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Abstract - In this project, we will demonstrate an 

approach that uses deep learning techniques to color 

grayscale images and videos. Using GAN (Generative 

Advertising Network), a neural network architecture 

designed for image processing, we are able to differentiate 

the content and style of different images and combine them 

into one image. And it can be very effective. Another 

important thing about Nogan training is that you can pre-

empt the Discriminator on the pictures you produce after the 

first Generative Adversial training, after which the same 

training repeated in same manner. Thus, we got to a point it 

produced colorful results with the same model. But it comes 

with a bigger cost right now - the output sample from the 

Generator has become unstable and we need to experiment 

with the render factor to get optimum results. But the 

current outputs are still better and then what we could 

achieve with previous model. We did about five of these 

repetitive cycles before we got the diminishing returns. The 

final classification-based model we build produces colorful 

images and videos that are similar to reality. This project 

really helps in improving computer vision. 

1. INTRODUCTION1 

Supervised learning is central to much of the research in 

deep learning. But, the need to create models that can learn 

from less data is growing rapidly. To put this in an 

understanding manner, Semi-Supervised learning uses the 

combination of both labeled data and unlabeled data which 

is then used to train the model. This type of training makes 

use of both the data (labeled and unlabeled) from a similar 

domain. The aim is to combine these data sources to train 

deep convolutional neural networks (DCNN) to determine 

the performance and we present the GAN model to color 

images and videos with a labeled training set. In fact, the 

model uses approximately 1.3% of the original ImageNet 

training labels, i.e., 1000 (thousand) labeled examples. We 

use some of the methods described in the Improved 

Techniques Paper for GANs trained from OpenCV. We use 

Nogan. We propose a new but a similar type of Generative 

Adversial training to address some of the key issues in the 

already existing system. This provides the advantages of the 

 
 

Generative Adversial training method. As a result, a less 

amount of time is spent on GAN training. Instead, the 

generator and the critic is trained more often with more 

faster and reliable methods. An important point to note here 

is that the “training” methods usually get the results we were 

expecting for and they can use GANs to render images 

closer to reality. During the shortest period of Generative 

Adversial training, the Generator does not receive the full 

range of real-time characterization capabilities that would 

normally take days to re-sized GAN training, and virtually 

no error and other mis colorization which were caused in 

the previous iteration. 

2. METHODOLOGY 

The methodology we proposed is inspired in [1] and [2]. 

As mentioned earlier, the goal is to color the black and 

white images. To achieve this, our main proposition is to 

use a generative advertising network consisting of two 

neural networks, the generator and the discriminator. The 

general training workflow can be seen in Figure 2.1. In the 

following subsections we describe each step-in detail on 

how each model is responsible for colorizing the image and 

video in each aspect and the principle behind them. 

 

 
Fig. 2.1 GAN Architecture 

 

A. Generator 

The Generator part of the Generative Adversial Network 

get to learn from the critic to create duplicate images by 

using the loss function of the Discriminator. The 
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Discriminator learns to truly classify the samples it receives 

from the original dataset and from the generator. 

Generator training requires more rigorous integration 

than discrimination training between generator and 

discriminator. Theb Generator learns from: 

• Random input 

• Generator network, which converts image noise into an 

image representation 

• A Discriminator and critic, which classifies the sample 

images from the dataset and generator 

• Generator gradient descent, penalizes the Generator for 

not passing the Discriminator classification. 

 
          Fig. 2.2 Generator 

 

B.  Discriminator 

Discrimination in GAN is used as a classifier. It tries to 

separate the real data from the data generated by the 

generator. It can use any network structure that matches the 

data type it classifies. Discrimination training data comes 

from two sources: 

• Real data is the representation of real-world 

entities. Discrimination uses these cases as the 

true part of the training process. 

• Generator generates duplicate data. 

Discrimination uses these cases as the false part 

of the training process. 

 
         Fig. 2.3 Discriminator 

 

C.  Back Propagation 

This is the summary of Back Propagation Neural Net 

Training. It is a method of fine-tuning the weights of a 

neural net based on the error rate (i.e. loss) obtained in the 

previous era (i.e. repetition). Proper tuning of weights 

ensures lower error rates, making the model more reliable 

by increasing its generalizability. 

 

 
        Fig. 2.4 Back Propagation 

 

Working of Back-Propagation. We perform a delta 

calculation step at each unit, re-propagate the loss, and 

determine what damage each node causes. 

 

D.  K-Nearest Neighbor 

The KNN algorithm groups the nodes that are close to 

similar things. In other words, things like this are close to 

one another. 

 

 
         Fig. 2.5 KNN 

 

Note in the picture above, that the same data points are 

close to each other. The KNN algorithm adheres to this 

assumption to be true enough for the algorithm to be useful. 

