
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 07 | July -2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 1

Game Designing using C Sharp

Binoy Gogoi
1
, Pranav Kumar

2

1Department of Information Technology, Kaziranga University, Jorhat, Assam-785006, India,
2Department of Computer Science and Engineering, Kaziranga University, Jorhat, Assam-785006, India,

---***---

Abstract -

Countless hyper casual games are being developed and

published over the world every year. Likewise, we will

be developing an Endless Hyper Casual game of my

own for pc’s having Windows OS. Hyper Casual games

are not only instantly playable but also infinitely re-

playable, making them highly addictive and engaging. In

the title the word ‘Endless’ refers that the extent to

which the scores can be made is not limited or is

unlimited. In this Endless Hyper Casual game, the

player controls a character. The player has to

successfully get-pass the obstacles while the score

simultaneously gains up. The game will end if the player

is unable to successfully overcome the given obstacles.

We will also add a few power-up’s or special abilities in

the game to make the game more challenging and

interesting to play. The game will include various assets

and will be of 2-dimensional (2D) design. We will be

developing the game in a cross-platform game engine

called ‘Unity’, developed by Unity Technologies, with

the help of the programming language “C sharp”.

1.INTRODUCTION

This project covers the basis procedure of creating a

simple 2D game with the help of Unity game engine and

C# programming language. The participant in this

project is a game enthusiast and is interested in playing

games. The need for making this project is to show

every person interested in games, how to create their

own 2D game simply with the help of the free

software’s available in the internet.

The contents of this project can be divided into three

sections. Firstly, Unity game engine is used for this

game project. The use of game engine is discussed

providing some knowledge about what is a game engine,

its purpose and the supported platforms. The features

that it provides, the physics engine, audio engine and the

user friendly interface. Unity included 2D development

tools in the update4.3 (Goldstone, 2013). After that

comes the source code programming language that is C

Sharp or C#. It provide the description on why C# is

used for game development. The different types of C#

functions that can be used with the help of C# codes.

Also a few of the advantages, disadvantages and

applications of C#.

Lastly, it describes about the game mechanics i.e. a

complete brief guide on how the game is developed in

Unity. It show the assets and game objects that are being

used. The attributes of the game components inside the

game objects and the C# scripts required in this game

along with their respective C# codes. The end result of

this project is a 2D Game that can be enjoyed playing

endlessly.

2. GAME MECHANICS

Game Play

Firstly, our game is a hyper casual 2D game. It is a game

simple to understand as well as to play. The playing

character of the game a square shaped smiley object.

Here the challenges are that the player has to react and

respond at accurate time. The platform will spawn from

the bottom of the screen .The player controlling the

character has to move sideways and fall on a platform to

avoid getting crushed by the spike at the top of the

screen.

Assets in the Game:Here the following are the Assets

in our unity game paper.

a) Animations: Combine 2D and 3D Dope sheet and

curve animation for sprites. Animate any property in

your game. Automatically create animated sprites from

sprite sheets.

 Idle: It has the animation of the standard

platform in this game.

 Break Animations: It has the animations of the

cracks to be displayed in the breakable platform.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 07 | July -2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 2

 Breakable controller : Breakable controller is

an Animator Controller.

b) Materials:

 BG Materials: BG Materials is a material

created in this unity paper to attach the

background of this game.

c) Prefabs: Prefab in Unity system allows you to

create, configure, and store a GameObject

completely with all its property values, components,

and child GameObject’s as a reusable Asset. This

Asset acts as a guide from which you can create new

Prefab instances in the Scene. When you want to

reuse a GameObject configured in a particular way

in multiple places in your Scene, you should convert

it to a Prefab. This is better than to copy & paste the

GameObject, because the Prefab system helps you

to keep all the copies in sync automatically.Here, the

prefabs to be present in our Game paper are the total

number of platforms used and the Player.

d) Scenes: Scenes contain the environments and menus

of your game. Think of each unique Scene file in the

game as a unique level. In each Scene, you place

your obstacles, environments and decorations,

basically to design and build your game in pieces

 Sample-Scene: Here in the Scenes folder, Sample

Scene will be our gamming environment in which

our game will be made.

 Scripts: Scripts or C# scripts in unity is basically

the codes written in in C# programming language.

These gameplay scripts are easy to modify and are

updated by non-programmers to tweak the

gameplay.

 BGScroll:BGScroll is a script in C sharp edited in

‘visual studio code’. This script will grant us the

feature to scroll the background image upwards.

 PlatformScript: Here, PlatformScript is a script in

C sharp edited in ‘visual studio code’. This script

will be attached to all the platforms objects in the

hierarchy.

