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Abstract:-An optical camera-based intrusion arrangement 

(Light Intrusion DeTection systEm named as acronym LITE) for 

an outside setting was recently developed by a superset of 

the authors. The system classified between human and 

animal images captured during a side-view manner supported 

the peak . supported the system and algorithm design, most 

likely human-crawl would be classified as animal by the LITE. 

during this paper, classification between human-crawl and 

animal is addressed. additionally to the present work, 

classification of person with weapon versus person with 

vehicle is additionally addressed (referred as person with 

Crawling) to supply more information about the sort of 

intrusions. A Convolutional Neural Network (CNN) based 

approach is employed to unravel the above stated two 

problems. within the case of “person with Crawling” 

classification, a study of various CNN architectures was 

administered and analysis like that's presented. just in case of 

human crawl vs animal movement, performance results like 

only the simplest architecture model is provided among the 

various tried models. Further on, additional insights are 

provided about the classification using the eye heat maps and 

t-SNE plots. The test classification accuracies for human-crawl 

vs animal and person with Crawling classification on the 

recorded data are on the brink of 95.65% and 90%, 

respectively. The LITE, having the Odroid C2 (OC2) Single-

Board Computer (SBC) with CNN-based classification 

algorithm for human-crawl versus animal task ported thereon 

, was deployed in an outside setting for a realtime 

deployment. It provided a classification accuracy on the brink 

of 92%. Traditional Crawling detection methods are built on 

handcrafted features and shallow trainable architectures. 

Their performance easily stagnates by constructing complex 

ensembles which combine multiple low-level image features 

with high-level context from Crawling detectors and scene 

classifiers. With the rapid development in deep learning, 

more powerful tool, which are ready to learn semantic, high-

level, deeper features, are introduced to deal with the issues 

existing in traditional architectures. These models behave 

differently in specification , training strategy and optimization 

function, etc. during this paper, we offer a review on deep 

learning based Crawling detection frameworks. Our review 

begins with a quick introduction on the history of deep 

learning and its representative tool, namely Convolutional 

Neural Network (CNN). Then we specialize in typical generic 

Crawling detection architectures along side some 

modifications and useful tricks to enhance detection 

performance further. As distinct specific detection tasks 

exhibit different characteristics, we also briefly survey several 

specific tasks, including salient Crawling detection, crawl 

detection and crawling object detection. Experimental 

analyses also provided to match various methods and draw 

some meaningful conclusions. Finally, several promising 

directions and tasks are provided to function guidelines for 

future add both Crawling detection and relevant neural 

network based learning systems. 

Index Terms—deep learning, Crawling detection, neural 

network 

I. INTRODUCTION O gain an entire image understanding, we 

should always not only consider classifying different images, 

but also attempt to precisely estimate the concepts and 

locations of Crawlings contained in each image. This task is 

referred as Crawling detection [1][S1], which usually consists 

of various subtasks like crawl detection [2][S2], crawling 

object detection [3][S2] and skeleton detection [4][S3]. 

together of the elemental computer vision problems, 

Crawling detection is in a position to supply valuable 

information for semantic understanding of images and 

videos, and is said to several applications, including image 

classification [5], [6], human behavior analysis [7][S4], crawl 

recognition [8][S5] and autonomous driving [9], [10]. 

Meanwhile, Inheriting from neural networks and related 

learning systems, the progress in these fields will develop 

neural network algorithms, and can even have great impacts 

on Crawling detection techniques which may be considered 

as learning systems. [11]–[14][S6]. However, thanks to large 

variations in viewpoints, poses, occlusions and lighting 

conditions, it’s difficult to perfectly accomplish Crawling 

detection with an additiona lCrawling localization task. such a 

lot attention has been interested in this field in recent years 

[15]–[18]. 

The problem definition of Crawling detection is to work out 

where Crawlings are located during a given image (Crawling 

localization) and which category each Crawling belongs to 

(Crawling classification). therefore the pipeline of traditional 

Crawling detection models are often mainly divided into 
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three stages: informative region selection, feature extraction 

and classification. 

Informative region selection. As different Crawlings may 

appear in any positions of the image and have different 

aspect ratios or sizes, it's a natural option to scan the entire 

image with a multi-scale window . Although this exhaustive 

strategy can determine all possible positions of the Crawlings, 

its shortcomings also are obvious. thanks to an outsized 

number of candidate windows, it's computationally expensive 

and produces too many redundant windows. However, if only 

a hard and fast number of window templates are applied, 

unsatisfactory regions could also be produced. 

Feature extraction. to acknowledge different Crawlings, we'd 

like to extract visual features which may provide a semantic 

and robust representation. SIFT [19], HOG [20] and Haar-like 

[21] features are the representative ones. this is often thanks 

to the very fact that these features can produce 

representations related to complex cells in human brain [19]. 

However, thanks to the range of appearances, illumination 

conditions and backgrounds, it’s difficult to manually design a 

strong feature descriptor to perfectly describe all types of 

Crawlings. 

Classification. Besides, a classifier is required to differentiate 

a target Crawling from all the opposite categories and to form 

the representations more hierarchical, semantic and 

informative for visual recognition. Usually, the Supported 

Vector Machine (SVM) [22], AdaBoost [23] and Deformable 

Part-based Model 

(DPM) [24] are good choices. Among these classifiers, the 

DPM may be a flexible model by combining Crawling parts 

with deformation cost to handle severe deformations. In 

DPM, with the help of a graphical model, carefully designed 

low-level features and kinematically inspired part 

decompositions are combined. And discriminative learning of 

graphical models allows for building high-precision part-

based models for a spread of Crawling classes. 

Based on these discriminant local feature descriptors and 

shallow learnable architectures, state of the art results are 

obtained on PASCAL VOC Crawling detection competition [25] 

and real-time embedded systems are obtained with a coffee 

burden on hardware. However, small gains are obtained 

during 2010-2012 by only building ensemble systems and 

employing minor variants of successful methods 

[15]. This fact is due to the following reasons: 1) The 

generation of candidate bounding boxes with a sliding 

window strategy is redundant, inefficient and inaccurate. 2) 

The semantic gap cannot be 

 

Fig. 1. The application domains of Crawling detection. 

bridge by the mixture of manually engineered low level 
descriptors and discriminatively-trained shallow model. 
Greeting towards the emergency of Deep Neural Networks 
(DNNs) [6][S7], a more significant gain is obtained with 
the introduction of Regions with CNN features (R-CNN) 
[15]. DNNs, or the foremost representative CNNs, 
act during a quite different way from traditional 
approaches. they need deeper architectures with the 
capacity to find out more complex features than the 
shallow ones. Also the expressivity and robust training 
algorithms allow to find out informative Crawling 
representations without the necessity to style features 
manually [26]. 
Since the proposal of R-CNN, an excellent deal of 
improved models are suggested, including Fast R-CNN 
which jointly optimizes classification and bounding box 
regression tasks [16], Faster R-CNN which takes a 

further subnetwork to get region proposals [18] and 
YOLO which accomplishes Crawling detection via a fixed-
grid regression [17]. All of them bring different degrees of 
detection performance improvements over the first R-
CNN and make real-time and accurate Crawling detection 
become more achievable. 
In this paper, a scientific review is provided to summarise 
representative models and their different characteristics in 
several application domains, including generic Crawling 
detection [15], [16], [18], salient Crawling detection [27], 
[28], crawl detection [29]–[31] and crawl detection [32], 
[33]. Their relationships are depicted in Figure 
1. Supported basic CNN architectures, generic Crawling 
detection is achieved with bounding box regression, while 
salient Crawling detection is accomplished with local 
contrast enhancement and pixel-level segmentation. 
Crawling detection and crawling detection are 
closely associated with generic Crawling detection and 
mainly accomplished with multi-scale adaption and multi-
feature fusion/boosting forest, respectively. The dotted 
lines indicate that the corresponding domains are related 

to one another under certain conditions. It should be 
noticed that the covered domains are diversified. Crawling 
object and crawl images have regular structures, while 
general Crawlings and scene by the combination of 

Crawling object  

detection 

Salient Crawling  

detection  

Crawl 

detection  

Generic Crawling  

detection 

Crawling  

detection 

B o u n d i n g  
b o x  

r e g r 
e s s i 

o n 

L o c a l 
 c o n t r a s t 

 

S e g m e n t a t i o n 

M u lt i- f e a t u r e B o o s t in g 
 f o r e s t 

M u l t i - s c 
a l e 

a d a p t i o n 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                 Volume: 04 Issue: 07 | July -2020                                                       ISSN: 2582-3930                                                   
 

© 2020, IJSREM      | www.ijsrem.com Page 3 

 

manually engineered low-level descriptors and 

discriminatively-trained shallow models. 

Thanks to the emergency of Deep Neural Networks 
(DNNs) [6][S7], a more significant gain is obtained 
with the introduction of Regions with CNN features (R-
CNN) [15]. DNNs, or the foremost representative 
CNNs, act during a quite different way from traditional 
approaches. they need deeper architectures with the 
capacity to find out more complex features than the 
shallow ones. Also the expressivity and robust training 
algorithms allow to find out informative Crawling 
representations without the necessity to style features 
manually [26]. 
Since the proposal of R-CNN, an excellent deal of 
improved models are suggested, including Fast R-CNN 
which jointly optimizes classification and bounding box 
regression tasks [16], Faster R-CNN which takes a  

further subnetwork to get region proposals [18] and YOLO 

which accomplishes Crawling detection via a fixed-grid 

regression [17]. All of them bring different degrees of 

detection performance improvements over the first R-CNN 

and make real-time and accurate Crawling detection become 

more achievable. 

In this paper, a scientific review is provided to summarise 

representative models and their different characteristics in 

several application domains, including generic Crawling 

detection [15], [16], [18], salient Crawling detection [27], 

[28], crawl detection [29]–[31] and crawling object detection 

[32], [33]. Their relationships are depicted in Figure 1. 

supported basic CNN architectures, generic Crawling 

detection is achieved with bounding box regression, while 

salient Crawling detection is accomplished with local contrast 

enhancement and pixel-level segmentation. Crawl detection 

and crawling object detection are closely related to generic 

Crawling detection and mainly accomplished with multi-scale 

adaption and multi-feature fusion/boosting forest, 

respectively. The dotted lines indicate that the corresponding 

domains are related to one another under certain conditions. 

