
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

House Price Detection-TensorFlow

Sachit Mendiratta , Guide: Mr ML Sharma
Information Technology

Maharaja Agrasen Institute of Technology, Rohini, Sec 22
New Delhi, India

Abstract

Many students have already discovered the joy of

learning programming using the Python programming

language. Now it's time to take Python to the next level.

This internship introduced Machine Learning with Data

Science, concept to unify statistics, data analysis and

their related methods. It's aimed at Computer Science

students who want to learn techniques and theories

drawn from many fields within the context of

mathematics, statistics, computer science, domain

knowledge and information science Data science is the

field of study that combines domain expertise,

programming skills, and knowledge of mathematics and

statistics to extract meaningful insights from data. Data

science practitioners apply machine learning algorithms

to numbers, text, images, video, audio, and more to

produce Artificial Intelligence systems to perform tasks
that ordinarily require human intelligence. In turn, these

systems generate insights which analysts and business

users can translate into tangible business value. Python is

used throughout, even for settings, files, and data models.

Topics that will be covered during the workshop include:

setup and configuration, template language, and

database integration through object-relational mapping.

Keyword – TensorFlow, Neural Networks, Pandas,

Matplotlib, NumPy

I. INTRODUCTION

House Price Detection is built using NumPy, Pandas, Scikit-
Learn and Matplotlib, belonging to domain of Machine
Learning and Data Science Concepts in order to detect house
prices by training and deploying model given explanatory
variables that cover many aspects of residential houses.

Real estate is known as one of the most important sectors of
the economy. They contribute to balancing the economy of a
country in as much as it boosts the income of people. It plays
a crucial role in the lives of many especially those who own
land. It gives space for the businesses to operate and it gives
of a reputation that the country is doing well.

Provides Job Opportunities: Real estates are forerunners

when it comes to giving jobs to many people. From
construction to utilization, real estate provides job to many.
Such jobs during construction include the engineers,

architects, laborer’s while jobs available after construction
greatly depends on how the real estate will be utilized.

Ecommerce The project can also be included with
government of India in economy and housing sector which
comprises of housing, retail, hospitality and commercial
sector overall to help predict the house prices accurately and
with efficiency

When deployed correctly, the scope of the House Price
Predictor is extended to various Taxation domains like Direct
tax, Indirect tax, Capital tax, Income tax and Sales tax.

II. MODULES AND LIBRARIES

A. Neural Network

A neural network is a series of algorithms that endeavors to
recognize underlying relationships in a set of data through a
process that mimics the way the human brain operates. In this
sense, neural networks refer to systems of neurons, either
organic or artificial in nature. Neural networks can adapt to
changing input; so, the network generates the best possible
result without needing to redesign the output criteria. A
neural network evaluates price data and unearths
opportunities for making trade decisions based on the data
analysis. The networks can distinguish subtle nonlinear
interdependencies and patterns other methods of technical
analysis cannot. According to research, the accuracy of neural
networks in making price predictions for stocks differs. Some
models predict the correct stock prices 50 to 60 percent of the
time while others are accurate in 70 percent of all instances.
Some have posited that a 10 percent improvement in
efficiency is all an investor can ask for from a neural
network.

B. TensorFlow

TensorFlow is a very powerful and open-source library for
implementing and deploying large-scale machine learning
models. This makes it perfect for research and production.
Over the years it has become one of the most popular
libraries for deep learning.
The goal of this post is to build an intuition and
understanding for how deep learning libraries work under the
hood, specifically TensorFlow. To achieve this goal, we will
mimic its API and implement its core building blocks from
scratch. This has the neat little side effect that, by the end of
this post, you will be able to use TensorFlow with
confidence, because you’ll have a deep conceptual

http://www.ijsrem.com/
https://www.investopedia.com/terms/t/technicalanalysis.asp
https://www.investopedia.com/terms/t/technicalanalysis.asp

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

understanding of the inner workings. You will also gain
further understanding of things like variables, tensors,
sessions or operations. TensorFlow is a framework composed
of two core building blocks — a library for defining
computational graphs and a runtime for executing such graphs
on a variety of different hardware. A computational graph has
many advantages but more on that in just a moment. In a
nutshell, a computational graph is an abstract way of
describing computations as a directed graph. A directed graph
is a data structure consisting of nodes (vertices) and edges. It’s
a set of vertices connected pairwise by directed edges.
TensorFlow uses directed graphs internally to
represent computations, and they call this data flow

graphs (or computational graphs). While nodes in a directed
graph can be anything, nodes in a computational graph mostly
represent operations, variables, or placeholders.
Operations create or manipulate data according to specific
rules. In TensorFlow those rules are called Ops, short for
operations. Variables on the other hand represent shared,
persistent state that can be manipulated by running Ops on
those variables. The edges correspond to data, or
multidimensional arrays (so-called Tensors) that flow through
the different operations. In other words, edges carry
information from one node to another. The output of one
operation (one node) becomes the input to another operation
and the edge connecting the two nodes carry the value.

