
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 1

Handwritten Text Recognition System

Tushar Srivastava

Department of Computer Science and Engineering, SRM Institute of Science and Technology

Modinagar, Uttar Pradesh, India - 201204

Abstract— Handwritten text recognition is one of the most

challenging and active research areas in the field of image

processing and pattern recognition. It has numerous

applications including processing bank and conversion of any

hand written document into digitized text. This paper makes

the use of an Artificial Neural Network with feature extraction

to recognize patterns in a handwriting using the IAM data set

containing articles from numerous different writers.

I. INTRODUCTION

Handwritten Text Recognition System is a software that

converts the text present in a scanned image into digitized

text. There are two types of handwritten text recognition

(HTR) systems Online and Offline. The online system works

while the text is being written, whereas the offline system

works on already written text which is more challenging than

the online HTR system. Challenges in the HTR include the

cursive nature of the writing, variety of each character in size

and shape and large vocabularies.

A. Scope of Discussion

This paper focuses on the Offline HTR system and the

classifier, it's parameters, feature extraction methods. The

classifier is build on Artificial Neural Networks(ANN)

which is a combination of Neural Network (CNN) and a

Recurrent Neural Network (RNN).

B. Methodology

The system makes use of Artificial Neural Networks (ANN).

The ANN is a combination of multiple layers of CNN

trained to extract relevant features from the images, which

output a 2D feature matrix which is fed to the following

RNN. The RNN uses the Long-Short-Term implementation

to propagate the information through the sequence. Then the

output of the RNN is mapped into a matrix which contains a

score for each character per sequence element. The following

CTC (Temporal Classification) operation decode the score

matrix and gives the final output.

II. OBJECTIVES

The main objectives of this system are:

1. Recognize text present in various documents which

include characters, words, and digits.

2. Help banks to be able to recognize the text present in

documents such as cheques.

3. To be able to recognize different cursive styles of

handwriting.

4. To help in the industries of healthcare and pharmaceutical

in the digitization of patient prescriptions.

5. Be able to recognize the text present in old documents in

bad conditions.

III. MODEL ARCHITECTURE

A. Data set

The model is trained using the IAM data set which is a

collection of handwritten passages from several writers. This

data set contains images of each handwritten sentence with a

dash separated file format.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 2

B. Preprocessing

Includes to ensure that the text is set upright and

modifications to ensure uniform size of the texts mainly to

the size 128 x 32.

C. Classification

We use an Artificial Neural Network. A 7 layered CNN

helps in feature extraction, then a 2 layered RNN of Long-

Short-Term-Memory type is integrated to propagate

information through the feature sequence and output a

probability matrix.

D. Postprocessing

CTC layer decodes the probability matrix from the RNN and

scores to the corresponding letters and the CTC loss function

is used to calculate the accuracy of the model.

Fig 1. Architectural Design of the system.

IV. ARTIFICIAL NEURAL NETWORKS

This section introduces with a focus on topics necessary to

understand the working and application of the HTR.

A. Definition

ANN’s basic structure is composed of neurons. These

neurons are loosely based on the biological neurons that

propagate signals in the nervous system in out body.

B. Perceptron

A perceptron is a term used for supervised learning of binary

classifiers. They decide whether an input, usually

represented by a series of vectors, belongs to a specific class.

In short, a is a single-layer neural network as shown in

Figure 2.

Figure 2. A Perceptron

C. Multi-Layer Perceptron

An idea to improve perceptrons was to combine multiple

neurons into a neural network as shown in Figure 3.

Figure 3. A Neural Network

D. Activation Function

Each input into a neuron is assigned a weight w which is

assigned on the basis of it’s relevant importance to other

inputs. The node applies the below defined function f to it’s
weighted sum of inputs as shown in Figure 4. This is called

as Activation Function of the proceeding neuron. Every

activation function takes a single number and performs a

certain fixed mathematical operation on it. I have used a

ReLU (Rectified Linear Unit) activation function in this

paper.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 3

Figure 4. Activation Function

E. ReLU Function

ReLU stands for Rectified Linear Unit. It takes a real-valued

input and thresholds it at zero (replaces negative values with

zero). The following are the different types of activation

functions in Figure 5.

F. Layers

1. Input layer - The Input layer has four nodes (refer to figure

3). The Bias node has a value of 1. The other three

nodes take X1, X2, and X3 as external inputs (which are

numerical values depending upon the input dataset). As

discussed above, no computation is performed in the Input

layer, so the outputs from nodes in the Input layer are 1, X1,

X2, and X3 respectively, which are fed into the Hidden

Layer.

