

animations which they pass on to other widgets.

II. Well-designed animations make the user

interface more intuitive, contribute to the

appearance of a refined application, and

improve the user experience. The support for

Flutter animations facilitates the implementation

of different types of animation. Many widgets,

especially Material widgets, come with the

standard motion effects defined in their design

specifications, but it is also possible to

customize these effects.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 8

III. After introducing some of the essential

concepts, classes and methods into the

animation library, it guides you through 5

animation examples. The examples build on

each other, showing you different aspects of the

animation library.

IV. The Flutter SDK also provides transition
animations, such as FadeTransition,

SizeTransition and SlideTransition. These

simple animations are triggered by defining a

starting point and an ending point. They are

easier to implement than the explicit

animations, which are described here.

V. In Flutter, an Animation object knows nothing

about what is on the screen. An animation is

an abstract class that understands its current

value and its state (finished or rejected). One

of the most commonly used animation types is

Animation <double>.

VI. An Animation object sequentially generates
numbers interpolated between two values over a

certain duration. The output of an Animation

object can be linear, a curve, a step function, or

any other mapping you can design. Depending

on how the Animation object is controlled, it

can work in the opposite direction or even

change direction in the middle.[9]

State maintenance layout:

In Flutter, all widgets are either derived from Stateless

Widget or Stateful Widget.

Widget derived from Stateless Widget does not have any

state information, but it's going to contain widget

derived from Stateful Widget. The dynamic nature of the

applying is thru interactive behavior of the widgets and

therefore the state changes during interaction

Platform Independent widgets:

Flutter provides large number of basic widgets to create
simple as well as complex user interface in a platform
independent manner.

Some of Platform Independent Widgets include:

Text

Ex: Text ('Hello World!', style:
TextStyle(fontWeight:FontWeight.bold))

Image

Image. Asset('assets/smiley.png')

Icon

Icon

(Icons.email)

9. Advantages of flutter:

Flutter comes with beautiful and customizable widgets
for high performance and outstanding mobile
application. It fulfills all the custom needs and
requirements. Besides these, Flutter offers many more
advantages as mentioned below – [10]

• Dart has a large repository of software packages

which lets you to extend the capabilities of
your application.

• Developers need to write just a single code base
for both applications (both Android and iOS
platforms). Flutter may to be extended to other
platform as well in the future.

• Flutter needs lesser testing. Because of its

single code base, it is enough if we write

automated tests once for both the platforms.

• Flutter’s simplicity makes it a good candidate
for fast development. Its customization
capability and extendibility make it even more
powerful.

• With Flutter, developers have full control
over the widgets and its layout.

• Flutter offers great developer tools,
with amazing hot reload.

10. Disadvantage of flutter:

Despite its many advantages, flutter has the following
drawbacks in it: [10]

• Since it is coded in Dart language, a developer

needs to learn new language (though it is easy
to learn).

• Modern framework tries to separate logic and UI

as much as possible but, in Flutter, user interface

and logic is intermixed. We can overcome this

using smart coding and using high level module

to separate user interface and logic.

• Flutter is yet another framework to create
mobile application. Developers are having a
hard time in choosing the right development
tools in hugely populated segment.

11. Conclusion:

The major point when we learn Flutter is it is easy to
develop and learn. And state management is better in
flutter.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 9

For beginners it feels like flutter architecture is a tough
task but once implemented the next steps becomes easy.

Another disadvantage in flutter would be its hardware
implementation because its bit suppressed.

Flutter offers its own widgets, one of them is a Table
widget, which made creating the table on the cocktail
detail page very simple. I had problems creating this
table with Android and iOS, so it was a good change of
pace. The code below is the function to create all the
rows of the table.

12. References:

[1] M. Armbrust et al., "Introduction to Flutter,"

Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

https://www.javatpoint.com/flutter

[2] S. Ghemawat, H. Gobioff, and S.- T. Leung,

"Architecture of flutter," ACM SIGOPS Oper. Syst. Fire

up., vol. 37, no. 5, pp. 29–43, 2003.

https://www.tutorialspoint.com/flutter/index.htm

[3] J. Senior member and S. Ghemawat, "Features of

flutter," Commun. ACM, vol. 51, no. 1, pp. 107–113,

2008 https://flutter.dev/docs/development/ui/interacti

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica,Widgets and Layouts” in Proc. 2nd

USENIX Conf. Hot Topics mobile android app, vol. 10.
Boston, MA, USA, 2010, p.

https://flutter.dev/docs/development/ui/layout

[5] K. Ashton, “Database and Installation,” RFiD J., vol.
22, no. 7, pp. 97–114,
2009.https://www.tutorialspoint.com/flutter/flutter_data

base_concepts.htm

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N.
Davies, “mobile android flutter,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009

[7] Feld, “Material and Nonmaterial apps” in Proc. IEEE
Int. Workshop Factory Commun. Syst., Vienna, Austria,

2004, pp. 33–38.

[8] D. Evans, “FlutterGesture,” CISCO White Paper, vol.
1, pp. 1–11, 2011.

[9] Schiraldi, G. R. (2001). Flutter Animations [Adobe

Digital Editions version]. doi:10.1036/0071393722

[10] Laxdal, L. S. (2009 Retrieved from ProQuest

Dissertations & Theses Global database.

(MR82087)https://habr.com/en/post/455020/

http://www.ijsrem.com/
https://www.javatpoint.com/flutter
https://www.tutorialspoint.com/flutter/index.htm
https://flutter.dev/docs/development/ui/interacti
https://flutter.dev/docs/development/ui/layout
https://www.tutorialspoint.com/flutter/flutter_database_concepts.htm
https://www.tutorialspoint.com/flutter/flutter_database_concepts.htm
https://habr.com/en/post/455020/