C. Pandas

Pandas has been one of the most popular and favorite data
science tools used in Python programming language for data
wrangling and analysis. Data is unavoidably messy in real
world. And Pandas is seriously a game changer when it
comes to cleaning, transforming, manipulating and analyzing
data. Pandas is mainly used for data analysis. Pandas allows
importing data from various file formats such as comma-
separated values, JSON, SQL, Microsoft Excel. Pandas
allows various data manipulation operations such as
merging, reshaping, selecting, as well as data cleaning,
and data wrangling features.

D. Matplotlib

Matplotlib is a plotting library for the Python programming
language and its numerical mathematics extension NumPy. It
provides an object-oriented API for embedding plots into
applications using general purpose GUI
toolkits like Tkinter, wxPython, Qt, or GTK+. There is also
a procedural "Pylab" interface based on a state
machine (like OpenGL), designed to closely resemble that
of MATLAB, though its use is discouraged. SciPy makes use
of Matplotlib. Matplotlib was originally written by John D.
Hunter, since then it has an active development
community, and is distributed under a BSD-style license.
Michael Droettboom was nominated as matplotlib's lead
developer shortly before John Hunter's death in August
2012, and further joined by Thomas Caswell.

Matplotlib 2.0.x supports Python versions 2.7 through 3.6.
Python 3 support started with Matplotlib 1.2. Matplotlib 1.4

is the last version to support Python 2.6. Matplotlib has
pledged not to support Python 2 past 2020 by signing the
Python 3 Statement.

E. Numpy

NumPy is a library for the Python programming language,
adding support for large, multi-
dimensional arrays and matrices, along with a large collection
of high-level mathematical functions to operate on these
arrays .The ancestor of NumPy, Numeric, was originally
created by Jim Hugunin with contributions from several other
developers. In 2005, Travis Oliphant created NumPy by
incorporating features of the competing Numarray into
Numeric, with extensive modifications. NumPy is open-
source software and has many contributors. NumPy targets
the CPython reference implementation of Python, which is a
non-optimizing bytecode interpreter. Mathematical
algorithms written for this version of Python often run much
slower than compiled equivalents. NumPy addresses the
slowness problem partly by providing multidimensional
arrays and functions and operators that operate efficiently on
arrays, requiring rewriting some code, mostly inner loops,
using NumPy. Using NumPy in Python gives functionality
comparable to MATLAB since they are both
interpreted,[18] and they both allow the user to write fast
programs as long as most operations work on arrays or
matrices instead of scalars.

F. Scikit-Learn

Scikit-learn (formerly scikits.learn and also known
as sklearn) is a free software machine learning library for
the Python programming language. It features
various classification, regression and clustering algorithms
including support vector machines, random forests, gradient
boosting, k-means and DBSCAN, and is designed to
interoperate with the Python numerical and scientific
libraries NumPy and SciPy.

Scikit-learn is largely written in Python, and
uses numpy extensively for high-performance linear algebra
and array operations. Furthermore, some core algorithms are
written in Cython to improve performance. Support vector
machines are implemented by a Cython wrapper
around LIBSVM; logistic regression and linear support
vector machines by a similar wrapper around LIBLINEAR.
In such cases, extending these methods with Python may not
be possible.

