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Abstract— Handwritten text recognition is one of the most 

challenging and active research areas in the field of image 

processing and pattern recognition. It has numerous 

applications including processing bank and conversion of any 

hand written document into digitized text. This paper makes 

the use of an Artificial Neural Network with feature extraction 

to recognize patterns in a handwriting using the IAM data set 

containing articles from numerous different writers. 

 

I. INTRODUCTION 

Handwritten Text Recognition System is a software that 

converts the text present in a scanned image into digitized 

text. There are two types of handwritten text recognition 

(HTR) systems Online and Offline. The online system works 

while the text is being written, whereas the offline system 

works on already written text which is more challenging than 

the online HTR system. Challenges in the HTR include the 

cursive nature of the writing, variety of each character in size 

and shape and large vocabularies. 

A. Scope of Discussion 

This paper focuses on the Offline HTR system and the 

classifier, it's parameters, feature extraction methods. The 

classifier is build on Artificial Neural Networks(ANN) 

which is a combination of Neural Network (CNN) and a 

Recurrent Neural Network (RNN). 

B. Methodology 

The system makes use of Artificial Neural Networks (ANN). 

The ANN is a combination of multiple layers of CNN 

trained to extract relevant features from the images, which 

output a 2D feature matrix which is fed to the following 

RNN. The RNN uses the Long-Short-Term implementation 

to propagate the information through the sequence. Then the 

output of the RNN is mapped into a matrix which contains a 

score for each character per sequence element. The following 

CTC ( Temporal Classification) operation decode the score 

matrix and gives the final output. 

 

 

II. OBJECTIVES 

 

The main objectives of this system are: 

 

1. Recognize text present in various documents which 

include characters, words, and digits. 

2. Help banks to be able to recognize the text present in 

documents such as cheques. 

3. To be able to recognize different cursive styles of 

handwriting. 

4. To help in the industries of healthcare and pharmaceutical 

in the digitization of patient prescriptions. 

5. Be able to recognize the text present in old documents in 

bad conditions. 

III. MODEL ARCHITECTURE 

A. Data set 

The model is trained using the IAM data set which is a 

collection of handwritten passages from several writers. This 

data set contains images of each handwritten sentence with a 

dash separated file format. 
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B. Preprocessing 

Includes to ensure that the text is set upright and 

modifications to ensure uniform size of the texts mainly to 

the size 128 x 32. 

C. Classification 

We use an Artificial Neural Network. A 7 layered CNN 

helps in feature extraction, then a 2 layered RNN of Long-

Short-Term-Memory type is integrated to propagate 

information through the feature sequence and output a 

probability matrix. 

D. Postprocessing 

CTC layer decodes the probability matrix from the RNN and 

scores to the corresponding letters and the CTC loss function 

is used to calculate the accuracy of the model.  

 

Fig 1. Architectural Design of the system. 

IV. ARTIFICIAL NEURAL NETWORKS 

 

This section introduces with a focus on topics necessary to 

understand the working and application of the HTR.  

A. Definition 

ANN’s basic structure is composed of neurons. These 

neurons are loosely based on the biological neurons that 

propagate signals in the nervous system in out body. 

 

B. Perceptron 

A perceptron is a term used for supervised learning of binary 

classifiers. They decide whether an input, usually 

represented by a series of vectors, belongs to a specific class. 

In short, a is a single-layer neural network as shown in 

Figure 2. 

 

Figure 2. A Perceptron 

C. Multi-Layer Perceptron 

An idea to improve perceptrons was to combine multiple 

neurons into a neural network as shown in Figure 3. 

 

Figure 3. A Neural Network 

 

D. Activation Function 

Each input into a neuron is assigned a weight w which is 

assigned on the basis of it’s relevant importance to other 

inputs. The node applies the below defined function f to it’s 
weighted sum of inputs as shown in Figure 4. This is called 

as Activation Function of the proceeding neuron. Every 

activation function takes a single number and performs a 

certain fixed mathematical operation on it. I have used a 

ReLU (Rectified Linear Unit) activation function in this 

paper. 
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Figure 4. Activation Function 

E. ReLU Function 

ReLU stands for Rectified Linear Unit. It takes a real-valued 

input and thresholds it at zero (replaces negative values with 

zero). The following are the different types of activation 

functions in Figure 5. 

