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Abstract: 

Breast cancer is one of the most lethal cancers in 

women when it reaches the metastatic stage. It’s on 

the rise, both in rural and urban India. Breast cancer 

is a leading cause of cancer mediated death in 

women. This disease is diagnosed in nearly 1.4 

million women and is responsible for more than 

450,000 death every year.  According to the WHO, 

there has been a 20% increase in the number of 

reported world wide breast cancer patients which 

resulted in 522,000 deaths since 2008. Breast 

cancer is not gender specific. A statistical report 

says that one woman dies of breast cancer, every 13 

minutes in India. An estimated 70,218  women 

died of breast cancer in India, in the year 2012, the 

highest in the world for that year. A 2018 report 

of Breast Cancer statistics recorded 1,62,468 new 

registered cases and 87,090 reported deaths. Only 

60% of women who are treated for breast cancer, 

survive for at least five years post-treatment  

in India as compared to 89% in the US. Surgical 

removal is not the way to irradicate breast cancer as 

it might reccur a few years after the surgery too so, 

I have listed few molecules which targets root of 

breast cancer. 
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BRCA Genes and Other Genes 
Involved in DNA Repair Are 
Implicated in Breast Cancer: 

Breast cancer is triggered by both genetic and 

environmental impact. Some breast cancers are due 

to hereditary mutations, namely those 

involving BRCA1 and BRCA2. BRCA1 encodes 

breast cancer type 1 susceptibility protein which is 

involved in DNA repair and is considered a 

caretaker gene. The BRCA1 protein interacts with 

RNA pol. II and also with histone deacetylase 

complexes. BRCA1 plays key roles in transcription, 

repair of breaks in double stranded DNA as well as 

ubiquitination. The BRCA1 protein also combines 

with other proteins which identifies DNA damage 

and other cellular signals and forms a multi-subunit 

protein complex known as the BRCA1-associated 

genome surveillance complex. 

BRCA2 is also involved in the repair of DNA 

double strand breaks. BRCA2 binds the single 

stranded DNA. BRAC2 interacts with the RAD51 

to stimulate strand invasion which is a critical step 

in homologous recombination. For RAD51 to bind 

the DNA double-strand breaks, a complex of 

BRCA1/partner and localizer of BRCA2 

(PALB2)/BRCA2 is required. The risk of 

developing breast individuals with certain cancer-

associated BRCA1/BRCA2 alleles is 60-80% for 

breast cancer. 

PINCH-1 associate with myoferlin to 
promote breast cancer progression 
and metastasis: 

PINCH-1 is a cytoplasmic component of the cell-

extracellular matrix which is frequently 

overexpressed in cancer. The functions and 

mechanism of PINCH-1 in cancer, however, remain 

to be determined. It’s seen that PINCH-1 interacts 

with myoferlin, which is a transmembrane protein 
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that is critical for cancer progression. High 

expression of both PINCH-1 and myoferlin 

correlates with poor clinical outcome in human 

breast cancer patients. Excision of PINCH-1 from 

breast cancer cells diminished myoferlin level and 

suppressed breast cancer cell proliferation, 

migration, and endothelial cell tube formation in-

vitro and breast tumor growth, angiogenesis and 

metastasis in vivo. Mechanistically, PINCH-1 

controls myoferlin level through its interaction with 

myoferlin and regulation of its ubiquitination and 

proteasome dependent degradation. Functionally, 

re-expression of PINCH-1, but not that of a 

myoferlin binding defective ΔLIM2 mutant, 
effectively reversed the inhibition of myoferlin 

expression and breast cancer progression induced 

by loss of PINCH-1. Finally, restoration of 

myoferlin expression was sufficient to reverse 

PINCH-1 deficiency induced inhibition on breast 

cancer progression. These results reveal a PINCH-

1-myoferlin signaling axis that is critical for breast 

cancer progression and suggest a new strategy for 

therapeutic control of breast cancer. ( Y.Ding etal. 

2019) 

Epigenetic Modification of ER genes 

in Breast Cancer : 

Methylation of the promoter region of the ER and 

other genes has been associated with their 

decreased expression. The methylation status of 

the ER-alpha promoter region was examined t an 

approx  138 sporadic breast cancer cases. The ER-

alpha promoting region was found to be methylated 

in 60% cases of tumors, including 57 of  69 of the 

tumors which did not express ER-alpha. This 

determines that the probability of ER-alpha 

promoter methylation was increased in those cases 

that were ER-alpha and PR. 