G. Scipy

SciPy builds on the NumPy array object and is part of the
NumPy stack which includes tools
like Matplotlib, pandas and SymPy, and an expanding set of
scientific computing libraries. This NumPy stack has similar
users to other applications such as MATLAB, GNU Octave,
and SciLab. The NumPy stack is also sometimes referred to
as the SciPy stack. SciPy is also a family of conferences for
users and developers of these tools: SciPy (in the United

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Microsoft_Excel
https://en.wikipedia.org/wiki/Data_cleaning
https://en.wikipedia.org/wiki/Data_wrangling
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/GUI_toolkit
https://en.wikipedia.org/wiki/GUI_toolkit
https://en.wikipedia.org/wiki/Tkinter
https://en.wikipedia.org/wiki/WxPython
https://en.wikipedia.org/wiki/Qt_(software)
https://en.wikipedia.org/wiki/GTK%2B
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/State_machine
https://en.wikipedia.org/wiki/State_machine
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/John_D._Hunter
https://en.wikipedia.org/wiki/John_D._Hunter
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Jim_Hugunin
https://en.wikipedia.org/wiki/Travis_Oliphant
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Inner_loop
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/NumPy#cite_note-18
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/Numpy
https://en.wikipedia.org/wiki/Cython
https://en.wikipedia.org/wiki/LIBSVM
https://en.wikipedia.org/wiki/LIBLINEAR
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Matplotlib
https://en.wikipedia.org/wiki/Pandas_(software)
https://en.wikipedia.org/wiki/SymPy
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/Scilab

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

States), Euro SciPy (in Europe) and SciPy.in (in
India).[6] Enthought originated the SciPy conference in the
United States and continues to sponsor many of the
international conferences as well as host the SciPy website.

The SciPy library is currently distributed under the BSD
license, and its development is sponsored and supported by
an open community of developers. It is also supported
by Nymphicus, a community foundation for supporting
reproducible and accessible science.

III. MACHINE LEARNING

Machine learning (ML) is the study of computer algorithms
that improve automatically through experience. It is seen as a
subset of artificial intelligence. Machine learning algorithms
build a model based on sample data, known as "training data",
in order to make predictions or decisions without being
explicitly programmed to do so. Machine learning algorithms
are used in a wide variety of applications, such as email
filtering and computer vision, where it is difficult or infeasible
to develop conventional algorithms to perform the needed
tasks .A subset of machine learning is closely related
to computational statistics, which focuses on making
predictions using computers; but not all machine learning is
statistical learning. The study of mathematical
optimization delivers methods, theory and application domains
to the field of machine learning. Data mining is a related field
of study, focusing on exploratory data
analysis through unsupervised learning. In its application
across business problems, machine learning is also referred to
as predictive analytics.

IV. DESIGN APPROACH

A. Activation Function:

An activation function is a very important feature of an
artificial neural network, they basically decide whether the
neuron should be activated or not. In artificial neural
networks, the activation function defines the output of that
node given an input or set of inputs. Activation
function decides, whether a neuron should be activated or not
by calculating weighted sum and further adding bias with it.
The purpose of the activation function is to introduce non-
linearity into the output of a neuron. The activation
function is a non-linear transformation that we do over the
input before sending it to the next layer of neurons or
finalizing it as output.

B. The Step Function

The first thing that comes to our minds is how about a
threshold-based activation function? If the value of Y is
above a certain value, declare it activated. If it’s less than the
threshold, then say it’s not. Hmm great. This could work!
Activation function A = “activated” if Y > threshold else not
Alternatively, A = 1 if y> threshold, 0 otherwise
Well, what we just did is a “step function”, see the below
figure.

Its output is 1 (activated) when value > 0 (threshold) and
outputs a 0 (not activated) otherwise.
Great. So, this makes an activation function for a neuron. No
confusions. However, there are certain drawbacks with this.
To understand it better, think about the following. Suppose
you are creating a binary classifier. Something which should
say a “yes” or “no” (activate or not activate). A Step function
could do that for you! That’s exactly what it does, say a 1 or
0. Now, think about the use case where you would want
multiple such neurons to be connected to bring in more
classes. Class1, class2, class3 etc. What will happen if more
than 1 neuron is “activated”. All neurons will output a 1
(from step function). Now what would you decide? Which
class is it? Hmm hard, complicated.
You would want the network to activate only 1 neuron and
others should be 0 (only then would you be able to say it
classified properly/identified the class). Ah! This is harder to
train and converge this way. It would have been better if the
activation was not binary and it instead would say “50%
activated” or “20% activated” and so on. And then if more
than 1 neuron activates, you could find which neuron has the
“highest activation” and so on (better than max, a SoftMax,
but let’s leave that for now).
In this case as well, if more than 1 neuron says “100%
activated”, the problem still persists. I know! But. Since there
are intermediate activation values for the output, learning can
be smoother and easier (less wiggly) and chances of more
than 1 neuron being 100% activated is lesser when compared
to step function while training (also depending on what you
are training and the data).
Ok, so we want something to give us intermediate (analogy)
activation values rather than saying “activated” or not
(binary).
The first thing that comes to our minds would be Linear
function.