It should be noticed that the covered domains are diversified. 

Crawling object and crawl images have regular structures, 

while general Crawlings and scene images have more 

complex variations in geometric structures and layouts. 

Therefore, different deep models are required by various 

images. 

There has been a relevant pioneer effort [34] which mainly 

focuses on relevant software tools to implement deep 

learning techniques for image classification and Crawling 

detection, but pays little attention on detailing specific 

algorithms. Different from it, our work not only reviews deep 

learning based Crawling detection models and algorithms 

covering different application domains intimately , but also 

provides their corresponding experimental comparisons and 

meaningful analyses. 

The rest of this paper is organized as follows.  

In Section2, a quick introduction on the history of deep 

learning and therefore the basic architecture of CNN is 

provided. Generic Crawling detection architectures are 

presented in Section 3. Then reviews of CNN applied in 

several specific tasks, including salient Crawling detection, 

crawl detection and crawling object detection, are exhibited 

in Section 4-6, respectively. Several promising future 

directions are proposed in Section 7. At last, some concluding 

remarks are presented in Section 8. 

II. a quick OVERVIEW OF DEEP LEARNING 

Prior to overview on deep learning based Crawling detection 

approaches, we provide a review on the history of deep 

learning in conjunction with an introduction on the essential 

architecture and advantages of CNN. 

A. The History: Birth, Decline and Prosperity 

Deep models are often mentioned as neural networks with 

deep structures. The history of neural networks can go back 

to 1940s [35], and therefore the original intention was to 

simulate the human brain system to unravel general learning 

problems during a principled way. it had been popular in 

1980s and 1990s with the proposal of back-propagation 

algorithm by Hinton et al. [36]. However, thanks to the 

overfitting of coaching , lack of huge scale training data, 

limited computation power and insignificance in performance 

compared with other machine learning tools, neural 

networks fell out of fashion in early 2000s. 

Deep learning has become popular since 2006 [37][S7] with 

an opportunity through in speech recognition [38]. The 

recovery of deep learning are often attributed to the 

subsequent factors. 

•As ImageNet [39], to completely exhibit its very large 

learningThe emergence of huge scale annotated training 

data, such 

capacity; 

•Systems, like GPU clusters;Fast development of high 
performance parallel computing 
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•And training strategies. With unsupervised and 
layerwiseSignificant advances within the design of network 

structures pre-training guided by Auto-Encoder (AE) [40] or 

Restricted Boltzmann Machine (RBM) [41], an honest 

initialization is provided. With dropout and data 

augmentation, the overfitting problem in training has been 

relieved [6], [42]. With batch normalization (BN), the training 

of very deep neural networks becomes quite efficient [43]. 

Meanwhile, various network structures, like AlexNet [6], 

Overfeat [44], GoogLeNet [45], VGG [46] and ResNet [47], are 

extensively studied to enhance the performance. 

What prompts deep learning to possess an enormous impact 

on the whole academic community? it's getting to owe to the 

contribution of Hinton’s group, whose continuous efforts 

have demonstrated that deep learning would bring a 

revolutionary breakthrough on grand challenges rather than 

just obvious improvements on small datasets. Their success 

results from training an outsized CNN on 1.2 million labeled 

images along side a couple of techniques [6] (e.g., ReLU 

operation [48] and ‘dropout’ regularization). 

B. Architecture and Advantages of CNN 

CNN is that the most representative model of deep 

learning [26]. A typical CNN architecture, which is mentioned 

as VGG16, are often found in Fig. S1. Each layer of CNN is 

understood as a feature map. The feature map of the input 

layer may be a 3D matrix of pixel intensities for various color 

channels (e.g. RGB). The feature map of any internal layer is 

an induced multi-channel image, whose ‘pixel’ are often 

viewed as a selected feature. Every neuron is connected with 

alittle portion of adjacent neurons from the previous layer 

(receptive field). differing types of transformations [6], [49], 

[50] are often conducted on feature maps, like filtering and 

pooling. Filtering (convolution) operation convolutes a filter 

matrix (learned weights) with the values of a receptive field 

of neurons and takes a nonlinear function (such as sigmoid 

[51], ReLU) to get final responses. Pooling operation, like max 

pooling, average pooling, L2-pooling and native contrast 

normalization [52], summaries the responses of a receptive 

field into one value to supply more robust feature 

descriptions. 

With an interleave between convolution and pooling, an 

initial feature hierarchy is made , which may be fine-tuned 

during a supervised manner by adding several fully connected 

(FC) layers to adapt to different visual tasks. consistent with 

the tasks involved, the ultimate layer with different activation 

functions [6] is added to urge a selected contingent 

probability for every output neuron. and therefore the whole 

network are often optimized on an Crawlingive function (e.g. 

mean squared error or cross-entropy loss) via the stochastic 

gradient descent (SGD) method. the standard VGG16 has 

totally 13 convolutional (conv) layers, 3 fully connected 

layers, 3 max-pooling layers and a softmax classification layer. 

The conv feature maps are produced by convoluting 3*3 filter 

windows, and have map resolutions are reduced with 2 stride 

max-pooling layers. An arbitrary test image of an equivalent 

size as training samples are often processed with the trained 

network. Re-scaling or cropping operations could also be 

needed if different sizes are provided [6]. 

The advantages of CNN against traditional methods are 

often summarised as follows. 

•level representations from pixel to high-level semantic 

fea-Hierarchical feature representation, which is that the 

multitures learned by a hierarchical multi-stage structure 

[15], [53], are often learned from data automatically and, a 

brief introduction on the history of deep learning and 

therefore the basic architecture of CNN is provided. Generic 

Crawling detection architectures are presented in Section 3. 

Then reviews of CNN applied in several specific tasks, 

including salient Crawling detection, crawl detection and 

crawling object detection, are exhibited in Section 4-6, 

respectively. Several promising future directions are 

proposed in Section 7. At last, some concluding remarks are 

presented in Section 8. 

II. A BRIEF OVERVIEW OF DEEP LEARNING 

Prior to overview on deep learning based Crawling 

detection approaches, we offer a review on the history of 

deep learning along side an introduction on the essential 

architecture and advantages of CNN. 

A. The History: Birth, Decline and Prosperity 

Deep models are often mentioned as neural networks with 

deep structures. The history of neural networks can date back 

to 1940s [35], and the original intention was to simulate the 

human brain system to solve general learning problems in a 

principled way. It was popular in 1980s and 1990s with the 

proposal of back-propagation algorithm by Hinton et al. [36]. 

However, due to the overfitting of training, lack of large scale 

training data, limited computation power and insignificance 

in performance compared with other machine learning tools, 

neural networks fell out of fashion in early 2000s. 

Deep learning has become popular since 2006 [37][S7] with 

an opportunity through in speech recognition [38]. The 

recovery of deep learning are often attributed to the 

subsequent factors. 

•as ImageNet [39], to fully exhibit its very large learningThe 

emergence of large scale annotated training data, such 

capacity; 
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•systems, such as GPU clusters;Fast development of high 
performance parallel computing 

•and training strategies. With unsupervised and 
layerwiseSignificant advances within the design of network 

structures pre-training guided by Auto-Encoder (AE) [40] or 

Restricted Boltzmann Machine (RBM) [41], an honest 

initialization is provided. With dropout and data 

augmentation, the overfitting problem in training has been 

relieved [6], [42]. With batch normalization (BN), the training 

of very deep neural networks becomes quite efficient [43]. 

Meanwhile, various network structures, such as AlexNet [6], 

Overfeat [44], GoogLeNet [45], VGG [46] and ResNet [47], 

have been extensively studied to improve the performance. 

What prompts deep learning to possess an enormous 

impact on the whole academic community? It may owe to the 

contribution of Hinton’s group, whose continuous efforts 

have demonstrated that deep learning would bring a 

revolutionary breakthrough on grand challenges instead of 

just obvious improvements on small datasets. Their success 

results from training an outsized CNN on 1.2 million labeled 

images together with a few techniques [6] (e.g., ReLU 

operation [48] and ‘dropout’ regularization). 

 

III. GENERIC CRAWLING DETECTION 

Generic Crawling detection aims at locating and classifying 

existing Crawlings in any one image, and labeling them with 

rectangular bounding boxes to show the confidences of 

existence. The frameworks of generic Crawling detection 

methods can mainly be categorized into two types (see Figure 

2). One follows traditional Crawling detection pipeline, 

generating region proposals at first and then classifying each 

proposal into different Crawling categories. The other regards 

Crawling detection as a regression or classification problem, 

adopting a unified framework to achieve final results 

(categories and locations) directly. The region proposal based 

methods mainly include R-CNN [15], SPP-net [64], Fast R-CNN 

[16], Faster R-CNN [18], R-FCN [65], FPN [66] and Mask R-

CNN [67], some of which are correlated with each other (e.g. 

SPP-net modifies RCNN with a SPP layer). The 

regression/classification based methods mainly includes 

MultiBox [68], AttentionNet [69], G-CNN [70], YOLO [17], SSD 

[71], YOLOv2 [72], DSSD [73] and DSOD [74]. The correlations 

between these two pipelines are bridged by the anchors 

introduced in Faster RCNN. Details of these methods are as 

follows. 

A. Region Proposal Based Framework 

The region proposal based framework, a two-step process, 

matches the attention mechanism of human brain to some 

extent, which gives a coarse scan of the whole scenario firstly 

and then focuses on regions of interest. Among the pre-

related works [44], [75], [76], the most representative one is 

Over feat [44]. This model inserts CNN into sliding window 

method, which predicts bounding boxes directly from 

locations of the topmost feature map after obtaining the 

confidences of underlying Crawling categories. 

1) R-CNN: It is of significance to improve the quality of 

candidate bounding boxes and to take a deep architecture to 

extract high-level features. To solve these problems, R-CNN 

[15] was proposed by Ross Girshick in 2014 and obtained a 

mean average precision (mAP) of 53.3% with more than 30% 

improvement over the previous best result (DPM HSC [77]) 

on PASCAL VOC 2012. Figure 3 shows the flowchart of R-CNN, 

which can be divided into three stages as follows. 