KNN incorporates the concept of similarity (sometimes 

called distance or proximity) into a specific statistic 

calculating the distance between points on a graph. 

 

E.  Dataset Construction 

Beginning with preprocessed images and the codebook, 

the next step is to build a data set for training. Image pre-

processing and color reduction work-flow. The simplest 

dataset consists of one attribute, the L value of the pixel and 

the target for each attribute, and the U and V values for that 

pixel. In this work we want to consider the pixels near the 

pixels we want to represent. This is because, in general, the 

images have some degree of similarity in color, and the 

information of the surrounding pixels helps to estimate the 

color of the target pixel. Additionally, adjacent pixels have 



III.           INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

IV.            VOLUME: 04 ISSUE: 02 | FEB -2020                                                                                                          ISSN: 2582-3930                                                                                                                                               

© 2020, IJSREM      |  www.ijsrem.com                                                                                                                                             |        Page 3 

a structure that helps to classify pixels. Therefore, for each 

pixel we consider the neighborhood of the pixels, from 

which we call the patch. These patches are odd shaped 

squares where the pixels are in the middle of tingling. Then, 

our dataset has many features depending on the number of 

pixels of a patch. After getting the patch, we need to get to 

the target for the properties of that line. As mentioned 

earlier, in our case the target is the U, V portion of the 

central pixel of the patch, but with a decrease in the 

potential values. The U and V component of the central 

patch is given as input to the trained SOM and an indicator 

representing the cluster of the U, V component is obtained. 

This indicator is used as a target in our dataset. 

 

F.  Neural Networks 

We propose to use the General Advisory Network (GAN) 

neural network. The purpose is to classify each patch in the 

KNN cluster under the central patch. Therefore, the neural 

network is classified in a way that the weights are adjusted 

whenever there is a change in the pretrained weights of each 

individual neurons in both the generator and the 

discriminator networks. Fig. 2.6. Neural network model. 

NNs are trained in the batch process using a dataset already 

built with the back-propagation algorithm 

 

        
        Fig. 2.6 Neural Network 

 

G.  Generator Loss 

The NoGAN learning phase involves losses of two parts: 

one is a basic perceptual loss (or feature loss) based on the 

VGG16 - which makes the generator model to bias and 

reflect the given grayscale image. And the second one 

comes from the score of the critic. Interesting Perceptual 

Loss is not enough to give good results. It promotes brown, 

green, blue, and other cheating testing, basically, what 

neural networks really do. The important point to note here 

is that Generative Adversial Networks are essentially 

learning loss for you - a big step closer to the ideal we are 

shooting at machine learning. In fact, you usually get 

optimum results when the machine learns on what you 

already did by hard coding. That's exactly it here. 

The main features of using this methodology comes from 

a motive where it is usually used for all kinds of image 

editing and it can be done very well. What you see in the 

results are the characterization model, but it's part of the 

pipeline, and we're developing the same approach. 

3. UML DIAGRAMS 

UML Diagram is a diagram based on UML (Unified 

Modeling Language), about the system to better understand, 

change, organize or provide document information, with the 

purpose of representing the system visually with its major 

actors, characters, actions, artifacts or classes. 

In this case, different aspects and features of the system 

are used to communicate. However, this is only a high-level 

view of the system and does not contain all the details 

necessary to run the project. 

 

A. Activity Diagram 

Activity diagrams are very important UML diagrams for 

business model processing. In software development, it is 

commonly used to describe the flow of different activities. 

These have workflow that are vertical and horizontal. 

They describe the relationship between the workflow and 

various activities. 

         
         Fig. 3.1 Activity Diagram 
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B. Use Case Diagram 

The use case diagram is a dynamic or behavior diagram in 

UML. Use Case Diagrams model the functionality of the 

system using actors and use cases. Use cases are a set of 

actions, services and functions that the system needs to 

perform. In our case, this “system” is a website developed 

or maintained. “Actors” are individuals or organizations that 

operate under defined roles in the system. 

 

 

       Fig. 3.2 Use Case Diagram 

 

C. Architecture Diagram - Training 

• Training the Generator 

The generator is provided with some noise as input and 

the output is obtained relative to the current weight of 

the neuron. In our case, the grayscale image input from 

the dataset and the generator tries to colour the grayscale 

image. Beforehand, we train the Generator in the 

traditional way with feature loss. Next, create images 

from it and train discriminator to identify those 

derivatives, real colour images as the basic binary 

classification. At the end, train the critic and the 

generator, both together in the Generative Adversial 

Network setting. And for the next part: all the useful 

GAN training time here only happens in a very short 

burst. There is a point where the critic has trained the 

generator to an extent it can learn no more. Skip to this 

phase, the quality of the image colouring scheme will 

change to the best colour accuracy we can get in this 

point, or the way it's bad. After this infliction point, 

there is no point in training the generator as it will have 

little to no improvement. 