C. Linear Function

A = cx
A straight-line function where activation is proportional to
input (which is the weighted sum from neuron). This way, it
gives a range of activations, so it is not binary activation. We
can definitely connect a few neurons together and if more

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/SciPy#cite_note-6
https://en.wikipedia.org/wiki/Enthought
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/w/index.php?title=NumFOCUS&action=edit&redlink=1
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Training_data
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computational_statistics
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Predictive_analytics

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

than 1 fires, we could take the max (or SoftMax) and decide
based on that. So that is ok too. Then what is the problem
with this? If you are familiar with gradient descent for
training, you would notice that for this function, derivative is
a constant.
A = cx, derivative with respect to x is c. That means, the
gradient has no relationship with X. It is a constant gradient
and the descent is going to be on constant gradient. If there is
an error in prediction, the changes made by back propagation
is constant and not depending on the change in input delta(x)
This is not that good! (Not always, but bear with me). There
is another problem too. Think about connected layers. Each
layer is activated by a linear function. That activation in turn
goes into the next level as input and the second layer
calculates weighted sum on that input and it in turn, fires
based on another linear activation function.
No matter how many layers we have, if all are linear in
nature, the final activation function of last layer is nothing but
just a linear function of the input of first layer! Pause for a bit
and think about it.
That means these two layers (or N layers) can be replaced by
a single layer. Ah! We just lost the ability of stacking layers
this way. No matter how we stack, the whole network is still
equivalent to a single layer with linear activation (a
combination of linear functions in a linear manner is still
another linear function).

D. Sigmoid Function

Well, this looks smooth and “step function like”. What are the
benefits of this? Think about it for a moment. First things first,
it is nonlinear in nature. Combinations of this function are also
nonlinear! Great. Now we can stack layers. What about non
binary activations? Yes, that too! It will give an analogy
activation unlike step function. It has a smooth gradient too.
And if you notice, between X values -2 to 2, Y values are very
steep. Which means, any small changes in the values of X in
that region will cause values of Y to change significantly. Ah,
that means this function has a tendency to bring the Y values
to either end of the curve.

Looks like it’s good for a classifier considering its property?
Yes! It indeed is. It tends to bring the activations to either side

of the curve (above x = 2 and below x = -2 for example).
Making clear distinctions on prediction.
Another advantage of this activation function is, unlike linear
function, the output of the activation function is always going
to be in range (0,1) compared to (-inf, inf) of linear function.
So, we have our activations bound in a range. Nice, it won’t
blow up the activations then.
This is great. Sigmoid functions are one of the most widely
used activation functions today. Then what are the problems
with this? If you notice, towards either end of the sigmoid
function, the Y values tend to respond very less to changes in
X. What does that mean? The gradient at that region is going
to be small. It gives rise to a problem of “vanishing gradients”.
Hmm. So, what happens when the activations reach near the
“near-horizontal” part of the curve on either side?
Gradient is small or has vanished (cannot make significant
change because of the extremely small value). The network
refuses to learn further or is drastically slow (depending on
use case and until gradient /computation gets hit by floating
point value limits). There are ways to work around this
problem and sigmoid is still very popular in classification
problems.

E. Tanh Function

Another activation function that is used is the tanh function.

Ok, now this has characteristics similar to sigmoid that we
discussed above. It is nonlinear in nature, so great we can
stack layers! It is bound to range (-1, 1) so no worries of
activations blowing up. One point to mention is that the
gradient is stronger for tanh than sigmoid (derivatives are
steeper). Deciding between the sigmoid or tanh will depend
on your requirement of gradient strength. Like sigmoid, tanh
also has the vanishing gradient problem.

F. Relu

A(x) = max (0, x)

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 5

The ReLu function is as shown above. It gives an output x if
x is positive and 0 otherwise.