 

F. Layers 

1. Input layer - The Input layer has four nodes (refer to figure 

3). The Bias node has a value of 1. The other three 

nodes take X1, X2, and X3 as external inputs (which are 

numerical values depending upon the input dataset). As 

discussed above, no computation is performed in the Input 

layer, so the outputs from nodes in the Input layer are 1, X1, 

X2, and X3 respectively, which are fed into the Hidden 

Layer. 

 

2. Hidden Layer - The Hidden layer has five nodes with the 

Bias node having an output of 1. The output of the other four 

nodes in the Hidden layer depends on the outputs from the 

Input layer (1, X1, X2, X3) as well as the weights associated 

with the connections (edges).Similarly, the output from other 

hidden node can be calculated. Remember that f refers to the 

activation function. These outputs are then fed to the nodes 

in the Output layer. 

 

 

V. CONVOLUTIONAL NEURAL NETWORKS 

 

The traditional image classification is to extract features 

from the image which then serve as an input to the classifier. 

Convolution is an operation on two functions and as such 

outputs a third function. 

 

Every layer of the CNN consists of three operations. First, 

the convolution operation. A filter kernel of size 5×5 is 

applied in the first three layers and a filter kernel of size 3×3 

in the last four layers to the input. Then, the ReLU function 

is applied. Finally, a pooling layer is used to summarize the 

image regions which outputs a downsized version of the 

input. The image height is downsized by 2 in each layer, and 

to ensure the output feature map has a size of 32 x 256, 

feature maps (channels) are added 

 

A. CNN Input. 

The input is a gray-scale image of size 128×32. Mostly, the 

images from the IAM dataset do not have exactly this size, 

therefore we resize it (without distortion) until it either has a 

width of 128 or a height of 32. We copy the image into a 

(white) target image of size 128×32. This process is shown 

in Fig. 6. To wrap things up we normalize the grayvalues of 

the image which simplifies the task for the NN. Data 

augmentation can easily be integrated by copying the image 

to random positions instead of aligning it to the left or by 

randomly resizing the image. 

 

 

 

 

Figure 6.Left: A sample from the data set. Right: The resized version. 
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B. CNN Output 

 

The output of the CNN layers is a sequence of length 32 as 

shown in the Figure 7. Each and every entry contains 256 

features. All of the features are further processed by the 

RNN but still some features already show a high correlation 

with certain highlevel properties of the input image: there are 

features which have a high correlation with characters such 

as e, or with duplicate characters tt, or with character-

properties such as loops (as contained in handwrittenl and e). 

 

 

 

Fig. 7: Top: 256 feature per time-step are computed by the CNN layers. 

Middle: input image. Bottom: plot of the 32nd feature, which has a high 

correlation with the occurrence of the character “e” in the image. 

 

VI. RECURRENT NEURAL NETWORK 

As compared to vanilla Neural Networks, RNNs are 

designed to take a series of inputs with no limit on it’s size. 

RNNs are mostly used for text summarization therefore have 

been used in this model. 

 

A. RNN Input 

 

The RNN receives the input from the CNN and the feature 

sequence contains 256 features per time-step, the RNN 

propagates relevant information through this sequence using 

the LSTM (Long Short-Term Memory) implementation, 

because it is able to propagate information through long 

distances and provide more precise trainingcharacteristics 

than the normal RNN. The RNN’s outputis mapped to a 

probability matrix of size 32×80. There are 79 different 

characters in the IAM dataset, further one additional 

character is needed for the CTC operation (CTC blank label), 

this is why there are 80 entries for each of the 32 time-steps. 

 

B. RNN Output 

 

A visualization of the RNN output matrix is show in Figure 8. 

for an image containing the text “little”. The matrix 

contained in the top graph shows the scores for the characters 

including the CTC blank label as its last (80th) entry. 

 

The rest matrixentries, from top to bottom, correspond to the 

following characters: “ !”#&’()*+,-

./0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZa

bcdefghijklmnopqrstuvwxyz”. 

 

 

It is noticed that most of the time, the characters appear 

exactly at the position they are predicted to be appearing. 

Only the last character e is not aligned. But this is fine, as the 

next CTC operation is segmentation-free and doesn’t care 

about absolute positions. The text in the bottom-most graph 

showing the scores for the characters l, i, t, e and the CTC 

blank labelcan be decoded easily: so we just take the most 

probable character from each time-step, this forms the so 

called best path, then we throw away repeated characters and 

finally all blanks: l---ii--t-t--l-…-e → l---i--t-t--l-…-e → little. 
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Fig. 8: Top: output matrix of the RNN layers. Middle: input image. Bottom: 

Probabilities for the characters l, i, t, e  and the CTC blank label. 