 

• Training the Discriminator 

Discrimination is a type of classifier. It is given two 

inputs, the output of the generator and its corresponding 

pattern image (colour) from the dataset. Discrimination 

classifies input as a fake or real image. It is trained using 

the K-nearest neighbour algorithm until the discriminant 

images are correctly classified. The difficult part is to find 

this inflation point. So far, we’ve been saving the entire 

group of checkpoints (repeating every 0.1% of the data) 

and searching for a point in the execution where the 

images are like the original coloured images before going 

completely bonkers with the Orange Skin (this always 

happens first). In addition, the generator rendering begins 

to become unstable and more unstable at this phase, and 

this is not particularly good for video. Unfortunately, 

nothing definite has happened for us yet. For one, this is 

happening in the midst of a decrease in training loss — 

not when it is flattened, but rather on the surface. 

 

 
       Fig. 3.3 Training Architecture 

 

D. Architecture Diagram - Execution 

• Colorize Image 

The trained generator is given any image and it 

produces the coloured image. 

• Colorize Video 

The video is split into frames. Each frame is then 

processed individually through the generator and the 

output frames are combined to form a video. 

 

 
 

        Fig. 3.4 Execution Architecture 

 

E. Modules 

There are four modules implemented in this project. First 

one is the Dataset Collection where all the training images 

are collected and stored in the required format. The 

second module is the Training the Generator where the 

generator is trained with Back Propagation and the 

Generator Loss function. The third module is training the 

discriminator. The discriminator is trained as a classifier 

which classifies the image from the Generator as a fake or 

real image. The fourth and final module is the colorization 

module where the images are colorized by the Generator.  
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       Fig. 3.5 Modules 

4. USE CASE 

In this section we present our proposal implementation 

and utilization. We use Python language with Pytorch and 

FastAi library for NN classification implementation and 

generator and discriminant implementation. We made all 

the codes available. Obviously, this system can be used on 

any given image of any class. This is because the model is 

trained irrespective of the image specified. Fig. 3.6. Color 

estimation work-flow. We used the images from ImageNet 

as the source of our dataset. 

 

A.  Dataset 

The dataset mainly consists of images from the ImageNet 

database. The dataset consists of two parts, the original 

color images and their respective grayscale counter parts. 

The original imagers are encoded in jpeg format and are 

of the resolution 256 x 256. The dataset contains images 

from different sources like fields, desert, landscapes, 

mountain ranges, hill, etc. The images were randomly 

sampled into pixels for training purposes. During the 

training phase 2500 – 3000 pixels from each individual 

images were processed to form different patches. 

 

B.  Render Factor 

Rendering at high resolution (high Render_Factor) will 

optimize the process of choosing the colors when coloring 

the image. This happens because there is too much reliable 

image pixels and data to access and work with the model 

and the “right” decision is more likely to be consistent. 

Closely related is the application of resnet11 instead of 

resnet343 as the background of the generator - objects are 

more stable and accurate. 

        
  R_F: 0           R_F: 20 

 

        
 R_F: 40           R_F: 60 

 

            
R_F: 80             R_F: 100 

    Fig. 3.6 Render Factors 

The Render Factor (R_F) determines the colorizing factor 

of the Generator. The greater the R_F the accurate the 

coloring becomes. It is implied in the above given example. 

C.  Results 

The results show that the generator and discriminator are 

learning some features and patterns on how to color based 

on the subtle hints in grayscale images. And the result paves 

the way to good decisive and optimum results and this 

means that you have no model tracked colorizing decisions 

because they are not arbitrary. 

 

   
     B/W1             Color1 

 

   
   B/W2            Color2 

        Fig. 3.7 Results 
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5. CONCLUSION AND FUTURE WORK 

In this project we implemented a methodology based on 

Generative Adversial Networks to colorize grayscale 

images. The overall process involves the necessary steps to 

train each of the neural network in the GAN network, which 

represents the generator and the discriminator respectively. 

This project is inspired from two other existing systems: 

GAN networks to achieve color accuracy and high accuracy 

using vector quantization. We have completed this project 

and have tested it across multiple sources of images. In the 

perspective of the end-user, we are getting good results, the 

rendered images are of higher quality and the error rate is 

almost closer to null. Our model achieves a color accuracy 

of 90%. Since prediction is highly dependent on a set of 

training images, images similar to a training set may 

produce better results than different ones. 

So this is the essence of the project - we are proposing to 

make old images and movies look better with Generative 

Adversial Networks, and most importantly, the project is 

useful. We are try to make it as user-friendly as possible. 

We document the code correctly. And we are considering 

the possibility of porting this project to a mobile platform. 

We are in the direction of offer mobile support. 
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