At first look this would look like having the same problems
of linear function, as it is linear in positive axis. First of all,
ReLu is nonlinear in nature. And combinations of ReLu are
also nonlinear! (In fact, it is a good approximator. Any
function can be approximated with combinations of ReLu).
Great, so this means we can stack layers. It is not bound
though. The range of ReLu is [0, inf). This means it can blow
up the activation. Another point that I would like to discuss
here is the sparsity of the activation. Imagine a big neural
network with a lot of neurons. Using a sigmoid or tanh will
cause almost all neurons to fire in an analog way
(remember?). That means almost all activations will be
processed to describe the output of a network. In other words,
the activation is dense. This is costly. We would ideally want
a few neurons in the network to not activate and thereby
making the activations sparse and efficient.
ReLu give us this benefit. Imagine a network with random
initialized weights (or normalized) and almost 50% of the
network yields 0 activation because of the characteristic of
ReLu (output 0 for negative values of x). This means fewer
neurons are firing (sparse activation) and the network is
lighter. Woah, nice! ReLu seems to be awesome! Yes, it is,
but nothing is flawless. Not even ReLu.
Because of the horizontal line in ReLu (for negative X), the
gradient can go towards 0. For activations in that region of
ReLu, gradient will be 0 because of which the weights will
not get adjusted during descent. That means, those neurons
which go into that state will stop responding to variations in
error/ input (simply because gradient is 0, nothing changes).
This is called dying ReLu problem. This problem can cause
several neurons to just die and not respond making a
substantial part of the network passive. There are variations
in ReLu to mitigate this issue by simply making the
horizontal line into non-horizontal component. for example, y
= 0.01x for x<0 will make it a slightly inclined line rather
than horizontal line. This is leaky ReLu. There are other
variations too. The main idea is to let the gradient be non-
zero and recover during training eventually.
ReLu is less computationally expensive than tanh and
sigmoid because it involves simpler mathematical operations.

That is a good point to consider when we are designing deep
neural nets.
Now, which activation functions to use. Does that mean we
just use ReLu for everything we do? Or sigmoid or tanh?
Well, yes and no. When you know the function, you are trying
to approximate has certain characteristics, you can choose an
activation function which will approximate the function faster
leading to faster training process. For example, a sigmoid
works well for a classifier (see the graph of sigmoid, doesn’t it
show the properties of an ideal classifier?) because
approximating a classifier function as combinations of
sigmoid is easier than maybe ReLu, for example. Which will
lead to faster training process and convergence. You can use
your own custom functions too! If you don’t know the nature
of the function you are trying to learn, then maybe i would
suggest start with ReLu, and then work backwards. ReLu
works most of the time as a general approximator!

IV.METHODOLOGY & RESULTS

 A. Dataset

The dataset is a collection of housing prices in 2016 with
some attributes or factor variables. As this paper uses
machine learning predictions, these variables are called
features. Table 2 shows the set of features to develop the
prediction model. This study uses 19 attributes or features as
independent variables for predicting house prices. Table 2:

Features Description

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots
over 25,000 sq.ft.

INDUS proportion of non-retail business acres per

town

CHAS Charles River dummy variable

NOX nitric oxides concentration (parts per 10
million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built

prior to 1940

DIS weighted distances to five Boston
employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in
$1000's

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 6

Features in the dataset

B. Features selection

Feature’s selection is an important step of machine learning
prediction. In this paper, features selection is divided into
four groups. First group used all the independent parameters
in the training dataset. It is a combination of variables with
very weak, weak and strong relationships on the dependent
variable sale price. In this paper, the level of relationship is
defined as Strong if the coefficient correlation value is
between 0.51 to 1.00 and moderate if the value is between 0.3
to 0.5. Otherwise, weak level is between 0.2 to 0.29 and very
weak level is between 0.1 to 0.19. Fig. 1 shows the Python
heatmap plot of all variables in the dataset.

I. FIG. 1: CORRELATION LEVEL OF ALL FEATURESTHE

FOLLOWING FIG. 2 SHOWS THE HEATMAP PLOT OF WEAK

RELATIONSHIP VARIABLES WITH THE SELLING PRICES.

II. FIG. 2: CORRELATION LEVEL OF FEATURES WITH

VALUES BETWEEN 0.20-0.29 (WEAK)

Subsequently, Fig. 3 shows another five variables with
very weak relationship with the selling prices. These
variables are:

III. FIG. 3: CORRELATION LEVEL OF

FEATURES WITH VALUES BETWEEN 0.1

TO 0.19 (VERY WEEK)

Only the buying price variable is found to have a
strong relationship with the selling prices with
coefficient value 0.73, as presented in the following Fig.
4.