 PlatformSpawner: Here, PlatformScript is a script

in C sharp edited in ‘visual studio code’. This script

will allow us to spawn new platforms in the game

continuously from random positions as well as

spawn random types of platforms.

 Player Bounds: Here, PlatformScript is a script in

C sharp edited in ‘visual studio code’. This script

will create the bounds in the scene of our game so

that the player would not drift away from the

displaying screen of the game.

 Player Movement: Here, PlatformScript is a script

in C sharp edited in ‘visual studio code’. This script

will provide us the feature to input the velocity of

the player’s movement in the game environment.

e) Sound:A sound effect is an artificially created or

enhanced sound, or sound process used to highlight

artistic or other content of Video games. Sound is of

outmost importance in a game to make a better user

gaming experience and also for the purpose of

entertainment, of course. It will also help the game

user to feel the game experience in a intrigued

gaming atmosphere.

f) Sprites:Sprites are 2D Graphic objects. Sprites are

basically just standard textures but there are special

techniques for combining and managing sprite

textures for the convenience and efficiency during

development. Unity renders a placeholder Sprite

Creator ,a built-in Sprite Renderer, Sprite Editor,

and a Sprite Packer.

Components in the Game

 Transform: The Transform component specifies

the Position, Rotation, and Scale of each and every

object in the scene. Every GameObject has a

Transform.

 Camera: Camera is the devices that capture and

display the world to the player. You can make the

presentation of your game truly unique by

customizing and manipulating cameras. In a scene

there can be unlimited number of cameras. They can

be placed in any order, at any place on the screen, or

particularly only certain parts of the screen.

 AudioListener: The Audio Listener is used as a

microphone-like device. The input is received from

any given Audio Source in the scene and plays

sounds through the speakers of the computer. In

most applications listeners are attached the to the

Main Camera If an audio listener is within the

boundaries of a Reverb Zone reverberation is

applied to all audible sounds in the scene. Also, if

Audio Effects can be applied to the listener then it

will be implemented d to all audible sounds in the

scene.

 Quad (Mesh Filter): The Mesh Filter takes a mesh

from your assets and passes it to the Mesh Renderer

for rendering on the screen

 Mesh Renderer: The MeshRenderer takes the

geometry from the Mesh Filter and renders it at the

position defined by the GameObject’s Transform

component.Materials that the Mesh Renderer is

using, the Materials portion in the Mesh Renderer

Inspector displays all of them. The meshes imported

from 3D modeling s/w can use multiple Materials,

and each sub-Mesh uses a single Material from the

list.Suppose a Mesh contains more Materials than

sub-Meshes, Unity renders the last sub-Mesh with

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 07 | July -2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 3

each of the remaining Materials, one on top of the

next. This will let you to set up multi-pass rendering

on that sub-Mesh. Nevertheless, this can affect the

performance at run time. Fully non transparent

Materials overwrite the previous layers, which

causes a decrease in performance.

 Mesh Collider: The Mesh Asset builds its Collider

based on that Mesh taken from the Mesh Collider. It

is more accurate for collision detection. The convex

marked Mesh Colliders can collide with other Mesh

Colliders.

 BGScroll (Script): The BGScroll (Script) is given

in the refereed marking numbers

Property Function

Script BGScroll

Scroll_Speed 0.3

Table no.1- BG scroll

 Sprite Renderer

The Sprite Renderer component provides the Sprite

and controls how it visually appears in a Scene.

When you create a 2D Sprite, Unity automatically

creates a GameObject with the Sprite Renderer

component attached to it. You can add the

component to an existing GameObject with the help

of the Components menu.

 Box Collider 2D: The Box Collider is an invisible

shape that is used to handle physical collisions for

an object. A collider do not need to be precisely the

same shape as the object’s mesh – a rough

approximation is enough for the gameplay

 Rigidbody 2D: It places an object under the control

of the physics engine. Rigidbody 2D is familiar

from the standard Rigidbody component; the

differences are that in 2D, objects can only move in

the XY plane. It can only rotate on an axis

perpendicular to that plane.

Applications of :

 Standard platform

 Drag and drop the platform sprite in the

Hierarchy table/ scene to create a new game

object.

 In the sprite renderer game component set

the order in layer to 1.

 Resize the platform to a favorable size.

 Add two new game components:

Rigidbody2D & Box collider2D.

 Set the body type to kinematic in

Rigidbody2D.

 This will make the object to be affected by

gravity. Whereas Dynamic is not affected

by gravity.

 Now duplicate the game object platform and

rename as a new game object as Breakable

platform.

Breakable platform.

 It consists of the same components as of the

standard platform.

 Add a new game component, Animator.