Region proposal generation. The R-CNN adopts selective 

search [78] to generate about 2k region proposals for each 

image. The selective search method relies on simple bottom-

up grouping and saliency cues to provide more accurate 

candidate boxes of arbitrary sizes quickly and to reduce the 

searching space in Crawling detection [24], [39]. 

CNN based deep feature extraction. In this stage, each region 

proposal is warped or cropped into a fixed resolution and the 

CNN module in [6] is utilized to extract a 4096dimensional 

feature as the final representation. Due to large learning 

capacity, dominant expressive power and hierarchical 

structure of CNNs, a high-level, semantic and robust feature 

representation for each region proposal can be obtained. 

Classification and localization. With pre-trained 

categoryspecific linear SVMs for multiple classes, different 

region proposals are scored on a set of positive regions and 

background (negative) regions. The scored regions are then 

adjusted with 

http://www.ijsrem.com/
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R-CNN: Regions with CNN features 

tvmonitor? no. 

1. Input 2. Extract region 3. Compute 4. Classify image proposals 
(~2k) CNN features regions 

Fig. 3. The flowchart of R-CNN [15], which consists of 3 stages: (1) extracts 

bottom-up region proposals, (2) computes features for each proposal using a 

CNN, and then (3) classifies each region with class-specific linear SVMs. 

bounding box regression and filtered with a greedy non 

maximum suppression (NMS) to produce final bounding 

boxes for preserved Crawling locations. 

When there are scarce or insufficient labeled data, pre-

training is usually conducted. Instead of unsupervised pre-

training [79], R-CNN firstly conducts supervised pre-training 

on ILSVRC, a very large auxiliary dataset, and then takes a 

domain-specific fine-tuning. This scheme has been adopted 

by most of subsequent approaches [16], [18]. 

In spite of its improvements over traditional methods and 

significance in bringing CNN into practical Crawling detection, 

there are still some disadvantages. 

•fixed-size (e.g. Due to the existence of FC layers, the CNN 

requires a227×227) input image, which directly leads to 

the re-computation of the whole CNN for each evaluated 

region, taking a great deal of time in the testing period. •a convolutional network (ConvNet) on Crawling proposals 

isTraining of R-CNN is a multi-stage pipeline. At first, fine-

tuned. Then the softmax classifier learned by finetuning is 

replaced by SVMs to fit in with ConvNet features. Finally, 

bounding-box regressors are trained. 

•extracted from different region proposals and stored on 

theTraining is expensive in space and time. Features are 

disk. It will take a long time to process a relatively small 

training set with very deep networks, such as VGG16. At 

the same time, the storage memory required by these 

features should also be a matter of concern. •with relatively high recalls, the obtained region 

proposalsAlthough selective search can generate region 

proposals are still redundant and this procedure is time-

consuming (around 2 seconds to extract 2k region 

proposals). 

To solve these problems, many methods have been 

proposed. GOP [80] takes a much faster geodesic based 

segmentation to replace traditional graph cuts. MCG [81] 

searches different scales of the image for multiple 

hierarchical segmentations and combinatorially groups 

different regions to produce proposals. Instead of extracting 

visually distinct segments, the edge boxes method [82] 

adopts the idea that Crawlings are more likely to exist in 

bounding boxes with fewer contours straggling their 

boundaries. Also some researches tried to re-rank or refine 

pre-extracted region proposals to remove unnecessary ones 

and obtained a limited number of valuable ones, such as 

DeepBox [83] and SharpMask [84]. 

In addition, there are some improvements to solve the 

problem of inaccurate localization. Zhang et al. [85] utilized a 

bayesian optimization based search algorithm to guide the 

regressions of different bounding boxes sequentially, and 

trained class-specific CNN classifiers with a structured loss to 

penalize the localization inaccuracy explicitly. Saurabh Gupta 

et al. improved Crawling detection for RGB-D images with 

semantically rich image and depth features [86], and learned 

a new geocentric embedding for depth images to encode 

each pixel. The combination of Crawling detectors and 

superpixel classification framework gains a promising result 

R-FCN 

Fig. 2. Two types of frameworks: region proposal based and regression/classification based. SPP: Spatial Pyramid Pooling [64], FRCN: Faster R-CNN [16], RPN: 

Region Proposal Network [18], FCN: Fully Convolutional Network [65], BN: Batch Normalization [43], Deconv layers: Deconvolution layers [54]. 
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on semantic scene segmentation task. Ouyang et al. proposed 

a deformable deep CNN (DeepID-Net) [87] which introduces a 

novel deformation constrained pooling (def-pooling) layer to 

impose geometric penalty on the deformation of various 

Crawling parts and makes an ensemble of models with 

different settings. Lenc et al. [88] provided an analysis on the 

role of proposal generation in CNN-based detectors and tried 

to replace this stage with a constant and trivial region 

generation scheme. The goal is achieved by biasing sampling 

to match the statistics of the ground truth bounding boxes 

with K-means clustering. However, more candidate boxes are 

required to achieve comparable results to those of R-CNN. 

2) SPP-net: FC layers must take a fixed-size input. That’s 

why R-CNN chooses to warp or crop each region proposal 

into the same size. However, the Crawling may exist partly in 

the cropped region and unwanted geometric distortion may 

be produced due to the warping operation. These content 

losses or distortions will reduce recognition accuracy, 

especially when the scales of Crawlings vary. 

To solve this problem, He et al. took the theory of spatial 

pyramid matching (SPM) [89], [90] into consideration and 

proposed a novel CNN architecture named SPP-net [64]. SPM 

takes several finer to coarser scales to partition the image 

into a number of divisions and aggregates quantized local 

features into mid-level representations. 

The architecture of SPP-net for Crawling detection can be 

found in Figure 4. Different from R-CNN, SPP-net reuses 

feature maps of the 5-th conv layer (conv5) to project region 

 

Fig. 5. The architecture of Fast R-CNN [16]. 

proposals of arbitrary sizes to fixed-length feature vectors. 

The feasibility of the reusability of these feature maps is due 

to the fact that the feature maps not only involve the 

strength of local responses, but also have relationships with 

their spatial positions [64]. The layer after the final conv layer 

is referred to as spatial pyramid pooling layer (SPP layer). If 

the number of feature maps in conv5 is 256, taking a 3-level 

pyramid, the final feature vector for each region proposal 

obtained after SPP layer has a dimension of 256 × (12 + 22 + 

42) = 5376. 

SPP-net not only gains better results with correct 

estimation of different region proposals in their 

corresponding scales, but also improves detection efficiency 

in testing period with the sharing of computation cost before 

SPP layer among different proposals. 

3) Fast R-CNN: Although SPP-net has achieved impressive 

improvements in both accuracy and efficiency over R-CNN, it 

still has some notable drawbacks. SPP-net takes almost the 

same multi-stage pipeline as R-CNN, including feature 

extraction, network fine-tuning, SVM training and 

boundingbox regressor fitting. So an additional expense on 

storage space is still required. Additionally, the conv layers 

preceding the SPP layer cannot be updated with the fine-

tuning algorithm introduced in [64]. As a result, an accuracy 

drop of very deep networks is unsurprising. To this end, 

Girshick [16] introduced a multi-task loss on classification and 

bounding box regression and proposed a novel CNN 

architecture named Fast R-CNN. 

The architecture of Fast R-CNN is exhibited in Figure 5. 

Similar to SPP-net, the whole image is processed with conv 

layers to produce feature maps. Then, a fixed-length feature 

vector is extracted from each region proposal with a region of 

interest (RoI) pooling layer. The RoI pooling layer is a special 

case of the SPP layer, which has only one pyramid level. Each 

feature vector is then fed into a sequence of FC layers before 

finally branching into two sibling output layers. One output 

layer is responsible for producing softmax probabilities for all 

C + 1 categories (C Crawling classes plus one ‘background’ 
class) and the other output layer encodes refined 

boundingbox positions with four real-valued numbers. All 

parameters in these procedures (except the generation of 

region proposals) are optimized via a multi-task loss in an 

end-to-end way. 

The multi-tasks loss L is defined as below to jointly train 

classification and bounding-box regression, 

L(p,u,tu,v) = Lcls(p,u) + λ[u ≥ 1]Lloc(tu,v) (1) where 

Lcls(p,u) = −logpu calculates the log loss for ground truth class 

u and pu is driven from the discrete probability distribution p 

= (p0,··· ,pC) over the C +1 outputs from the last FC layer. 

Lloc(tu,v) is defined over the predicted offsets 

 and ground-truth bounding-box 

regression targets v = (vx,vy,vw,vh), where x,y,w,h denote the 

two coordinates of the box center, width, and height, 

respectively. Each tu adopts the parameter settings in [15] to 

specify an Crawling proposal with a log-space height/width 

shift and scaleinvariant translation. The Iverson bracket 

indicator function [u ≥ 1] is employed to omit all background 

RoIs. To provide more robustness against outliers and 

spatialpyramid 
poolinglayer 

feature mapsof conv 5 

convolutional layers 
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eliminate the sensitivity in exploding gradients, a smooth L1 

loss is adopted to fit bounding-box regressors as below 

  (2) 

where 

  (3) 

To accelerate the pipeline of Fast R-CNN, another two 

tricks are of necessity. On one hand, if training samples (i.e. 

RoIs) come from different images, back-propagation through 

the SPP layer becomes highly inefficient. Fast R-CNN samples 

mini-batches hierarchically, namely N images sampled 

randomly at first and then R/N RoIs sampled in each image, 

where R represents the number of RoIs. Critically, 

computation and memory are shared by RoIs from the same 

image in the forward and backward pass. On the other hand, 

much time is spent in computing the FC layers during the 

forward pass [16]. The truncated Singular Value 

Decomposition (SVD) [91] can be utilized to compress large 

FC layers and to accelerate the testing procedure. 

In the Fast R-CNN, regardless of region proposal 

generation, the training of all network layers can be 

processed in a single-stage with a multi-task loss. It saves the 

additional expense on storage space, and improves both 

accuracy and efficiency with more reasonable training 

schemes. 

4) Faster R-CNN: Despite the attempt to generate 

candidate boxes with biased sampling [88], state-of-the-art 

Crawling detection networks mainly rely on additional 

methods, such as selective search and Edgebox, to generate a 

candidate pool of isolated region proposals. Region proposal 

computation is also a bottleneck in improving efficiency. To 

solve this problem, Ren et al. introduced an additional Region 

Proposal Network (RPN) [18], [92], which acts in a nearly 

cost-free way by sharing full-image conv features with 

detection network. 