In a study of 100 sporadic primary breast cancers of 

which  51 were ER-alpha and 49 ER-alpha+, ER 

methylation was observed in 98% of ER- and 65% 

of ER+ tumor samples. ER- promoter region 

methylation was also associated with lack of PR 

expression and double receptor negative expression 

status of the breast cancer specimens. 

The methylation of the ER-beta promoter region 

was examined in 178 sporadic breast cancer 

patients. ER-beta promoter methylation was 

observed in 44.9% of breast tumor samples. In 

contrast ER-beta promoter hyper-methylation was 

detected in only 14.3% of patients with benign 

breast hyperplasia. 58% of the ER-beta- tumors 

exhibited ER-beta promoter region methylation 

whereas 36.7% of the ER-beta+-positive cases 

exhibited methylation at the ER-beta promoter 

region. As the levels of ER-beta promoter 

methylation increased- the levels of ER-beta 

protein detected decreased in the tumor samples. A 

strong correlation between ER-alpha promoter 

methylation and ER-beta promoter methylation was 

observed. (Zhao L etal. 2009) 

 

Small Molecular inhibitors: 

Cancer is a ‘mutation’ caused disease, initiation and 

further progression of cancer depends on over 

activation of various extrinsic and intracellular 

signalling pathways. Small molecule cancer drugs, 

because of their small size, have been successfully 

used to target the extracellular, cell surface ligand 

binding receptors as well as the intracellular 

proteins, including anti-apoptotic proteins that play 

a key role in transducing downstream signalling for 

cell growth and metastasis promotion. Research on 

molecularly targeted cancer drug discovery over the 

last few decades has resulted in a number of small 

molecule drugs being successfully introduced in the 

clinic for cancer treatment. Most of these drugs 

inhibit critical cancer targets such as 

serine/threonine/tyrosine kinases, matrix metallo-

proteinases(MMPs), heat shock proteins (HSPs), 

proteosome and other proteins playing a role in 

signal transduction pathways. Although a number 

of SMIs that target a variety of cell signaling 

molecules have been developed and currently being 

utilized, the emergence of drug-resistant variants of 

cancers remain a significant and formidable 

problem that necessitates identification of 

additional, master signaling molecules and 

exploitation of this knowledge for the development 

of additional strategies to effectively treat resistant 

cancer. 

 

 

Lapatinib (tykerb): 

Lapatinib is a reversible dual TKI that selectively 

targets and inhibits HER2 and EGFR with proven 

effectiveness in clinical trials. Cancer cells grow in 
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an uncontrolled fashion. Tykerb works inside the 

cancer cell by interfering with certain proteins, 

called kinases, that can stimulate this uncontrolled 

growth. Lapatinib is an anti-cancer drug developed 

by GlaxoSmithKline (GSK) as a treatment for solid 

tumours such as breast and lung cancer. It wa s 

approved by the FDA on March 13, 2007, for use in 

patients with advanced metastatic breast cancer in 

conjunction with the chemotherapy drug 

Capecitabine. Lapatinib is human epidermal growth 

factor receptor type2  (HER2/ERBB2) and 

epidermal growth factor receptor 

(HER1/EGFR/ERBB1) tyrosine kinases inhibitor. 

It binds to the intracellular phosphorylation domain 

to prevent receptor auto-phosphorylation upon 

ligand binding. Lapatinib is a small molecule and a 

member of the 4-anilinoquinazoline class of kinase 

inhibitors. An anti-cancer drug, lapatinib was 

developed by GlaxoSmithKline (GSK) as a 

treatment for solid tumours such as breast and lung 

cancer. 

Lapatinib is a 4-anilinoquinazoline kinase inhibitor 

of the intracellular tyrosine kinase domains of both 

epidermal growth factor receptor 

(HER1/EGFR/ERBB1) and human epidermal 

growth factor receptor type 2 (HER2/ERBB2)with 

a dissociation half-life of ≥300 minutes.  Lapatinib 

inhibits ERBB-driven tumor cell growth in vitro 

and in various animal models. An additive effect 

was demonstrated in an in vitro study when 

lapatinib and 5-florouracil (the active metabolite of 

capecitabine) were used in combination in the 4 

tumor cell lines tested. The growth inhibitory 

effects of lapatinib were evaluated in trastuzumab-

conditioned cell lines. Lapatinib retained 

significant activity against breast cancer cell 

lines selected for long-term growth in 

trastuzumab-containing medium in vitro. 