 Create an animator controller in Paper

Assets and attach it to the animator game

component.

 Now in the animation tab, create an

animation as idle.

 The animation tab will show the animations

that we have created.

 Create another animation as Break.

 Select the break animation sprites, Drag and

drop them in the break animation.

 Adjust the speed at which the platform will

jump.

 Uncheck the loop time in the break

animation.

 Set the idle animation as default.

 Now duplicate the game object platform and

rename as a new game object as Breakable

platform

Spike Platform

 Drag and drop the spike platform sprite to

create a new game object. Rename it as

Spike platform

 Set order in layer to 2 in the sprite renderer

game object.

 Adjust the size of the spike platform.

 Add Boxcollider2d and set it to trigger.

 Add Rigidbody2D and set body type to

kinematic.

Moving platform left

 Create a new game object as Moving

platform left

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 07 | July -2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 4

 Select all the 8 moving platform sprites,

drag and drop it in the scene, it will

automatically prompt a window to create an

animation.

 Create the moving animation.

 Set order in layer to 1.

 Adjust the size of the platform.

 Add Boxcollider2D, they are going to be

solid game object.

 Add Rigidbody2D and set body type to

kinematic.

Moving platform right

 Duplicate the Moving platform left and

rename to moving platform right.

 Go to sprite renderer, check the ‘x’ in flip to

flip the animation.

 Now the platform will move to the right

direction.

Result and Discussion

When you open the .exe file on your window a

configuration window of Cube Fall will appear.In this

configuration window there are two tabs “Graphics” and

“Input” as well as two buttons in the bottom of the

configuration panel “Play” and “Quit”.

Fig no.1- Configuration window

Immediately as the game starts, the Cube will fall from

the top-middle part of the screen on a platform. The

Cube will fall on a regular standard platform. The

background image will scroll upwards continuously as

the game progresses. Inorder to move from another

platform lookout for the next incoming platform. Use

the controls to move to the left or right side of the

platform and land on a platform as it falls.

The Cube/Player falls must land on a platform to

progress in the game. Random platforms keep spawning

from the bottom of the screen. The platforms are

spawned by the platform Spawner at the bottom. They

will spawn from different random locations from the

bottom of the screen.

The platforms does no harm to the player/cube except

the Spike platform. So you should definitely avoid

landing on the Spike platform. The spikes at the top are

also as deadly as it looks and in under no condition

should come into contact with the Cube/player. As you

keep falling from one platform to another, if you are not

able to land on a platform and fall into the void below,

the player will be executed and the game will

automatically be restarted from the beginning.

Click on the red colored button located on the top-left

side of the screen to exit the game. The game will

immediately be dismissed.

3. CONCLUSIONS

A paper in game designing means you need a lot of

experience. In this section we summarize our experience

gained by paper team during development of the game.

Working with the game engine was a completely new

experience for us. Normally we are working with

different languages and software’s. It is a very sensible

work and it demands much time and understanding of

both Unity and C#.

2D games in my opinion are the precise way of recalling

our much fondly childhood digital games before the 3D

games that we play today even existed. They are pretty

easy to play and equally challenging. Meanwhile

providing a great and fun gaming experience. Likewise

we hope to provide a positive gaming experience

through this game paper.

Although without any doubt, it is totally exciting to

make a game. This whole paper was a mesmerizing

journey of learning by having fun. We came to

understand that there is a whole lot of hardwork and

immense effort behind every game we enjoy playing,

while building profound respect to the people working

in creating these games.

ACKNOWLEDGEMENT

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 07 | July -2020 ISSN: 2582-3930

© 2020, IJSREM |www.ijsrem.com | Page 5

The project is undertaken by Binoy Gogoi as a 10
th

semester project on “Game Designing using C-Sharp”,

under the guidance and supervision of Mr. Pranav

Kumar.

Our primary thanks goes to him who poured over every

inch of our project with paint stalking attention and

helped us throughout the working of the project. It’s our

privilege to acknowledge our deepest sense of gratitude

to him for his inspiration which has helped us

immensely.

We are extremely grateful to him for his unstilted

support and encouragement in the preparation of this

project.

We show our gratitude to our Dean Dr. Sajal Saha and

HOD “Dr. Manoj Kumar Muchahari” and our Project

Co-ordinator Dr. Purnendu Bikash Acharjee for

providing the best of facilities and environment to bring

out our innovation, talent and spirit of inquiry through

this project.

REFERENCES

[1] BJohnson, M., & Henley, J. A. (2014). Learning 2D

game development with Unity: a hands-on guide to

game creation. Pearson Education.

http://www.ijsrem.com/

	2. GAME MECHANICS