RPN is achieved with a fully-convolutional network, which 

has the ability to predict Crawling bounds and scores at each 

position simultaneously. Similar to [78], RPN takes an image 

of arbitrary size to generate a set of rectangular Crawling 

proposals. RPN operates on a specific conv layer with the 

preceding layers shared with Crawling detection network. 

 

Fig. 6. The RPN in Faster R-CNN [18]. K predefined anchor boxes are 

convoluted with each sliding window to produce fixed-length vectors which 

are taken by cls and reg layer to obtain corresponding outputs. 

The architecture of RPN is shown in Figure 6. The network 

slides over the conv feature map and fully connects to an n × 

n spatial window. A low dimensional vector (512-d for 

VGG16) is obtained in each sliding window and fed into two 

sibling FC layers, namely box-classification layer (cls) and box-

regression layer (reg). This architecture is implemented with 

an n × n conv layer followed by two sibling 1 × 1 conv layers. 

To increase non-linearity, ReLU is applied to the output of 

theThe regressions towards true bounding boxes are 

achievedn × n conv layer. 

by comparing proposals relative to reference boxes (anchors). 

In the Faster R-CNN, anchors of 3 scales and 3 aspect ratios 

are adopted. The loss function is similar to (1). 

 
(4) 

where pi shows the predicted probability of the i-th anchor 

being an Crawling. The ground truth label p∗i is 1 if the anchor 

is positive, otherwise 0. ti stores 4 parameterized coordinates 

of the predicted bounding box while t∗i is related to the 

groundtruth box overlapping with a positive anchor. Lcls is a 

binary log loss and Lreg is a smoothed L1 loss similar to (2). 

These two terms are normalized with the mini-batch size 

(Ncls) and the number of anchor locations (Nreg), respectively. 

In the form of fully-convolutional networks, Faster R-CNN can 

be trained end-to-end by back-propagation and SGD in an 

alternate training manner. 

With the proposal of Faster R-CNN, region proposal based 

CNN architectures for Crawling detection can really be 

trained in an end-to-end way. Also a frame rate of 5 FPS 

(Frame Per Second) on a GPU is achieved with state-of-the-

art Crawling detection accuracy on PASCAL VOC 2007 and 

2012. However, the alternate training algorithm is very time-

consuming and RPN produces Crawling-like regions (including 

backgrounds) instead of Crawling instances and is not skilled 

in dealing with Crawlings with extreme scales or shapes. 

5) R-FCN: Divided by the RoI pooling layer, a prevalent 

family [16], [18] of deep networks for Crawling detection are 

composed of two subnetworks: a shared fully convolutional 

subnetwork (independent of RoIs) and an unshared RoI-wise 

subnetwork. This decomposition originates from pioneering 

classification architectures (e.g. AlexNet [6] and VGG16 [46]) 

which consist of a convolutional subnetwork and several FC 

layers separated by a specific spatial pooling layer. 

Recent state-of-the-art image classification networks, such 

as Residual Nets (ResNets) [47] and GoogLeNets [45], [93], 

are fully convolutional. To adapt to these architectures, it’s 
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Fig. 7. The main concern of FPN [66]. (a) It is slow to use an image pyramid to 

build a feature pyramid. (b) Only single scale features is adopted for faster 

detection. (c) An alternative to the featurized image pyramid is to reuse the 

pyramidal feature hierarchy computed by a ConvNet. (d) FPN integrates both 

(b) and (c). Blue outlines indicate feature maps and thicker outlines denote 

semantically stronger features. 

natural to construct a fully convolutional Crawling detection 

network without RoI-wise subnetwork. However, it turns out 

to be inferior with such a naive solution [47]. This 

inconsistence is due to the dilemma of respecting translation 

variance in Crawling detection compared with increasing 

translation invariance in image classification. In other words, 

shifting an Crawling inside an image should be 

indiscriminative in image classification while any translation 

of an Crawling in a bounding box may be meaningful in 

Crawling detection. A manual insertion of the RoI pooling 

layer into convolutions can break down translation invariance 

at the expense of additional unshared region-wise layers. So 

Li et al. [65] proposed a region-based fully convolutional 

networks (R-FCN, Fig. S2). 

Different from Faster R-CNN, for each category, the last 

conv layer of R-FCN produces a total of k2 position-sensitive 

score maps with a fixed grid of k × k firstly and a 

positionsensitive RoI pooling layer is then appended to 

aggregate the responses from these score maps. Finally, in 

each RoI, k2 position-sensitive scores are averaged to produce 

a C + 1-d vector and softmax responses across categories are 

computed. Another 4k2-d conv layer is appended to obtain 

class-agnostic bounding boxes. 

With R-FCN, more powerful classification networks can be 

adopted to accomplish Crawling detection in a fully-

convolutional architecture by sharing nearly all the layers, 

and state-of-theart results are obtained on both PASCAL VOC 

and Microsoft COCO [94] datasets at a test speed of 170ms 

per image. 

6) FPN: Feature pyramids built upon image pyramids 

(featurized image pyramids) have been widely applied in 

many Crawling detection systems to improve scale invariance 

[24], [64] (Figure 7(a)). However, training time and memory 

consumption increase rapidly. To this end, some techniques 

take only a single input scale to represent high-level 

semantics and increase the robustness to scale changes 

(Figure 7(b)), and image pyramids are built at test time which 

results in an inconsistency between train/test-time inferences 

[16], [18]. The in-network feature hierarchy in a deep 

ConvNet produces feature maps of different spatial 

resolutions while introduces large semantic gaps caused by 

different depths (Figure 7(c)). To avoid using low-level 

features, pioneer works [71], [95] usually build the pyramid 

starting from middle layers or just sum transformed feature 

responses, missing the higher- 

 
Fig. 8. The Mask R-CNN framework for instance segmentation [67]. 

resolution maps of the feature hierarchy. 

Different from these approaches, FPN [66] holds an 

architecture with a bottom-up pathway, a top-down pathway 

and several lateral connections to combine low-resolution 

and semantically strong features with high-resolution and 

semantically weak features (Figure 7(d)). The bottom-up 

pathway, which is the basic forward backbone ConvNet, 

produces a feature hierarchy by downsampling the 

corresponding feature maps with a stride of 2. The layers 

owning the same size of output maps are grouped into the 

same network stage and the output of the last layer of each 

stage is chosen as the reference set of feature maps to build 

the following top-down pathway. 

To build the top-down pathway, feature maps from higher 

network stages are upsampled at first and then enhanced 

with those of the same spatial size from the bottom-up 

pathway via lateral connections. A 1 × 1 conv layer is 

appended to the upsampled map to reduce channel 

dimensions and the mergence is achieved by element-wise 

addition. Finally, a 3×3 convolution is also appended to each 

merged map to reduce the aliasing effect of upsampling and 

the final feature map is generated. This process is iterated 

until the finest resolution map is generated. 

As feature pyramid can extract rich semantics from all 

levels and be trained end-to-end with all scales, state-of-

theart representation can be obtained without sacrificing 

speed and memory. Meanwhile, FPN is independent of the 

backbone CNN architectures and can be applied to different 

stages of Crawling detection (e.g. region proposal generation) 

and to many other computer vision tasks (e.g. instance 

segmentation). 

7) Mask R-CNN: Instance segmentation [96] is a 

challenging task which requires detecting all Crawlings in an 

image and segmenting each instance (semantic segmentation 

[97]). These two tasks are usually regarded as two 

independent processes. And the multi-task scheme will 

create spurious edge and exhibit systematic errors on 

overlapping instances [98]. To solve this problem, parallel to 

the existing branches in Faster R-CNN for classification and 

a) Featurized image pyramid ( 

predict 
predict 
predict 
predict 

b) Single feature map ( 

predict 

( d) Feature Pyramid Network 

predict 
predict 
predict 

( c) Pyramidal feature hierarchy 

predict 
predict 
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bounding box regression, the Mask R-CNN [67] adds a branch 

to predict segmentation masks in a pixel-to-pixel manner 

(Figure 8). 

Different from the other two branches which are inevitably 

collapsed into short output vectors by FC layers, the 

segmentation mask branch encodes an m × m mask to 

maintain the explicit Crawling spatial layout. This kind of fully 

convolutional representation requires fewer parameters but 

is more accurate than that of [97]. Formally, besides the two 

losses in (1) for classification and bounding box regression, an 

additional loss for segmentation mask branch is defined to 

reach a multi-task loss. An this loss is only associated with 

ground-truth class and relies on the classification branch to 

predict the category. 

Because RoI pooling, the core operation in Faster R-CNN, 

performs a coarse spatial quantization for feature extraction, 

misalignment is introduced between the RoI and the 

features. It affects classification little because of its 

robustness to small translations. However, it has a large 

negative effect on pixelto-pixel mask prediction. To solve this 

problem, Mask R-CNN adopts an easy and quantization-free 

layer, namely RoIAlign, to preserve the specific per-pixel 

spatial correspondence faithfully. RoIAlign is achieved by 

replacing the tough quantization of RoI pooling with bilinear 

interpolation [99], computing the precise values of the input 

features at four regularly sampled locations in each RoI bin. In 

spite of its simplicity, this seemingly minor change improves 

mask accuracy greatly, especially under strict localization 

metrics. 

Given the Faster R-CNN framework, the mask branch only 

adds alittle computational burden and its cooperation with 

other tasks provides complementary information for Crawling 

detection. As a result, Mask R-CNN is straightforward to 

implement with promising instance segmentation and 

Crawling detection results. In a word, Mask R-CNN may be a 

flexible and efficient framework for instance-level 

recognition, which may be easily generalized to other tasks 

(e.g. human pose estimation [7][S4]) with minimal 

modification. 

8) Multi-task Learning, Multi-scale Representation and 

Contextual Modelling: Although the Faster R-CNN gets 

promising results with several hundred proposals, it still 

struggles in small-size Crawling detection and localization, 

mainly thanks to the coarseness of its feature maps and 

limited information provided especially candidate boxes. The 

phenomenon is more obvious on the Microsoft COCO dataset 

which consists of Crawlings at a broad range of scales, less 

prototypical images, and requires more precise localization. 