These in vitro findings suggest non-cross-

resistance between these two agents. 

Lapatinib undergoes extensive metabolism, 

primarily by CYP3A4 and CYP3A5, with 

minor contributions from CYP2C19 and 

CYP2C8 to a variety of oxidated 

metabolites, none of which accounts for 

more than 14% of the dose recovered in the 

feces or 10% of lapatinib concentration in 

plasma. 

Lapatinib inhibits proliferation of several human 

cancer cell lines from vulva, breast, lung, and 

esophagus. In vitro studies showed that lapatinib 

inhibited the activation of the three main EGFR and 

HER2 downstream signaling pathways, MAPK, 

PI3K-AKT and PLCγ, through decreased 
phosphorylation of target receptors and the Raf, 

ERK, AKT, and PLCγ1 proteins. Additionally, this 
TKI increased p38 expression, a stress-induced 

member of the MAPK pathway that is involved in 

apoptosis, the subG1 phase of the cell cycle (a 

hallmark of apoptosis), and the cyclin-dependent 

kinase inhibitors p21 and p27. Lapatinib inhibited 

cell proliferation and migration of breast cancer cell 

lines expressing different levels of EGFR and 

HER2; however, cells overexpressing HER2 were 

more sensitive to this TKI. Lapatinib enhances pro-

apoptotic protein BIM at the transcriptional level 

and reduced protein expression of survivin, an 

apoptosis inhibitor protein, which expresses approx 

90% of all breast cancer cases and is cause of poor 

outcome for this pathology. Although lapatinib is a 

dual TKI that targets both HER2 and EGFR, it has 

been demonstrated that it also inhibited 

phosphorylation of HER3. A resume of lapatinib 

mechanisms is found in shown diagrammatically 

via a diagram.  

There is a high incidence of brain metastases in 

patients with HER2-overexpressing breast cancer 

even if they were treated with trastuzumab. 

Interestingly, in a preclinical mouse model, 

lapatinib could prevent the metastatic outgrowth of 

HER2-overexpressing breast cancer cells in the 

brain. In this in vivo metastasis model, lapatinib 

reduced the phosphorylation of HER2 but it did not 

affect EGFR, contrary to in vitro studies. Moreover, 

EGFR small-interfering RNA (siRNA) knockdown 

in HER2-positive breast cancer cells did not affect 

the anti-proliferative activity of lapatinib, whereas 
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depletion of HER2 causes lapatinib resistance, 

indicating that lapatinib effects are mediated mainly 

through HER2 pathway. The stated above suggests 

a direct correlation between lapatinib sensitivity 

and HER2 expression only. 

A subgroup of HER2-overexpressing tumors also 

express p95HER2, an amino terminally truncated 

receptor, that has kinase activity but lacks the 

epitope recognized by trastuzumab; hence, 

expression of this form confers resistance to 

trastuzumab. In addition, p95HER2 has been 

considered as a biomarker of an aggressive subtype 

of HER2 positive breast cancer. Lapatinib inhibited 

p95HER2, AKT, MAPK phosphorylation and the 

growth of cells that express the truncate receptors. 

Moreover, lapatinib showed antitumor activity in 

p95HER2 tumor xenografts.  

Other study demonstrated that lapatinib inhibited 

insulin-like growth factor I (IGF-I) signaling in 

both trastuzumab -sensitive and -resistant HER2 

overexpressing cells. Cross-talk between the IGF-I 

receptor and HER2 in trastuzumab-resistant cells 

increased HER2 receptor phosphorylation. 

Significantly, lapatinib blocked HER2 and IGF-1R 

crosstalk. In addition, this compound also increased 

fragmentation of poly ADP-ribose polymerase 

(PARP), a protein involved in programmed cell 

death, and downregulated survivin expression in 

trastuzumab sensitive and resistant HER2 

overexpressing cells.In addition, lapatinib inhibited 

activation of nuclear factor κB (NF-κB) in HER2-

overexpressing breast cancer cells. The TKI 

inactivates NF-κB through reducing 
phosphorylation of its inhibitor IkB-α via blocking 
the PI3K/AKT cascade. This fact is relevant due to 

co-operation between HER2 and NF-κB signaling 
which causes tumor resistance to radiotherapy. 