2. Hidden Layer - The Hidden layer has five nodes with the

Bias node having an output of 1. The output of the other four

nodes in the Hidden layer depends on the outputs from the

Input layer (1, X1, X2, X3) as well as the weights associated

with the connections (edges).Similarly, the output from other

hidden node can be calculated. Remember that f refers to the

activation function. These outputs are then fed to the nodes

in the Output layer.

V. CONVOLUTIONAL NEURAL NETWORKS

The traditional image classification is to extract features

from the image which then serve as an input to the classifier.

Convolution is an operation on two functions and as such

outputs a third function.

Every layer of the CNN consists of three operations. First,

the convolution operation. A filter kernel of size 5×5 is

applied in the first three layers and a filter kernel of size 3×3

in the last four layers to the input. Then, the ReLU function

is applied. Finally, a pooling layer is used to summarize the

image regions which outputs a downsized version of the

input. The image height is downsized by 2 in each layer, and

to ensure the output feature map has a size of 32 x 256,

feature maps (channels) are added

A. CNN Input.

The input is a gray-scale image of size 128×32. Mostly, the

images from the IAM dataset do not have exactly this size,

therefore we resize it (without distortion) until it either has a

width of 128 or a height of 32. We copy the image into a

(white) target image of size 128×32. This process is shown

in Fig. 6. To wrap things up we normalize the grayvalues of

the image which simplifies the task for the NN. Data

augmentation can easily be integrated by copying the image

to random positions instead of aligning it to the left or by

randomly resizing the image.

Figure 6.Left: A sample from the data set. Right: The resized version.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 4

B. CNN Output

The output of the CNN layers is a sequence of length 32 as

shown in the Figure 7. Each and every entry contains 256

features. All of the features are further processed by the

RNN but still some features already show a high correlation

with certain highlevel properties of the input image: there are

features which have a high correlation with characters such

as e, or with duplicate characters tt, or with character-

properties such as loops (as contained in handwrittenl and e).

Fig. 7: Top: 256 feature per time-step are computed by the CNN layers.

Middle: input image. Bottom: plot of the 32nd feature, which has a high

correlation with the occurrence of the character “e” in the image.

VI. RECURRENT NEURAL NETWORK

As compared to vanilla Neural Networks, RNNs are

designed to take a series of inputs with no limit on it’s size.

RNNs are mostly used for text summarization therefore have

been used in this model.

A. RNN Input

The RNN receives the input from the CNN and the feature

sequence contains 256 features per time-step, the RNN

propagates relevant information through this sequence using

the LSTM (Long Short-Term Memory) implementation,

because it is able to propagate information through long

distances and provide more precise trainingcharacteristics

than the normal RNN. The RNN’s outputis mapped to a

probability matrix of size 32×80. There are 79 different

characters in the IAM dataset, further one additional

character is needed for the CTC operation (CTC blank label),

this is why there are 80 entries for each of the 32 time-steps.

B. RNN Output

A visualization of the RNN output matrix is show in Figure 8.

for an image containing the text “little”. The matrix

contained in the top graph shows the scores for the characters

including the CTC blank label as its last (80th) entry.

The rest matrixentries, from top to bottom, correspond to the

following characters: “ !”#&’()*+,-

./0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZa

bcdefghijklmnopqrstuvwxyz”.

It is noticed that most of the time, the characters appear

exactly at the position they are predicted to be appearing.

Only the last character e is not aligned. But this is fine, as the

next CTC operation is segmentation-free and doesn’t care

about absolute positions. The text in the bottom-most graph

showing the scores for the characters l, i, t, e and the CTC

blank labelcan be decoded easily: so we just take the most

probable character from each time-step, this forms the so

called best path, then we throw away repeated characters and

finally all blanks: l---ii--t-t--l-…-e → l---i--t-t--l-…-e → little.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 5

Fig. 8: Top: output matrix of the RNN layers. Middle: input image. Bottom:

Probabilities for the characters l, i, t, e and the CTC blank label.

VII. CONNECTIONIST TEMPORAL CLASSIFICATION

CTC (Connectionist temporal classification) is a type of

scoring function for neural networks, most commonly used

for training RNNs such as the Long-Short-Term-Memory

implementation used here. They also tackle problems where

the timing is variable.

A. CTC Input

The RNN outputs a sequence of length T with C + 1 number

of character probabilities per element in the sequence, where

C is the number of characters. The RNN also adds an

additional character called blank which is used for character

loss calculation per epoch. The CTC receives the RNN

output matrix as the input in the neural network and ground

truth text which is used to compute the loss value and

therefore the accuracy. While deducing, the CTC is only

given the probability matrix for the characters present in the

image and it decodes it into the final text. Both

therecognized text and the ground truth text can be at most

32 characters long.

B. Limitations of CTC

The vanilla CTC simply outputs the characters it sees int the

image without regard for errors due to similar looking

characters such as a and o . The figure 9. shows one such

example of the problem where the NN recognizes a as oi .