To tackle these problems, it's necessarily to accomplish 

Crawling detection with multi-task learning [100], multi-scale 

representation [95] and context modelling [101] to mix 

complementary information from multiple sources. 

Multi-task Learning learns a useful representation for 

multiple correlated tasks from an equivalent input [102], 

[103]. Brahmbhatt et al. introduced conv features trained for 

Crawling segmentation and ‘stuff’ (amorphous categories like 

ground and water) to guide accurate Crawling detection of 

small Crawlings (StuffNet) [100]. Dai et al. [97] presented 

Multitask Network Cascades of three networks, namely class-

agnostic region proposal generation, pixel-level instance 

segmentation and regional instance classification. Li et al. 

incorporated the weakly-supervised Crawling segmentation 

cues and region-based Crawling detection into a multi-stage 

architecture to completely exploit the learned segmentation 

features [104]. 

Multi-scale Representation combines activations from 

multiple layers with skip-layer connections to supply 

semantic information of various spatial resolutions [66]. Cai 

et al. proposed the MS-CNN [105] to ease the inconsistency 

between the sizes of Crawlings and receptive fields with 

multiple scale-independent output layers. Yang et al. 

investigated two strategies, namely scale-dependent pooling 

(SDP) and layerwise cascaded rejection classifiers (CRC), to 

take advantage of appropriate scale-dependent conv features 

[33]. Kong et al. proposed the HyperNet to calculate the 

shared features between RPN and Crawling detection 

network by aggregating and compressing hierarchical feature 

maps from different resolutions into a consistent space [101]. 

Contextual Modelling improves detection performance by 

exploiting features from or around RoIs of various support 

regions and resolutions to affect occlusions and native 

similarities [95]. Zhu et al. proposed the SegDeepM to take 

advantage of Crawling segmentation which reduces the 

dependency on initial candidate boxes with Markov Random 

Field [106]. Moysset et al. took advantage of 4 directional 2D-

LSTMs [107] to convey global context between different local 

regions and reduced trainable parameters with local 

parameter-sharing [108]. Zeng et al. proposed a completely 

unique GBD-Net by introducing gated functions to regulate 

message transmission between different support regions 

[109]. 

The Combination incorporates different components above 

into an equivalent model to enhance detection performance 

further. Gidaris et al. proposed the Multi-Region CNN (MR-

CNN) model [110] to capture different aspects of an Crawling, 

the distinct appearances of varied Crawling parts and 

semantic segmentation-aware features. to get contextual and 

multiscale representations, Bell et al. proposed the Inside-

Outside Net (ION) by exploiting information both inside and 

out of doors the RoI [95] with spatial recurrent neural 

networks [111] and skip pooling [101]. Zagoruyko et al. 

proposed the MultiPath architecture by introducing three 

modifications to the Fast R-CNN [112], including multi-scale 

skip connections [95], a modified foveal structure [110] and a 
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completely unique loss function summing different IoU 

losses. 

9) Thinking in Deep Learning based Crawling Detection: 

aside from the above approaches, there are still many 

important factors for continued progress. 

There is an outsized imbalance between the amount of 

annotated Crawlings and background examples. to deal with 

this problem, Shrivastava et al. proposed an efficient online 

mining algorithm (OHEM) [113] for automatic selection of the 

hard examples, which results in a simpler and efficient 

training. 

Instead of concentrating on feature extraction, Ren et al. 

made an in depth analysis on Crawling classifiers [114], and 

located that it's of particular importance for Crawling 

detection to construct a deep and convolutional per-region 

classifier carefully, especially for ResNets [47] and 

GoogLeNets [45]. 

Traditional CNN framework for Crawling detection isn't 

skilled in handling significant scale variation, occlusion or 

truncation, especially when only 2D Crawling detection is 

involved. to deal with this problem, Xiang et al. proposed a 

completely unique subcategory-aware region proposal 

network [60], which guides the generation of region 

proposals with subcategory information associated with 

Crawling poses and jointly optimize Crawling detection and 

subcategory classification. 

Ouyang et al. found that the samples from different classes 

follow a longtailed distribution [115], which indicates that 

different classes with distinct numbers of samples have 

different degrees of impacts on feature learning. to the 

present end, Crawlings are firstly clustered into visually 

similar class groups, then a hierarchical feature learning 

scheme is adopted to find out deep representations for every 

group separately. 

In order to attenuate computational cost and achieve the 

state-of-the-art performance, with the ‘deep and thin’ design 

principle and following the pipeline of Fast R-CNN, Hong et al. 

proposed the architecture of PVANET [116], which adopts 

some building blocks including concatenated ReLU [117], 

Inception [45], and HyperNet [101] to scale back the expense 

on multi-scale feature extraction and trains the network with 

batch normalization [43], residual connections [47], and 

learning rate scheduling supported plateau detection [47]. 

The PVANET achieves the state-of-the-art performance and 

may be processed in real time on Titan X GPU (21 FPS). 

B. Regression/Classification Based Framework 

Region proposal based frameworks are composed of 

several correlated stages, including region proposal 

generation, feature extraction with CNN, classification and 

bounding box regression, which are usually trained 

separately. Even in recent end-to-end module Faster R-CNN, 

an alternate training remains required to get shared 

convolution parameters between RPN and detection 

network. As a result, the time spent in handling different 

components becomes the bottleneck in realtime application. 

One-step frameworks supported global 

regression/classification, mapping straightly from image 

pixels to bounding box coordinates and sophistication 

probabilities, can reduce time expense. We firstly reviews 

some pioneer CNN models, then specialise in two significant 

frameworks, namely you simply look once (YOLO) [17] and 

Single Shot MultiBox Detector (SSD) [71]. 

1) Pioneer Works: Previous to YOLO and SSD, many 

researchers have already tried to model Crawling detection 

as a regression or classification task. 

Szegedy et al. formulated Crawling detection task as a 

DNNbased regression [118], generating a binary mask for the 

test image and extracting detections with an easy bounding 

box inference. However, the model has difficulty in handling 

overlapping Crawlings, and bounding boxes generated by 

direct upsampling is way from perfect. 

Pinheiro et al. proposed a CNN model with two branches: 

one generates class agnostic segmentation masks and 

therefore the other predicts the likelihood of a given patch 

centered on an Crawling [119]. Inference is efficient since 

class scores and segmentation are often obtained during a 

single model with most of the CNN operations shared. 

Erhan et al. proposed regression based MultiBox to supply 

scored class-agnostic region proposals [68], [120]. A unified 

loss was introduced to bias both localization and confidences 

of multiple components to predict the coordinates of 

classagnostic bounding boxes. However, an outsized quantity 

of additional parameters are introduced to the ultimate layer. 

Yoo et al. adopted an iterative classification approach to 

handle Crawling detection and proposed a powerful end-

toend CNN architecture named AttentionNet [69]. ranging 

from the top-left (TL) and bottom-right (BR) corner of a 

picture , AttentionNet points to a target Crawling by 

generating quantized weak directions and converges to an 

accurate Crawling boundary box with an ensemble of 

iterative predictions. However, the model becomes quite 

inefficient when handling multiple categories with a 

progressive two-step procedure. 

Najibi et al. proposed a proposal-free iterative grid based 

Crawling detector (G-CNN), which models Crawling detection 

as 

 

 
Fig. 9. Main idea of YOLO [17]. 
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finding a path from a fixed grid to boxes tightly surrounding 

the Crawlings [70]. Starting with a fixed multi-scale bounding 

box grid, G-CNN trains a regressor to move and scale 

elements of the grid towards Crawlings iteratively. However, 

G-CNN has a difficulty in dealing with small or highly 

overlapping Crawlings. 

2) YOLO: Redmon et al. [17] proposed a novel framework 

called YOLO, which makes use of the whole topmost feature 

map to predict both confidences for multiple categories and 

bounding boxes. The basic idea of YOLO is exhibited in Figure 

9. YOLO divides the input image into an S × S grid and each 

grid cell is responsible for predicting the Crawling centered in 

that grid cell. Each grid cell predicts B bounding boxes and 

their corresponding confidence scores. Formally, confidence 

scores are defined as , which shows 

confidences of its prediction (indicates how likely there exist 

Crawlings ( Pr(Crawling). At the same) ≥ 0) and 

time, regardless of the number of boxes, C conditional class 

probabilities (Pr(Classi|Crawling)) should also be predicted 

in each grid cell. It should be noticed that only the 

contribution from the grid cell containing an Crawling is 

calculated. 

At test time, class-specific confidence scores for each box 

are achieved by multiplying the individual box confidence 

predictions with the conditional class probabilities as follows. 

 

where the existing probability of class-specific Crawlings in 

the box and the fitness between the predicted box and the 

Crawling are both taken into consideration. 

During training, the following loss function is optimized, 

 

 
In a certain cell i, (xi,yi) denote the center of the box relative 

to the bounds of the grid cell, (wi,hi) are the normalized 

width and height relative to the image size, Ci represents 

confidence scores, 1obj
i indicates the existence of Crawlings 

and 1obj
ij denotes that the prediction is conducted by the jth 

bounding box predictor. Note that only when an Crawling is 

present in that grid cell, the loss function penalizes 

classification errors. Similarly, when the predictor is 

‘responsible’ for the ground truth box (i.e. the highest IoU of 

any predictor in that grid cell is achieved), bounding box 

coordinate errors are penalized. 

The YOLO consists of 24 conv layers and 2 FC layers, of 

which some conv layers construct ensembles of inception 

modules with 1 × 1 reduction layers followed by 3 × 3 conv 

layers. The network can process images in real-time at 45 FPS 

and a simplified version Fast YOLO can reach 155 FPS with 

better results than other real-time detectors. Furthermore, 

YOLO produces fewer false positives on background, which 

makes the cooperation with Fast R-CNN become possible. An 

improved version, YOLOv2, was later proposed in [72], which 

adopts several impressive strategies, such as BN, anchor 

boxes, dimension cluster and multi-scale training. 

3) SSD: YOLO has a difficulty in dealing with small Crawlings 

in groups, which is caused by strong spatial constraints 

imposed on bounding box predictions [17]. Meanwhile, YOLO 

struggles to generalize to Crawlings in new/unusual aspect 

ratios/ configurations and produces relatively coarse features 

due to multiple downsampling operations. 