Overexpression of EGFR and HER2 contributes to 

clinical radiation resistance and several EGFR 

inhibitors sensitize tumor cells to ionizing 

radiation. In this regard, lapatinib treatment 

enhanced the radiosensitization of  EGFR and 

HER2 overexpressing breast cancer cells through 

inhibition of MEK/ERK signaling pathway.In the 

SK-BR-3 HER2-amplified breast cancer cell line 

prolonged exposure to lapatinib reduced the 

expression and activity of the enzyme 

topoisomerase-IIα, which renders cells resistant to 
the cytotoxic effects of doxorubicin, etoposide, and 

m-AMSA.  

Lapatinib regulates many microRNAs (miR) that 

play an important role in the anti-tumor action in 

the HER2-postive breast carcinoma cells. In this 

regard, lapatinib treatment upregulated miR575 and 

miR-1225-5 expression, contributing in this manner 

to downregulation of the oncogenic protein 

phospholipase C PLCXD1 (phosphatidyl-inositol 

specific phospholipase-C-X-domain-containing-1), 

a target transcript of miR-575 and miR1225-5p. ( 

AMJ etal. 2015) 

Gefitinib: 

Gefitinib is a reversible EGFR TKI that has been 

approved by the FDA for the treatment of advanced 

non-small cell lung carcinoma with activating 

EGFR mutations.EGFR is overexpressed in breast 

cancer tissue with a positivity range of 20-70%. 

Overexpression of this receptor is associated with 

aggressive metastatic breast tumors. In addition, 

breast tumors that cooverexpress EGFR and HER2 

exhibited a worse outcome than tumors that 

overexpressed either receptor alone. Interruption of 

EGFR function with specific TKIs may disrupt 

EGFR-HER2 cross-talk, resulting in HER2 

inactivation. 

Gefitinib inhibits the growth of both breast cancer 

cell lines and human tumor xenografts expressing 

different levels of EGFR or HER2. Gefitinib effects 

on HER2 and EGFR co-expressing breast cancer 

cells are mediated by reducing basal EGFR, HER2 

and HER3 phosphorylation, resulting in the 

blockage of downstream signaling of the AKT, 

MAPK and STAT3 pathways. Also, this TKI 

increased p27 levels and the subG1/G1 phases of 

the cell cycle; reduced cyclin D1 and Cdk4. In 

addition, gefitinib reduced the phosphorylation of 

glycogen synthase kinase 3 beeta (GSK-3β, a target 
of the AKT kinase). In EGFR-HER2 breast cancer 

cells, gefitinib induced cytostatic and apoptotic 

effects. This action of gefitinib is in part mediated 

by increased p38 MAPK levels, dephosphorylation 

of FOXO3a with a subsequent increased of 

p27Kip1, caspase 3 and BIM protein expression. 

Gefitinib has also been shown to downregulate the 

mTOR signaling pathway in human breast cancer 

cells. 

In a similar manner as described above in the cell 

lines, gefitinib inhibited EGFR and MAPK 

phosphorylation in tumor biopsies. However, 

gefitinib had not effect on AKT phosphorylation or 

Ki67 levels. Moreover, the TKI did not increase 

p27 levels. 

Gefitinib treatment disrupted the formation of the 

HER3/HER2 heterodimer and further association of 

HER3 with p85α the regulator subunit of PI3K. In 

addition, the TKI inhibited the activation of the 

EGFR/HER2 and EGFR/HER3 heterodimers 

mediated by EGF and heregulin, respectively. 
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EGFR over expression did not determine gefitinib 

sensitivity in the particular case of HER2 over 

expressing breast cancer. In this regard, gefitinib 

was more potent to inhibit the proliferation of 

breast cancer cells with high levels of HER2 and 

low levels EGFR compared to those cells with high 

levels of EGFR without HER2 expression. In 

contrast, gefitinib effects on AKT, MAPK, and p27 

were not seen in EGFR-negative breast cancer 

cells. Interestingly, inhibition of MAPK 

phosphorylation was observed in EGFR-negative 

tumor biopsies, suggesting that gefitinib may be 

inhibiting other EGFR family members. 

In the same way as observed with lapatinib, 

prolonged exposure to gefitinib induced resistance 

to doxorubicin, etoposide, and m-AMSA through 

downregulation of topoisomerase-IIα. (Sanchez-

Martin M  etal. 2016 ) 

Neratinib: 

Neratinib is another oral, but irreversible TKI, 

known as a pan-inhibitor because interacts with the 

catalytic domain of several EGFR family members 

(EGFR, HER2 and HER4) and blocks their 

downstream signaling pathways. Neratinib 

covalently binds a specific and shared cysteine 

residue in the ATP-binding pocket of the receptors 

in the EGFR family. In particular, neratinib binds to 

cysteine residues Cys-773 and Cys-805 in HER1 

and HER2, respectively. 

