
III. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

IV. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 1

Grayscale Image and Video Colorization using

Generative Adversial Networks

C. Balamurugan1, R. Chandra Hassan2, D.S. Jaya Surya3, J. Jerome Marshall4

1Assistant Professor, Adhiyamaan College of Engineering
2Student, Adhiyamaan College of Engineering
3Student, Adhiyamaan College of Engineering
4Student, Adhiyamaan College of Engineering

---***---

Abstract - In this project, we will demonstrate an

approach that uses deep learning techniques to color

grayscale images and videos. Using GAN (Generative

Advertising Network), a neural network architecture

designed for image processing, we are able to differentiate

the content and style of different images and combine them

into one image. And it can be very effective. Another

important thing about Nogan training is that you can pre-

empt the Discriminator on the pictures you produce after the

first Generative Adversial training, after which the same

training repeated in same manner. Thus, we got to a point it

produced colorful results with the same model. But it comes

with a bigger cost right now - the output sample from the

Generator has become unstable and we need to experiment

with the render factor to get optimum results. But the

current outputs are still better and then what we could

achieve with previous model. We did about five of these

repetitive cycles before we got the diminishing returns. The

final classification-based model we build produces colorful

images and videos that are similar to reality. This project

really helps in improving computer vision.

1. INTRODUCTION1

Supervised learning is central to much of the research in

deep learning. But, the need to create models that can learn

from less data is growing rapidly. To put this in an

understanding manner, Semi-Supervised learning uses the

combination of both labeled data and unlabeled data which

is then used to train the model. This type of training makes

use of both the data (labeled and unlabeled) from a similar

domain. The aim is to combine these data sources to train

deep convolutional neural networks (DCNN) to determine

the performance and we present the GAN model to color

images and videos with a labeled training set. In fact, the

model uses approximately 1.3% of the original ImageNet

training labels, i.e., 1000 (thousand) labeled examples. We

use some of the methods described in the Improved

Techniques Paper for GANs trained from OpenCV. We use

Nogan. We propose a new but a similar type of Generative

Adversial training to address some of the key issues in the

already existing system. This provides the advantages of the

Generative Adversial training method. As a result, a less

amount of time is spent on GAN training. Instead, the

generator and the critic is trained more often with more

faster and reliable methods. An important point to note here

is that the “training” methods usually get the results we were

expecting for and they can use GANs to render images

closer to reality. During the shortest period of Generative

Adversial training, the Generator does not receive the full

range of real-time characterization capabilities that would

normally take days to re-sized GAN training, and virtually

no error and other mis colorization which were caused in

the previous iteration.

2. METHODOLOGY

The methodology we proposed is inspired in [1] and [2].

As mentioned earlier, the goal is to color the black and

white images. To achieve this, our main proposition is to

use a generative advertising network consisting of two

neural networks, the generator and the discriminator. The

general training workflow can be seen in Figure 2.1. In the

following subsections we describe each step-in detail on

how each model is responsible for colorizing the image and

video in each aspect and the principle behind them.

Fig. 2.1 GAN Architecture

A. Generator

The Generator part of the Generative Adversial Network

get to learn from the critic to create duplicate images by

using the loss function of the Discriminator. The

http://www.ijsrem.com/
http://www.ijsrem.com/

I. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

II. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

Discriminator learns to truly classify the samples it receives

from the original dataset and from the generator.

Generator training requires more rigorous integration

than discrimination training between generator and

discriminator. Theb Generator learns from:

• Random input

• Generator network, which converts image noise into an

image representation

• A Discriminator and critic, which classifies the sample

images from the dataset and generator

• Generator gradient descent, penalizes the Generator for

not passing the Discriminator classification.

 Fig. 2.2 Generator

B. Discriminator

Discrimination in GAN is used as a classifier. It tries to

separate the real data from the data generated by the

generator. It can use any network structure that matches the

data type it classifies. Discrimination training data comes

from two sources:

• Real data is the representation of real-world

entities. Discrimination uses these cases as the

true part of the training process.

• Generator generates duplicate data.

Discrimination uses these cases as the false part

of the training process.

 Fig. 2.3 Discriminator

C. Back Propagation

This is the summary of Back Propagation Neural Net

Training. It is a method of fine-tuning the weights of a

neural net based on the error rate (i.e. loss) obtained in the

previous era (i.e. repetition). Proper tuning of weights

ensures lower error rates, making the model more reliable

by increasing its generalizability.

 Fig. 2.4 Back Propagation

Working of Back-Propagation. We perform a delta

calculation step at each unit, re-propagate the loss, and

determine what damage each node causes.

D. K-Nearest Neighbor

The KNN algorithm groups the nodes that are close to

similar things. In other words, things like this are close to

one another.

 Fig. 2.5 KNN

Note in the picture above, that the same data points are

close to each other. The KNN algorithm adheres to this

assumption to be true enough for the algorithm to be useful.

KNN incorporates the concept of similarity (sometimes

called distance or proximity) into a specific statistic

calculating the distance between points on a graph.