Aiming at these problems, Liu et al. proposed a Single Shot 

MultiBox Detector (SSD) [71], which was inspired by the 

anchors adopted in MultiBox [68], RPN [18] and multi-scale 

representation [95]. Given a specific feature map, instead of 

fixed grids adopted in YOLO, the SSD takes advantage of a set 

of default anchor boxes with different aspect ratios and 

scales to discretize the output space of bounding boxes. To 

handle Crawlings with various sizes, the network fuses 

predictions from multiple feature maps with different 

resolutions . 

The architecture of SSD is demonstrated in Figure 10. Given 

the VGG16 backbone architecture, SSD adds several feature 

layers to the end of the network, which are responsible for 

predicting the offsets to default boxes with different scales 

and aspect ratios and their associated confidences. The 

network is trained with a weighted sum of localization loss 

(e.g. Smooth L1) and confidence loss (e.g. Softmax), which is 

similar to (1). Final detection results are obtained by 

conducting NMS on multi-scale refined bounding boxes. 

Integrating with hard negative mining, data augmentation 

and a larger number of carefully chosen default anchors, SSD 

significantly outperforms the Faster R-CNN in terms of 

accuracy on PASCAL VOC and COCO, while being three times 

faster. The SSD300 (input image size is 300×300) runs at 59 

FPS, which is more accurate and efficient than YOLO. 

However, SSD is not skilled at dealing with small Crawlings, 

which can be relieved by adopting better feature extractor 

backbone (e.g. ResNet101), adding deconvolution layers with 
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skip connections to introduce additional large-scale context 

[73] and designing better network structure (e.g. Stem Block 

and Dense Block) [74]. 

C. Experimental Evaluation 

We compare various Crawling detection methods on three 

benchmark datasets, including PASCAL VOC 2007 [25], 

PASCAL VOC 2012 [121] and Microsoft COCO [94]. The 

evaluated approaches include R-CNN [15], SPP-net [64], Fast 

R-CNN [16], NOC [114], Bayes [85], MR-CNN&S-CNN 

[105], Faster R-CNN [18], HyperNet [101], ION [95], MS- 

GR [104], StuffNet [100], SSD300 [71], SSD512 [71], OHEM 

[113], SDP+CRC [33], GCNN [70], SubCNN [60], GBD-Net 

[109], PVANET [116], YOLO [17], YOLOv2 [72], R-FCN 

[65], FPN [66], Mask R-CNN [67], DSSD [73] and DSOD [74]. If 

no specific instructions for the adopted framework are 

provided, the utilized model is a VGG16 [46] pretrained on 

1000-way ImageNet classification task [39]. Due to the 

limitation of paper length, we only provide an overview, 

including proposal, learning method, loss function, 

programming language and platform, of the prominent 

architectures in Table I. Detailed experimental settings, which 

can be found in the original papers, are missed. In addition to 

the comparisons of detection accuracy, another comparison 

is provided to evaluate their test consumption on PASCAL 

VOC 2007. 

1) PASCAL VOC 2007/2012: PASCAL VOC 2007 and 

2012 datasets consist of 20 categories. The evaluation terms 

are Average Precision (AP) in each single category and mean 

Average Precision (mAP) across all the 20 categories. 

Comparative results are exhibited in Table II and III, from 

which the following remarks can be obtained. 

•bone CNN models can definitely improve Crawling 

detectionIf incorporated with a proper way, more 

powerful backperformance (the comparison among R-CNN 

with AlexNet, R-CNN with VGG16 and SPP-net with ZF-Net 

[122]). 

•end multi-task architecture (FRCN) and RPN (Faster R-

With the introduction of SPP layer (SPP-net), end-to- 

CNN), Crawling detection performance is improved 

gradually and apparently. 

•obtain multi-level robust features, data augmentation is 

veryDue to large quantities of trainable parameters, in 

order to important for deep learning based models (Faster 

R-CNN with ‘07’ ,‘07+12’ and ‘07+12+coco’). •affecting Crawling detection performance, such as multi-

scaleApart from basic models, there are still many other 

factors and multi-region feature extraction (e.g. MR-CNN), 

modified classification networks (e.g. NOC), additional 

information from other correlated tasks (e.g. StuffNet, 

HyperNet), multi-scale representation (e.g. ION) and 

mining of hard negative samples (e.g. OHEM). • As YOLO is not skilled in producing Crawling localizations 

of high IoU, it obtains a very poor result on VOC 2012. 

However, with the complementary information from Fast 

R-CNN (YOLO+FRCN) and the aid of other strategies, such 

as anchor boxes, BN and fine grained features, the 

localization errors are corrected (YOLOv2). •network as a fully convolutional one, R-FCN achieves aBy 

combining many recent tricks and modelling the whole 

more obvious improvement of detection performance over 

other approaches. 

2) Microsoft COCO: Microsoft COCO is composed of 

300,000 fully segmented images, in which each image has an 

average of 7 Crawling instances from a total of 80 categories. 

As there are a lot of less iconic Crawlings with a broad range 

of scales and a stricter requirement on Crawling localization, 

this dataset is more challenging than PASCAL 2012. Crawling 

detection performance is evaluated by AP computed under 

 
Fig. 10. The architecture of SSD 300 [71]. SSD adds several feature layers to the end of VGG16 backbone network to predict the offsets to default anchor 

boxes and their associated confidences. Final detection results are obtained by conducting NMS on multi-scale refined bounding boxes. 
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different degrees of IoUs and on different Crawling sizes. The 

results are shown in Table IV. 

Besides similar remarks to those of PASCAL VOC, some 

other conclusions can be drawn as follows from Table IV. •ing Crawling detection performance, which provide 

additionalMulti-scale training and test are beneficial in 

improvinformation in different resolutions (R-FCN). FPN 

and DSSD provide some better ways to build feature 

pyramids to achieve multi-scale representation. The 

complementary information from other related tasks is 

also helpful for accurate Crawling localization (Mask R-CNN 

with instance segmentation task). •Faster R-CNN and R-FCN, perform better than regres-

Overall, region proposal based methods, such as 

sion/classfication based approaches, namely YOLO and 

SSD, due to the fact that quite a lot of localization errors 

are produced by regression/classfication based 

approaches. •which provides additional information by consulting 

nearbyContext modelling is helpful to locate small 

Crawlings, Crawlings and surroundings (GBD-Net and 

multi-path). 

•small Crawlings, the results on this dataset are much 

worseDue to the existence of a large number of 

nonstandard than those of VOC 2007/2012. With the 

introduction of other powerful frameworks (e.g. ResNeXt 

[123]) and useful strategies (e.g. multi-task learning [67], 

[124]), the performance can be improved. •importance of network design to release the 

requirementsThe success of DSOD in training from scratch 

stresses the for perfect pre-trained classifiers on relevant 

tasks and large numbers of annotated samples. 

3) Timing Analysis: Timing analysis (Table V) is conducted 

on Intel i7-6700K CPU with a single core and NVIDIA Titan 

TABLE I 
AN OVERVIEW OF PROMINENT GENERIC CRAWLING DETECTION ARCHITECTURES. 

 Framework Proposal Multi-scale Input Learning Method Loss Function Softmax Layer End-to-end Train Platform Language 

 R-CNN [15] Selective Search - SGD,BP Hinge loss (classification),Bounding box regression + - Caffe Matlab 
 SPP-net [64] EdgeBoxes + SGD Hinge loss (classification),Bounding box regression + - Caffe Matlab 
Fast RCNN [16] Selective Search + SGD Class Log loss+bounding box regression + - Caffe Python 
Faster R-CNN [18] RPN + SGD Class Log loss+bounding box regression + + Caffe Python/Matlab 
 R-FCN [65] RPN + SGD Class Log loss+bounding box regression - + Caffe Matlab 

Mask R-CNN [67] RPN + SGD 
Class Log loss+bounding box regression

+Semantic sigmoid loss + + TensorFlow/Keras Python 
 FPN [66] RPN + Synchronized SGD Class Log loss+bounding box regression + + TensorFlow Python 
 YOLO [17] - - SGDClass sum-squared error loss+bounding box regression+Crawling confidence+background confidence + +

 Darknet C 
 SSD [71] - - SGD Class softmax loss+bounding box regression - + Caffe C++ 
 YOLOv2 [72] - - SGDClass sum-squared error loss+bounding box regression+Crawling confidence+background confidence + +

 Darknet C 

* 
‘+’ denotes that corresponding techniques are employed while ‘-’ denotes that this technique is not considered. It should be noticed that R-CNN and SPP-net can not be trained end-to-end with a multi-task loss while the other 

architectures are based on multi-task joint training. As most of these architectures are re-implemented on different platforms with various programming languages, we only list the information associated with the versions 
by the referenced authors. 

TABLE II 
COMPARATIVE RESULTS ON VOC 2007 TEST SET (%). 

 Methods Trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP 

 R-CNN (Alex) [15] 07 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 68.6 58.5 
 R-CNN(VGG16) [15] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0 
 SPP-net(ZF) [64] 07 68.5 71.7 58.7 41.9 42.5 67.7 72.1 73.8 34.7 67.0 63.4 66.0 72.5 71.3 58.9 32.8 60.9 56.1 67.9 68.8 60.9 
 GCNN [70] 07 68.3 77.3 68.5 52.4 38.6 78.5 79.5 81.0 47.1 73.6 64.5 77.2 80.5 75.8 66.6 34.3 65.2 64.4 75.6 66.4 66.8 
 Bayes [85] 07 74.1 83.2 67.0 50.8 51.6 76.2 81.4 77.2 48.1 78.9 65.6 77.3 78.4 75.1 70.1 41.4 69.6 60.8 70.2 73.7 68.5 
 Fast R-CNN [16] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0 
 SDP+CRC [33] 07 76.1 79.4 68.2 52.6 46.0 78.4 78.4 81.0 46.7 73.5 65.3 78.6 81.0 76.7 77.3 39.0 65.1 67.2 77.5 70.3 68.9 
 SubCNN [60] 07 70.2 80.5 69.5 60.3 47.9 79.0 78.7 84.2 48.5 73.9 63.0 82.7 80.6 76.0 70.2 38.2 62.4 67.7 77.7 60.5 68.5 
 StuffNet30 [100] 07 72.6 81.7 70.6 60.5 53.0 81.5 83.7 83.9 52.2 78.9 70.7 85.0 85.7 77.0 78.7 42.2 73.6 69.2 79.2 73.8 72.7 
 NOC [114] 07+12 76.3 81.4 74.4 61.7 60.8 84.7 78.2 82.9 53.0 79.2 69.2 83.2 83.2 78.5 68.0 45.0 71.6 76.7 82.2 75.7 73.3 
MR-CNN&S-CNN [110] 07+12 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0 78.2 
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 HyperNet [101] 07+12 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5 76.3 
 MS-GR [104] 07+12 80.0 81.0 77.4 72.1 64.3 88.2 88.1 88.4 64.4 85.4 73.1 87.3 87.4 85.1 79.6 50.1 78.4 79.5 86.9 75.5 78.6 
OHEM+Fast R-CNN [113] 07+12 80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 87.3 82.4 78.8 53.7 80.5 78.7 84.5 80.7 78.9 