Neratinib derives from structural modifications of 

EKB-569, another potent and irreversible EGFR 

inhibitor. Neratinib has significant activity in naïve 

and previously exposed to trastuzumab patients, 

making it an alternative treatment for HER2-

positive breast cancer. Currently, this TKI is in 

clinical trials and has been used to treat solid 

tumors and metastatic HER2 breast cancer. 

There are some reports that describe the mechanism 

of action of neratinib in breast cancer. A pioneering 

work from Rabindran showed that neratinib 

inhibited proliferation and EGFR, HER2, HER4, 

AKT and MEK phosphorylation in HER2 

overexpressing breast cancer cell lines. The 

regulation of downstream signal transduction by 

neratinib leads to arrest at the G1-S phase transition 

resulting in increased p27 levels and decreased 

phosphorylated retinoblastoma protein (pRb) and 

cyclin D1 expression. Interestingly, neratinib 

showed less antiproliferative activity in cell lines 

that express neither HER2 nor EGFR. Moreover, 

HER2-positive breast cancer cell lines are more 

likely to respond to neratinib than EGFR-positive 

cells or HER2 non-amplified cell lines. Another 

antineoplastic mechanism for neratinib in cancer 

cell lines is that it can reverse membrane-bound 

ATP transporters-mediated multidrug resistance. 

The inhibition of multidrug resistance via ATP 

transporters by neratinib may be an alternative 

mechanism that could improve the response to 

chemotherapy agents used in HER2-positive breast 

cancer. 

Similarly, neratinib enhanced the therapeutic 

response and counteracted trastuzumab resistance 

by decreased trastuzumab-induced HER4 nuclear 

translocation in HER2-positive breast cancer. 

(Wyeth; Pfizer etal. 2011) 

 

THIS IS THE DIAGRAMATIC APPROACH TO THE MECHANSIM OF THE ABOVE 
MENTIONED MOLECULES : 
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Schematic representation of the action of 3 TKIs 

and their interaction with receptors of the EGFR 

family. As TKIs are homologous to ATP, they 

compete for ATP binding domain of protein 

kinases preventing their phosphorylation and 

subsequent activation of the signal transduction 

pathways, which leads to apoptosis, decreased 

cellular proliferation and eventually cell cycle 

arrest. Inhibition of phosphorylation of the 

receptors by TKIs ( X ) disrupted hetero-dimer 

formation by gefitinib, avoid the interaction 

between receptors (Φ), upregulated (↑), 

downregulated (↓) 

Perjeta & Herceptin : 

These are immuned targeted drug therapy. Cancer 

cells grow in an uncontrolled fashion. Perjeta works 

on the surface of the cancer cell by blocking the 

chemical signals that can stimulate this 

uncontrolled growth. Genes are like instruction 

manuals that tell each cell of our body how to 

grow, what kind of cell to become, and how to 

behave. Genes do this by ordering the cell to make 

special proteins that cause a certain activity — such 

as cell growth, rest, or repair. 

Some cancer cells have abnormalities in genes that 

tell the cell how much and how fast to grow. 

Sometimes the cancer cells have too many copies 

of these genes with abnormalities. When there are 

too many copies of these genes, doctors refer to it 

as "overexpression." With some forms of gene 

overexpression, cancer cells will make too many of 

the proteins that control cell growth and division, 

causing the cancer to grow and spread. Some breast 

cancer cells make (overexpress) too many copies of 

a particular gene known as HER2. The HER2 gene 

makes a protein known as a HER2 receptor. HER2 

receptors are like ears, or antennae, on the surface 

of all cells. These HER2 receptors receive signals 

that stimulate the cell to grow and multiply. But 

breast cancer cells with too many HER2 receptors 

can pick up too many growth signals and so start 

growing and multiplying too much and too fast. 

Breast cancer cells that over express the HER2 gene 

are said to be HER2-positive. Like Herceptin, 

Perjeta is a HER2 inhibitor targeted therapy that 

works by attaching itself to the HER2 receptors on 

the surface of breast cancer cells and blocking them 

from receiving growth signals. Perjeta targets a 

different area on the HER2 receptor than Herceptin 

does, so it’s believed to work in a way that is 

complementary to Herceptin. By blocking the 

signals, Perjeta can slow or stop the growth of the 

breast cancer.  