E. Dataset Construction

Beginning with preprocessed images and the codebook,

the next step is to build a data set for training. Image pre-

processing and color reduction work-flow. The simplest

dataset consists of one attribute, the L value of the pixel and

the target for each attribute, and the U and V values for that

pixel. In this work we want to consider the pixels near the

pixels we want to represent. This is because, in general, the

images have some degree of similarity in color, and the

information of the surrounding pixels helps to estimate the

color of the target pixel. Additionally, adjacent pixels have

III. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

IV. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 3

a structure that helps to classify pixels. Therefore, for each

pixel we consider the neighborhood of the pixels, from

which we call the patch. These patches are odd shaped

squares where the pixels are in the middle of tingling. Then,

our dataset has many features depending on the number of

pixels of a patch. After getting the patch, we need to get to

the target for the properties of that line. As mentioned

earlier, in our case the target is the U, V portion of the

central pixel of the patch, but with a decrease in the

potential values. The U and V component of the central

patch is given as input to the trained SOM and an indicator

representing the cluster of the U, V component is obtained.

This indicator is used as a target in our dataset.

F. Neural Networks

We propose to use the General Advisory Network (GAN)

neural network. The purpose is to classify each patch in the

KNN cluster under the central patch. Therefore, the neural

network is classified in a way that the weights are adjusted

whenever there is a change in the pretrained weights of each

individual neurons in both the generator and the

discriminator networks. Fig. 2.6. Neural network model.

NNs are trained in the batch process using a dataset already

built with the back-propagation algorithm

 Fig. 2.6 Neural Network

G. Generator Loss

The NoGAN learning phase involves losses of two parts:

one is a basic perceptual loss (or feature loss) based on the

VGG16 - which makes the generator model to bias and

reflect the given grayscale image. And the second one

comes from the score of the critic. Interesting Perceptual

Loss is not enough to give good results. It promotes brown,

green, blue, and other cheating testing, basically, what

neural networks really do. The important point to note here

is that Generative Adversial Networks are essentially

learning loss for you - a big step closer to the ideal we are

shooting at machine learning. In fact, you usually get

optimum results when the machine learns on what you

already did by hard coding. That's exactly it here.

The main features of using this methodology comes from

a motive where it is usually used for all kinds of image

editing and it can be done very well. What you see in the

results are the characterization model, but it's part of the

pipeline, and we're developing the same approach.

3. UML DIAGRAMS

UML Diagram is a diagram based on UML (Unified

Modeling Language), about the system to better understand,

change, organize or provide document information, with the

purpose of representing the system visually with its major

actors, characters, actions, artifacts or classes.

In this case, different aspects and features of the system

are used to communicate. However, this is only a high-level

view of the system and does not contain all the details

necessary to run the project.

A. Activity Diagram

Activity diagrams are very important UML diagrams for

business model processing. In software development, it is

commonly used to describe the flow of different activities.

These have workflow that are vertical and horizontal.

They describe the relationship between the workflow and

various activities.

 Fig. 3.1 Activity Diagram

http://www.ijsrem.com/

I. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

II. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

B. Use Case Diagram

The use case diagram is a dynamic or behavior diagram in

UML. Use Case Diagrams model the functionality of the

system using actors and use cases. Use cases are a set of

actions, services and functions that the system needs to

perform. In our case, this “system” is a website developed

or maintained. “Actors” are individuals or organizations that

operate under defined roles in the system.

 Fig. 3.2 Use Case Diagram

C. Architecture Diagram - Training

• Training the Generator

The generator is provided with some noise as input and

the output is obtained relative to the current weight of

the neuron. In our case, the grayscale image input from

the dataset and the generator tries to colour the grayscale

image. Beforehand, we train the Generator in the

traditional way with feature loss. Next, create images

from it and train discriminator to identify those

derivatives, real colour images as the basic binary

classification. At the end, train the critic and the

generator, both together in the Generative Adversial

Network setting. And for the next part: all the useful

GAN training time here only happens in a very short

burst. There is a point where the critic has trained the

generator to an extent it can learn no more. Skip to this

phase, the quality of the image colouring scheme will

change to the best colour accuracy we can get in this

point, or the way it's bad. After this infliction point,

there is no point in training the generator as it will have

little to no improvement.

• Training the Discriminator

Discrimination is a type of classifier. It is given two

inputs, the output of the generator and its corresponding

pattern image (colour) from the dataset. Discrimination

classifies input as a fake or real image. It is trained using

the K-nearest neighbour algorithm until the discriminant

images are correctly classified. The difficult part is to find

this inflation point. So far, we’ve been saving the entire

group of checkpoints (repeating every 0.1% of the data)

and searching for a point in the execution where the

images are like the original coloured images before going

completely bonkers with the Orange Skin (this always

happens first). In addition, the generator rendering begins

to become unstable and more unstable at this phase, and

this is not particularly good for video. Unfortunately,

nothing definite has happened for us yet. For one, this is

happening in the midst of a decrease in training loss —

not when it is flattened, but rather on the surface.

 Fig. 3.3 Training Architecture

D. Architecture Diagram - Execution

• Colorize Image

The trained generator is given any image and it

produces the coloured image.

• Colorize Video

The video is split into frames. Each frame is then

processed individually through the generator and the

output frames are combined to form a video.