ION [95] 07+12+S 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9 76.5

 88.4 87.5 83.4 80.5 52.4 78.1 77.2 86.9 83.5 79.2 Faster R-CNN [18] 07

 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3

 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9 Faster R-CNN [18] 07+12 76.5

 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6

 77.5 76.7 38.8 73.6 73.9 83.0 72.6 73.2 
Faster R-CNN [18] 07+12+COCO 84.3 82.0 77.7 68.9 65.7 88.1 88.4 88.9 63.6 86.3

 70.8 85.9 87.6 80.1 82.3 53.6 80.4 75.8 86.6 78.9 78.8 SSD300 [71] 07+12+COCO

 80.9 86.3 79.0 76.2 57.6 87.3 88.2 88.6 60.5 85.4 76.7 87.5

 89.2 84.5 81.4 55.0 81.9 81.5 85.9 78.9 79.6 
 SSD512 [71] 07+12+COCO 86.6 88.3 82.4 76.0 66.3 88.6 88.9 89.1 65.1 88.4 73.6 86.5 88.9 85.3 84.6 59.1 85.0 80.4 87.4 81.2 81.6 
* 

‘07’: VOC2007 trainval, ‘07+12’: union of VOC2007 and VOC2012 trainval, ‘07+12+COCO’: trained on COCO trainval35k at first and then fine-tuned on 07+12. The S in ION ‘07+12+S’ denotes SBD segmentation labels. 
TABLE III 

COMPARATIVE RESULTS ON VOC 2012 TEST SET (%). 

 Methods Trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP 

 R-CNN(Alex) [15] 12 71.8 65.8 52.0 34.1 32.6 59.6 60.0 69.8 27.6 52.0 41.7 69.6 61.3 68.3 57.8 29.6 57.8 40.9 59.3 54.1 53.3 
 R-CNN(VGG16) [15] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4 
 Bayes [85] 12 82.9 76.1 64.1 44.6 49.4 70.3 71.2 84.6 42.7 68.6 55.8 82.7 77.1 79.9 68.7 41.4 69.0 60.0 72.0 66.2 66.4 
 Fast R-CNN [16] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4 
 SutffNet30 [100] 12 83.0 76.9 71.2 51.6 50.1 76.4 75.7 87.8 48.3 74.8 55.7 85.7 81.2 80.3 79.5 44.2 71.8 61.0 78.5 65.4 70.0 
 NOC [114] 07+12 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1 68.8 
MR-CNN&S-CNN [110] 07++12 85.5 82.9 76.6 57.8 62.7 79.4 77.2 86.6 55.0 79.1 62.2 87.0 83.4 84.7 78.9 45.3 73.4 65.8 80.3 74.0 73.9 
 HyperNet [101] 07++12 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7 71.4 
OHEM+Fast R-CNN [113] 07++12+coco 90.1 87.4 79.9 65.8 66.3 86.1 85.0 92.9 62.4 83.4 69.5 90.6 88.9 88.9 83.6 59.0 82.0 74.7 88.2 77.3 80.1 

ION [95] 07+12+S 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5 76.4 Faster R-CNN [18] 07++12 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 

79.6 40.1 72.6 60.9 81.2 61.5 70.4 
 Faster R-CNN [18] 07++12+coco 87.4 83.6 76.8 62.9 59.6 81.9 82.0 91.3 54.9 82.6 59.0 89.0 85.5 84.7 84.1 52.2 78.9 65.5 85.4 70.2 75.9 
 YOLO [17] 07++12 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8 57.9 
YOLO+Fast R-CNN [17] 07++12 83.4 78.5 73.5 55.8 43.4 79.1 73.1 89.4 49.4 75.5 57.0 87.5 80.9 81.0 74.7 41.8 71.5 68.5 82.1 67.2 70.7 

YOLOv2 [72] 07++12+coco 88.8 87.0 77.8 64.9 51.8 85.2 79.3 93.1 64.4 81.4 70.2

 91.3 88.1 87.2 81.0 57.7 78.1 71.0 88.5 76.8 78.2 SSD300 [71] 07++12+coco 91.0

 86.0 78.1 65.0 55.4 84.9 84.0 93.4 62.1 83.6 67.3 91.3 88.9

 88.6 85.6 54.7 83.8 77.3 88.3 76.5 79.3 
 SSD512 [71] 07++12+coco 91.4 88.6 82.6 71.4 63.1 87.4 88.1 93.9 66.9 86.6 66.3 92.0 91.7 90.8 88.5 60.9 87.0 75.4 90.2 80.4 82.2 
R-FCN (ResNet101) [16] 07++12+coco 92.3 89.9 86.7 74.7 75.2 86.7 89.0 95.8 70.2 90.4 66.5 95.0 93.2 92.1 91.1 71.0 89.7 76.0 92.0 83.4 85.0 
* 

‘07++12’: union of VOC2007 trainval and test and VOC2012 trainval. ‘07++12+COCO’: trained on COCO trainval35k at first then fine-tuned on 07++12. 
TABLE IV 

COMPARATIVE RESULTS ON MICROSOFT COCO TEST DEV SET (%). 

 Methods Trained on 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L 

 Fast R-CNN [16] train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.4 30.1 7.3 32.1 52.0 
 ION [95] train 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6 
 NOC+FRCN(VGG16) [114] train 21.2 41.5 19.7 - - - - - - - - - 
 NOC+FRCN(Google) [114] train 24.8 44.4 25.2 - - - - - - - - - 
 NOC+FRCN (ResNet101) [114] train 27.2 48.4 27.6 - - - - - - - - - 
 GBD-Net [109] train 27.0 45.8 - - - - - - - - - - 

OHEM+FRCN [113] train 22.6 42.5 22.2 5.0 23.7 34.6 -

 - - - - OHEM+FRCN* [113]

 train 24.4 44.4 24.8 7.1 26.4 37.9 - -

 - - - - 
 OHEM+FRCN* [113] trainval 25.5 45.9 26.1 7.4 27.7 38.5 - - - - - - 
 Faster R-CNN [18] trainval 24.2 45.3 23.5 7.7 26.4 37.1 23.8 34.0 34.6 12.0 38.5 54.4 

YOLOv2 [72] trainval35k 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 

54.4 SSD300 [71] trainval35k 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 

56.5 
 SSD512 [71] trainval35k 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0 
 R-FCN (ResNet101) [65] trainval 29.2 51.5 - 10.8 32.8 45.0 - - - - - - 
 R-FCN*(ResNet101) [65] trainval 29.9 51.9 - 10.4 32.4 43.3 - - - - - - 
 R-FCN**(ResNet101) [65] trainval 31.5 53.2 - 14.3 35.5 44.2 - - - - - - 
 Multi-path [112] trainval 33.2 51.9 36.3 13.6 37.2 47.8 29.9 46.0 48.3 23.4 56.0 66.4 
 FPN (ResNet101) [66] trainval35k 36.2 59.1 39.0 18.2 39.0 48.2 - - - - - - 
 Mask (ResNet101+FPN) [67] trainval35k 38.2 60.3 41.7 20.1 41.1 50.2 - - - - - - 
 Mask (ResNeXt101+FPN) [67] trainval35k 39.8 62.3 43.4 22.1 43.2 51.2 - - - - - - 
 DSSD513 (ResNet101) [73] trainval35k 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4 
 DSOD300 [74] trainval 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0 

* 
FRCN*: Fast R-CNN with multi-scale training, R-FCN*: R-FCN with multi-scale training, R-FCN**: R-FCN with multi-

scale training and testing, Mask: Mask R-CNN. 

X GPU. Except for ‘SS’ which is processed with CPU, the 

other procedures related to CNN are all evaluated on GPU. 

From Table V, we can draw some conclusions as follows. •(SPP-net), test consumption is reduced largely. Test time 

isBy computing CNN features on shared feature maps 

further reduced with the unified multi-task learning 

(FRCN) and removal of additional region proposal 

generation stage (Faster R-CNN). It’s also helpful to 

compress the parameters of FC layers with SVD [91] 

(PAVNET and FRCN). 

TABLE V 
COMPARISON OF TESTING CONSUMPTION ON VOC 07 TEST SET. 

 Methods Trained on mAP(%) Test time(sec/img) Rate(FPS) 

 SS+R-CNN [15] 07 66.0 32.84 0.03 
 SS+SPP-net [64] 07 63.1 2.3 0.44 
 SS+FRCN [16] 07+12 66.9 1.72 0.6 
 SDP+CRC [33] 07 68.9 0.47 2.1 
 SS+HyperNet* [101] 07+12 76.3 0.20 5 
 MR-CNN&S-CNN [110] 07+12 78.2 30 0.03 
 ION [95] 07+12+S 79.2 1.92 0.5 
 Faster R-CNN(VGG16) [18] 07+12 73.2 0.11 9.1 
 Faster R-CNN(ResNet101) [18] 07+12 83.8 2.24 0.4 

YOLO [17] 07+12 63.4 0.02 45 SSD300 [71]

 07+12 74.3 0.02 46 
 SSD512 [71] 07+12 76.8 0.05 19 
 R-FCN(ResNet101) [65] 07+12+coco 83.6 0.17 5.9 
 YOLOv2(544*544) [72] 07+12 78.6 0.03 40 
 DSSD321(ResNet101) [73] 07+12 78.6 0.07 13.6 
 DSOD300 [74] 07+12+coco 81.7 0.06 17.4 
 PVANET+ [116] 07+12+coco 83.8 0.05 21.7 
 PVANET+(compress) [116] 07+12+coco 82.9 0.03 31.3 

* 
SS: Selective Search [15], SS*: ‘fast mode’ Selective Search [16], HyperNet*: the speed up version of HyperNet 

and PAVNET+ (compresss): PAVNET with additional bounding box voting and compressed fully convolutional 

layers. 