Therefore to tackle such situations there are different

decoding algorithms such as Best path decoding which only

uses the output of the NN as it is and just computes the most

likely character in the sequence, Beam search with

character-LM which additionally scores character sequences

for improving the results even further, Token Passingwhich

uses a dictionary and word-LM. The most probable sequence

of dictionary words is searched for in the NN output, but

arbitrary character sequences cannot be handled(numbers,

punctuation marks) like “: 1234.”.None of the above

mentioned algorithms get the work done correctly but we

observe the good properties of Beam Search and Token

Passing, when we see a word we only allow words from a

dictionary. Therefore I have combined the algorithms to

propose a Word Beam Search algorithm.

Figure 9. The output of a vanilla CTC mistaking a as oi.

C. Word Beam Search

We will use the Beam Search as a starting point. This

algorithm will iterate through the ANN output and create text

candidates (called beams) which are scored. In figure 10.an

illustration of the evolution of beams is shown: we start with

the empty beam, add all possible characters (we only have ‘a’

and ‘b’ in this example) to it in the first iteration and we only

keep the best scoring characters. The beam width controls the

number of surviving beams. The algorithm is repeated until the

complete NN output is processed.

Fig10. Beams are created iteratively, equal beams merged and 2 beams kept.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 6

For the algorithm to behave differently when it recognizes a

word and when it recognizes a number or punctuation marks,

we add a state variable to each beam. A beam is either in

wordstate or in nonwordstate. If the beamtext currently is

“Hel”, then we are in wordstate and only allow adding

wordcharacters until we have a complete word like “Hell” or

“Hello”. Going from wordstate to nonwordstate is allowed

when a word is completed: then we can add a

nonwordcharacter to it, like if we have “Hello” and add “ “ to

it we get “Hello “. In word state we only allow adding

characters that will eventually form words. A prefix tree is

shown in Figure 11.

Figure 11. A prefix tree containing the words a, to, too, this, and that.

D. Word Beam Search Comparison

In our algorithm we keep only the best-scoring beams per

iteration. The final score depends on the ANN output.

Therefore, now we have an algorithm which is able to

recognize the correct text from Figure 9. - “A random number:

1234”. The Figure 12. shows the different results obtained

from the different CTC algorithms.

Figure 12. Given as CER(Character Error Rate) /WER(Word Error Rate),

VBS - Vanilla Beam Search, WBS W - Word Beam Search without LM, WBS

N - Word Beam Search with LM.

VIII. CONCLUSIONS

The proposed model performs with an accuracy of ~84 -

85% by using the Word Beam Search algorithm as compared

to ~74% using the vanilla CTC decoder. The decoder output is

shown in the Figure 13.

Figure 13. The Best Path and VBS give predictions whereas WBS doesn’t.

The accuracy is as shown below in the Figure 14.

Figure 14. The Word Beam Search providing word accuracy of ~85%.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 05 | May - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 7

IX. FUTURE WORKS

For making the tasks easier for the classifier further

preprocessing methods such as deslanting for cursive writing,

which results in text lying in approximately horizontal

direction will be tested. Further experiments will also be

conducted to identify intermediate outputs which can be

ignored or downsampled without affecting the accuracy.

REFERENCES

[1] Harald Scheidl, Stefan Fiel, Robert Sablatnig, Word Beam Search: A

Connectionist Temporal Classification Decoding Algorithm, Conference: 2018

16th International Conference on Frontiers in Handwriting Recognition(ICFHR)

[2] Harald Scheidl, Robert Sablatnig, Handwritten Text Recognition in

Historial Documents, 2018 Technical University Vienna.

[3] Dr. Yassine Ghouzam, Introduction to CNN keras, 2017, Paris

Diderot University.

[4] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recognition

with deepbidirectional LSTM,” in Automatic Speech Recognition and

Understanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013, pp. 273–278.

[5] Hasim Sak, Andrew Senior, Francoise Beaufays, Long Short-Term

Memory Recurrent Neural Network Architectures for Large Scale Acoustic

Modeling, Google, USA.

[6] M. Hermans and B. Schrauwen, “Training and analysing deep

recurrent neural networks,” in Advances in Neural Information Processing

Systems, 2013, pp. 190–198.

[7] Sandip A Kale, M. Uday, Research study on applications of artificial

neural networks and e-learning personalization, 2017 International Journal of

Civil Engineering and Technology.

[8] Martin Abadi andPaul Barham, Tensorflow: A system for large-scale

machine learning, 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), USENIX Association (2016), pp. 265-283

[9] U-V Marti and H. Bunke, The IAM-database: an English sentence

database for offline handwriting recognition, International Journal on

Document Analysis and Recognition (39 - 46) 2002.

http://www.ijsrem.com/