 Fig. 3.4 Execution Architecture

E. Modules

There are four modules implemented in this project. First

one is the Dataset Collection where all the training images

are collected and stored in the required format. The

second module is the Training the Generator where the

generator is trained with Back Propagation and the

Generator Loss function. The third module is training the

discriminator. The discriminator is trained as a classifier

which classifies the image from the Generator as a fake or

real image. The fourth and final module is the colorization

module where the images are colorized by the Generator.

III. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

IV. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 5

 Fig. 3.5 Modules

4. USE CASE

In this section we present our proposal implementation

and utilization. We use Python language with Pytorch and

FastAi library for NN classification implementation and

generator and discriminant implementation. We made all

the codes available. Obviously, this system can be used on

any given image of any class. This is because the model is

trained irrespective of the image specified. Fig. 3.6. Color

estimation work-flow. We used the images from ImageNet

as the source of our dataset.

A. Dataset

The dataset mainly consists of images from the ImageNet

database. The dataset consists of two parts, the original

color images and their respective grayscale counter parts.

The original imagers are encoded in jpeg format and are

of the resolution 256 x 256. The dataset contains images

from different sources like fields, desert, landscapes,

mountain ranges, hill, etc. The images were randomly

sampled into pixels for training purposes. During the

training phase 2500 – 3000 pixels from each individual

images were processed to form different patches.

B. Render Factor

Rendering at high resolution (high Render_Factor) will

optimize the process of choosing the colors when coloring

the image. This happens because there is too much reliable

image pixels and data to access and work with the model

and the “right” decision is more likely to be consistent.

Closely related is the application of resnet11 instead of

resnet343 as the background of the generator - objects are

more stable and accurate.

 R_F: 0 R_F: 20

 R_F: 40 R_F: 60

R_F: 80 R_F: 100

 Fig. 3.6 Render Factors

The Render Factor (R_F) determines the colorizing factor

of the Generator. The greater the R_F the accurate the

coloring becomes. It is implied in the above given example.

C. Results

The results show that the generator and discriminator are

learning some features and patterns on how to color based

on the subtle hints in grayscale images. And the result paves

the way to good decisive and optimum results and this

means that you have no model tracked colorizing decisions

because they are not arbitrary.

 B/W1 Color1

 B/W2 Color2

 Fig. 3.7 Results

http://www.ijsrem.com/

I. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

II. VOLUME: 04 ISSUE: 02 | FEB -2020 ISSN: 2582-3930

5. CONCLUSION AND FUTURE WORK

In this project we implemented a methodology based on

Generative Adversial Networks to colorize grayscale

images. The overall process involves the necessary steps to

train each of the neural network in the GAN network, which

represents the generator and the discriminator respectively.

This project is inspired from two other existing systems:

GAN networks to achieve color accuracy and high accuracy

using vector quantization. We have completed this project

and have tested it across multiple sources of images. In the

perspective of the end-user, we are getting good results, the

rendered images are of higher quality and the error rate is

almost closer to null. Our model achieves a color accuracy

of 90%. Since prediction is highly dependent on a set of

training images, images similar to a training set may

produce better results than different ones.

So this is the essence of the project - we are proposing to

make old images and movies look better with Generative

Adversial Networks, and most importantly, the project is

useful. We are try to make it as user-friendly as possible.

We document the code correctly. And we are considering

the possibility of porting this project to a mobile platform.

We are in the direction of offer mobile support.

REFERENCES

[1] Image Colorization with Neural Networks: - Mat´ıas Richart, Student

member, IEEE & Jorge Visca, Senior member, IEEE.

https://ieeexplore.ieee.org/document/8278079

[2] Image Restoration for Halftone Pattern Printed Pictures - - Adrian

Ciobanu, Tudor Barbu, Mihaela Luca.

https://ieeexplore.ieee.org/document/7823203
[3] J. Ironi, R. Cohen-Or, and D.S Lischinski, “Colorization by

example.” vol. 15, no. 5, pp. 1120–1129, 2006. in Rendering

Techniques, 2005, pp. 201–210. [5]
[4] L. Yatziv and G. Sapiro, “Fast image and video colorization using

chrominance blending,” IEEE Transactions on Image Processing,
[5] R. Cheng, P. Yang, and C. Sheng, “Deep colorization,” , pp. 415–

423. in Proceedings of the IEEE International Conference in

Computer Vision, 2017
[6] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning

representations for automatic colorization,” arXiv preprint

arXiv:1603.06668, 2016.
[7] J. Zhang, J. Isola, and A. A. Efrose, “Colorful image colorization,”

arZiv preprint arXiv:1603.06541, 2015.
[8] J. Hwange and Z. Zhou, “Image colorization with deep convolutional

neural networks,” Stanfort University, Tech. Rep., 2018. [Online].

Available: http://cs231n.stanford.edu/reprts2018/219 Report.
[9] J. Yoo and S.-Y. Oh, “A coloring method of gray-level image using

neural network,” vol. 2, 1997, pp. 1203–1206. in Proceedings of the

1998 International Conference on Neural Information Processing