In addition to blocking HER2 receptors, Perjeta can 

also help fight breast cancer by alerting the immune 

system to destroy cancer cells onto which it is 

attached. 

Axitinib Targeted Cancer Stemlike Cells to 

Enhance Efficacy of Chemotherapeutic 

Drugs via Inhibiting the Drug Transport 

Function of ABCG2: 

Axitinib (AG013736; trade name Inlyta) is a small 

molecule tyrosine kinase inhibitor developed by 

Pfizer. It has been shown to significantly inhibit 

growth of breast cancer in animal (xenograft) 

models and has shown partial responses in clinical 

trials with renal cell carcinoma (RCC) and several 

other tumour types. Stem like cells have been 

isolated by their ability to efflux Hoechst 33342 

dye and are called the side population (SP). We 

evaluated the effect of axitinib on targeting cancer 

stemlike cells and enhancing the efficacy of 

chemotherapeutical agents. We found that axitinib 

enhanced the cytotoxicity of topotecan and 

mitoxantrone in SP cells sorted from human lung 

cancer A549 cells and increased cell apoptosis 

induced by chemotherapeutical agents. Moreover, 

axitinib particularly inhibited the function of 

adenosine triphosphate (ATP)-binding cassette 

subfamily G member 2 (ABCG2) and 

reversed ABCG2-mediated multidrug resistance 

(MDR) in vitro. However, no significant reversal 

effect was observed in ABCB1-, ABCC1- or lung 

resistance–related protein (LRP)-mediated MDR. 

Furthermore, in both sensitive and MDR cancer 

cells axitinib neither altered the expression 

of ABCG2 at the mRNA or protein levels nor 

blocked the phosphorylation of AKT and 

extracellular signal-regulated kinase (ERK)1/2. In 

nude mice bearing ABCG2-overexpressing S1-M1-

80 xenografts, axitinib significantly enhanced the 

antitumor activity of topotecan without causing 

additional toxicity. Taken together, these data 
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suggest that axitinib particularly targets cancer 

stemlike cells and reverses ABCG2-mediated drug 

resistance by inhibiting the transporter activity 

of ABCG2. 

Breast cancer resistance protein 
(BCRP/ABCG2): its role in multidrug 
resistance and regulation of its gene 
expression: 

Breast cancer resistance protein (BCRP)/ATP-

binding cassette subfamily G member 2 (ABCG2) 

is an ATP-binding cassette (ABC) transporter 

identified as a molecular cause of multidrug 

resistance (MDR) in diverse cancer cells. BCRP 

physiologically functions as a part of a self-defense 

mechanism for the organism; it enhances 

elimination of toxic xenobiotic substances and 

harmful agents in the gut and biliary tract, as well 

as through the blood-brain, placental, and possibly 

blood-testis barriers. BCRP recognizes and 

transports numerous anticancer drugs including 

conventional chemotherapeutic and targeted small 

therapeutic molecules relatively new in clinical use. 

Thus, BCRP expression in cancer cells directly 

causes MDR by active efflux of anticancer drugs. 

Because BCRP is also known to be a stem cell 

marker, its expression in cancer cells could be a 

manifestation of metabolic and signaling pathways 

that confer multiple mechanisms of drug resistance, 

self-renewal, and invasiveness (aggressiveness), 

and thereby impart a poor prognosis. Therefore, 

blocking BCRP-mediated active efflux may 

provide a therapeutic benefit for cancers. 

Delineating the precise molecular mechanisms for 

BCRP gene expression may lead to identification of 

a novel molecular target to modulate BCRP-

mediated MDR. Current evidence suggests that 

BCRP gene transcription is regulated by a number 

of trans-acting elements including hypoxia 

inducible factor 1α, estrogen receptor, and 
peroxisome proliferator activated receptor. 

Furthermore, alternative promoter usage, 

demethylation of the BCRP promoter, and histone 

modification are likely associated with drug-

induced BCRP over expression in cancer cells. 

Finally, PI3K/AKT signaling may play a critical 

role in modulating BCRP function under a variety 

of conditions. These biological events seem 

involved in a complicated manner. Untangling the 

events would be an essential first step to developing 

a method to modulate BCRP function to aid 

patients with cancer. This review will present a 

synopsis of the impact of BCRP-mediated MDR in 

cancer cells, and the molecular mechanisms of 

acquired MDR currently postulated in a variety of 

human cancers. ( D.D Ross etal. 2018) 
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