IV. FIG. 4: THE CORRELATION LEVEL BETWEEN

SELLING PRICE AND BUYING PRICE

It is interesting to observe the data distribution between the
selling price and buying price, thus presented in the following
Fig. 5.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 07 | JULY - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 7

V. FIG. 5: DATA DISTRIBUTION BETWEEN SELLING

PRICES AND BUYING PRICES

V. RESULTS AND DISCUSSION

The Study on Neural Network Model used TensorFlow,
NumPy, Pandas, SciPy, Scikit-Learn and Matplotlib
involving Python and Data Science to predict accurate house
prices was done successfully.

VI.CONCLUSION

This paper presents the reviews and findings of using
neural network algorithms for real data of housing prices.
The researchers demonstrate that feature selection is an
important component of machine learning prediction.
Two important performances of machine learning
prediction are accuracy of prediction, and averaging of
errors or fitness, which may be affected according to the
feature’s selection with different groups of relationship
levels. However, these findings are limited to the tested
dataset and therefore requires further investigations for
different types of problems.

VI. ACKNOWLEDGMENT

I would like to extend my gratitude and my sincere
thanks to my honourable, esteemed supervisor Mr ML
Sharma. He is not only a great trainer with deep vision
but also and most importantly knowledgeable and warm
hearted as well. I sincerely thanks for his exemplary

guidance and encouragement. His trust and support
inspired me in the important moments of my making
right decisions and I am glad to work with him.

VIII. REFERENCES

1. A. Marandi, A. Juuso, and E. Kazimir’s, “Expert

systems with applications fuzzy multiple criteria
decision-making techniques and applications –
Two decades review from 1994 to 2014,” Expert
Syst. Appl., 42(8), 2015, pp. 4126–4148.

2. F. Zahedi, “The analytic hierarchy process-A
survey of the method and its applications,”
Interfaces, 16(4), 1986, pp. 96–108.

3. G. Magesh and P. Saratha, “Attribute reduction
and cost optimization using machine learning
methods to predict breast cancer,” International
Journal of Recent Technology and Engineering,
7(6), 2019, pp. 306–308.

4. C. Rajinikanth and S. A. Lincoln, “A semi
supervised based Hyper Spectral Image (HSI)
classification using machine learning approach,”
International Journal of Recent Technology and
Engineering, 7(5S2), 2019, pp. 13–16.

5. S. Singh, M. Kaushik, A. Gupta, and A. K.
Malviya, “Weather forecasting using machine
learning techniques,” SSRN Electron. J., 6, 2019,
pp. 38–41.

6. S. Nasiriya and T. Deepa, “Dual Edge Classifier
Based Support Vector Machine (DESVM)
classifier for clinical dataset,” International
Journal of Recent Technology and Engineering,
7(6), 2019, pp. 331–338.

7. C. R. Rao and H. Totenberg, “Linear models,” in
Linear Models, New York: Springer, 1995, pp. 3–
18.

8. A. Liwa, M. Wiener, “Classification and
regression by random Forest,” R News, 2(3), 2002,
pp. 18–22.

9. S. Borden, A. Rane, G. Shende, and S. Shetty,
“Real estate investment advising using machine
learning,” Int. Res. J. Eng. Technol., 4(3), 2017,
pp. 1821–1825.

10. D. Diatonic and L. Sivan, “The multicollinearity
illusion in moderated regression analysis,” Mark.
Lett., 27(2), 2016, pp. 403–4

http://www.ijsrem.com/

	I. Introduction
	II. Modules and libraries
	A. Neural Network
	B. TensorFlow
	C. Pandas
	D. Matplotlib
	E. Numpy
	F. Scikit-Learn
	Scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines...
	Scikit-learn is largely written in Python, and uses numpy extensively for high-performance linear algebra and array operations. Furthermore, some core algorithms are written in Cython to improve performance. Support vector machines are implemented by ...
	G. Scipy

	III. Machine Learning
	IV. Design Approach
	A. Activation Function:
	B. The Step Function
	C. Linear Function
	D. Sigmoid Function
	E. Tanh Function
	F. Relu

	I. Fig. 1: Correlation level of all featuresThe following Fig. 2 shows the heatmap plot of weak relationship variables with the selling prices.
	II. Fig. 2: Correlation level of features with values between 0.20-0.29 (weak)
	III. Fig. 3: Correlation level of features with values between 0.1 to 0.19 (very week)
	IV. Fig. 4: The correlation level between selling price and Buying price
	V. Fig. 5: Data distribution between selling prices and buying prices
	V. RESULTS AND DISCUSSION
	VI.CONCLUSION
	VI. ACKNOWLEDGMENT
	VIII. References