 

VII. CONNECTIONIST TEMPORAL CLASSIFICATION  

 

CTC (Connectionist temporal classification) is a type of 

scoring function for neural networks, most commonly used  

for training RNNs such as the Long-Short-Term-Memory 

implementation used here. They also tackle problems where 

the timing is variable. 

 

A. CTC Input 

 

The RNN outputs a sequence of length T with C + 1 number 

of character probabilities per element in the sequence, where 

C is the number of characters. The RNN also adds an 

additional character called blank which is used for character 

loss calculation per epoch. The CTC receives the RNN 

output matrix as the input in the neural network and ground 

truth text which is used to compute the loss value and 

therefore the accuracy.  While deducing, the CTC is only 

given the probability matrix for the characters present in the 

image and it decodes it into the final text. Both 

therecognized text and the ground truth text can be at most 

32 characters long. 

 

B. Limitations of CTC 

The vanilla CTC simply outputs the characters it sees int the 

image without regard for errors due to similar looking 

characters such as a and o . The figure 9. shows one such 

example of the problem where the NN recognizes a as oi . 

Therefore to tackle such situations there are different 

decoding algorithms such as Best path decoding which only 

uses the output of the NN as it is and just computes the most 

likely character in the sequence, Beam search with 

character-LM which additionally scores character sequences 

for improving the results even further, Token Passingwhich 

uses a dictionary and word-LM. The most probable sequence 

of dictionary words is searched for in the NN output, but 

arbitrary character sequences cannot be handled(numbers, 

punctuation marks) like “: 1234.”.None of the above 

mentioned algorithms get the work done correctly but we 

observe the good properties of Beam Search and Token 

Passing, when we see a word we only allow words from a 

dictionary. Therefore I have combined the algorithms to 

propose a Word Beam Search algorithm.  

 

Figure 9. The output of a vanilla CTC mistaking a as oi.  

C. Word Beam Search 

We will use the Beam Search as a starting point. This 

algorithm will iterate through the ANN output and create text 

candidates (called beams) which are scored. In figure 10.an 

illustration of the evolution of beams is shown: we start with 

the empty beam, add all possible characters (we only have ‘a’ 

and ‘b’ in this example) to it in the first iteration and we only 

keep the best scoring characters. The beam width controls the 

number of surviving beams. The algorithm is repeated until the 

complete NN output is processed. 

 

Fig10. Beams are created iteratively, equal beams merged and 2 beams kept. 
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For the algorithm to behave differently when it recognizes a 

word and when it recognizes a number or punctuation marks, 

we add a state variable to each beam. A beam is either in 

wordstate or in nonwordstate. If the beamtext currently is 

“Hel”, then we are in wordstate and only allow adding 

wordcharacters until we have a complete word like “Hell” or 

“Hello”. Going from wordstate to nonwordstate is allowed 

when a word is completed: then we can add a 

nonwordcharacter to it, like if we have “Hello” and add “ “ to 

it we get “Hello “. In word state we only allow adding 

characters that will eventually form words. A prefix tree is 

shown in Figure 11. 

 

 

Figure 11. A prefix tree containing the words a, to, too, this, and that. 

D. Word Beam Search Comparison 

In our algorithm we keep only the best-scoring beams per 

iteration. The final score depends on the ANN output. 

Therefore, now we have an algorithm which is able to 

recognize the correct text from Figure 9. - “A random number: 

1234”. The Figure 12. shows the different results obtained 

from the different CTC algorithms.  

 

Figure 12. Given as CER(Character Error Rate) /WER(Word Error Rate), 

VBS - Vanilla Beam Search, WBS W - Word Beam Search without LM, WBS 

N - Word Beam Search with LM. 

 

VIII. CONCLUSIONS 

 

The proposed model performs with an accuracy of ~84 - 

85% by using the Word Beam Search algorithm as compared 

to ~74% using the vanilla CTC decoder. The decoder output is 

shown in the Figure 13.  

 

Figure 13. The Best Path and VBS give predictions whereas WBS doesn’t. 

 

The accuracy is as shown below in the Figure 14.  

 

 

Figure 14. The Word Beam Search providing word accuracy of ~85%. 
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IX. FUTURE WORKS 

 

For making the tasks easier for the classifier further 

preprocessing methods such as deslanting for cursive writing, 

which results in text lying in approximately horizontal 

direction will be tested. Further experiments will also be 

conducted to identify intermediate outputs which can be 

ignored or downsampled without affecting the accuracy. 
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