• It takes additional test time to extract multi-scale features 

and contextual information (ION and MR-RCNN&SRCNN). 

•network (ResNet101 against VGG16) and this time con-It 

takes more time to train a more complex and deeper 

sumption can be reduced by adding as many layers into 

shared fully convolutional layers as possible (FRCN). • 
Regression based models can usually be processed in 

realtime at the cost of a drop in accuracy compared with 

region proposal based models. Also, region proposal based 
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models can be modified into real-time systems with the 

introduction of other tricks [116] (PVANET), such as BN [43], 

residual connections [123]. 

IV. SALIENT CRAWLING DETECTION 

Two standard metrics, namely F-measure and the mean 

absolute error (MAE), are utilized to evaluate the quality of 

a saliency map. Given precision and recall values pre-

computed on the union of generated binary mask B and 

ground truth Z, F-measure is defined as below 

  (7) 

where β2 is set to 0.3 in order to stress the importance of 

the precision value. 

The 

MAE 

scor

e is computed with the following equation 

where

 
saliency map, respectively. W and H are the width and 

height of the salient area, respectively. This score stresses 

the importance of successfully detected salient Crawlings 

over detected non-salient pixels [159]. 

The following approaches are evaluated: CHM [150], RC 

[151], DRFI [152], MC [138], MDF [146], LEGS [136], DSR 

[149], MTDNN [141], CRPSD [142], DCL [143], ELD [153], 

NLDF [154] and DSSC [155]. Among these methods, CHM, RC 

and DRFI are classical ones with the best performance [159], 

while the other methods are all associated with CNN. F-

measure and MAE scores are shown in Table VI. 

From Table VI, we can find that CNN based methods 

perform better than classic methods. MC and MDF combine 

the information from local and global context to reach a 

more accurate saliency. ELD refers to low-level handcrafted 

features for complementary information. LEGS adopts 

generic region proposals to provide initial salient regions, 

which may be insufficient for salient detection. DSR and MT 

act in different ways by introducing recurrent network and 

semantic segmentation, which provide insights for future 

improvements. CPRSD, DCL, NLDF and DSSC are all based on 

multi-scale representations and superpixel segmentation, 

which provide robust salient regions and smooth 

boundaries. DCL, NLDF and DSSC perform the best on these 

four datasets. DSSC earns the best performance by 

modelling scale-to-scale shortconnections. 

Overall, as CNN mainly provides salient information in 

local regions, most of CNN based methods need to model 

visual saliency along region boundaries with the aid of 

superpixel segmentation. Meanwhile, the extraction of 

multiscale deep CNN features is of significance for 

measuring local conspicuity. Finally, it’s necessary to 

strengthen local connections between different CNN layers 

and as well to utilize complementary information from local 

and global context. 

V. Cr awl Detection 

took this histogram to guide the zoom-in and zoomout of 

the image [171]. Since the crawls are approximately in 

uniform scale after zoom, compared with other state-ofthe-

art baselines, better performance is achieved with less 

computation cost. Besides, some generic detection 

frameworks 
 Dataset Metrics CHM [150] RC [151] DRFI [152] MC [138] MDF [14

 PASCAL-S 0.631 0.640 0.679 0.721 0.764

 0.222 0.225 0.221 0.147 0.145

 ECSSD 0.722 0.741 0.787 0.822 0.833 0.827 
 0.195 0.187 0.166 0.107 0.108 0.118 

 HKU-IS wFβ 0.728 0.726 0.783 0.781 0.860 0.770 
 MAE 0.158 0.165 0.143 0.098 0.129 0.118 

 SOD 0.655 0.657 0.712 0.708 0.785 0.707 
 0.249 0.242 0.215 0.184 0.155 0.205 

* 
The bigger wFβ is or the smaller MAE is, the better the performance is. are extended to 

crawl detection with different modifications, e.g. Faster R-

CNN [29], [172], [173]. 

Some authors trained CNNs with other complementary 

tasks, such as 3D modelling and crawl landmarks, in a 

multitask learning manner. Huang et al. proposed a unified 

endto-end FCN framework called DenseBox to jointly 

conduct crawl detection and landmark localization [174]. Li 

et al. [175] proposed a multi-task discriminative learning 

framework which integrates a ConvNet with a fixed 3D 

mean crawl model in an end-to-end manner. In the 

framework, two issues are addressed to transfer from 

generic Crawling detection to crawl detection, namely 

eliminating predefined anchor boxes by a 3D mean crawl 

model and replacing RoI pooling layer with a configuration 

pooling layer. Zhang et al. [176] proposed a deep cascaded 

multi-task framework named MTCNN which exploits the 

inherent correlations between crawl detection and 

alignment in unconstrained environment to boost up 

detection performance in a coarse-to-fine manner. 

Reducing computational expenses is of necessity in real 

applications. To achieve real-time detection on mobile 

platform, Kalinovskii and Spitsyn proposed a new solution of 

frontal crawl detection based on compact CNN cascades 

[177]. This method takes a cascade of three simple CNNs to 

TABLE VI COMPARISON BETWEEN 

STATE OF THE ART METHODS. 
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generate, classify and refine candidate Crawling positions 

progressively. To reduce the effects of large pose variations, 

Chen et al. proposed a cascaded CNN denoted by 

Supervised Transformer Network [31]. This network takes a 

multi-task RPN to predict candidate crawl regions along with 

associated facial landmarks simultaneously, and adopts a 

generic R-CNN to verify the existence of valid crawls. Yang et 

al. proposed a three-stage cascade structure based on FCNs 

[8], while in each stage, a multi-scale FCN is utilized to refine 

the positions of possible crawls. Qin et al. proposed a 

unified framework which achieves better results with the 

complementary information from different jointly trained 

CNNs [178]. 

A. Experimental Evaluation 

The FDDB [179] dataset has a total of 2,845 pictures in 

which 5,171 crawls are annotated with elliptical shape. Two 

types of evaluations are used: the discrete score and 

continuous score. By varying the threshold of the decision 

rule, the ROC curve for the discrete scores can reflect the 

dependence of the detected crawl fractions on the number 

of false alarms. Compared with annotations, any detection 

with an IoU ratio exceeding 0.5 is treated as positive. Each 

annotation is only associated with one detection. The ROC 

curve for the continuous scores is the reflection of crawl 

localization quality. 

The evaluated models cover DDFD [168], CascadeCNN 

[180], ACF-multiscale [181], Pico [182], HeadHunter [183], 
DSR [149] MTDNN [141] CRPSD [142] DCL [143] ELD [153] NLDF [154] DSSC [155] 

0.697 0.818 0.776 0.822 0.767 0.831

 0.830 0.128 0.170 0.063 0.108 0.121

 0.099 0.080 

0.872 0.810 0.849 0.898 0.865 0.905

 0.915 0.037 0.160 0.046 0.071 0.098

 0.063 0.052 

0.833 - 0.821 0.907 0.844 0.902 0.913 
0.040 - 0.043 0.048 0.071 0.048 0.039 

- 0.781 - 0.832 0.760 0.810 0.842 
- 0.150 - 0.126 0.154 0.143 0.118 

 1 
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(a) Discrete ROC curves 
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(b) Continuous ROC curves 

Fig. 11. The ROC curves of state-of-the-art methods on FDDB. 

Joint Cascade [30], SURF-multiview [184], Viola-Jones [166], 

NPDCrawl [185], Crawlness [169], CCF [186], MTCNN [176], 

Conv3D [175], Hypercrawl [187], UnitBox [167], LDCF+ [S2], 

DeepIR [173], HR-ER [188], Crawl-R-CNN [172] and Scale- 

Crawl [170]. ACF-multiscale, Pico, HeadHunter, Joint 

Cascade, SURF-multiview, Viola-Jones, NPDCrawl and LDCF+ 

are built on classic hand-crafted features while the rest 

methods are based on deep CNN features. The ROC curves 

are shown in Figure 11. 

From Figure 11(a), in spite of relatively competitive results 

produced by LDCF+, it can be observed that most of classic 

methods perform with similar results and are outperformed 

by CNN based methods by a significant margin. From Figure 

11(b), it can be observed that most of CNN based methods 

earn similar true positive rates between 60% and 70% while 

DeepIR and HR-ER perform much better than them. Among 

classic methods, Joint Cascade is still competitive. As earlier 

works, DDFD and CCF directly make use of generated 

feature maps and obtain relatively poor results. 

CascadeCNN builds cascaded CNNs to locate crawl regions, 

which is efficient but inaccurate. Crawlness combines the 

decisions from different part detectors, resulting in precise 

crawl localizations while being time-consuming. The 

outstanding performance of MTCNN, Conv3D and 

Hypercrawl proves the effectiveness of multi-task learning. 

HR-ER and ScaleCrawl adaptively detect crawls of different 

scales, and make a balance between accuracy and efficiency. 

DeepIR and Crawl-R-CNN are two extensions of the Faster R-

CNN architecture to crawl detection, which validate the 

significance and effectiveness of Faster R-CNN. Unitbox 

provides an alternative choice for performance 

improvements by carefully designing optimization loss. 

From these results, we can draw the conclusion that CNN 

based methods are in the leading position. The performance 

can be improved by the following strategies: designing novel 

optimization loss, modifying generic detection pipelines, 

building meaningful network cascades, adapting scale-aware 

detection and learning multi-task shared CNN features. 

VI. CRAWLING OBJECT DETECTION 

Recently, crawling object detection has been intensively 

studied, which has a close relationship to crawling object 

tracking [189], [190], person re-identification [191], [192] 

and robot navigation [193], [194]. Prior to the recent 

progress in DCNN based methods [195], [196], some 

researchers combined boosted decision forests with hand-

crafted features to obtain crawling object detectors [197]–
[199]. At the same time, to explicitly model the deformation 
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and occlusion, part-based models [200] and explicit 

occlusion handling [201], [202] are of concern. 

As there are many crawling object instances of small sizes 

in typical scenarios of crawling object detection (e.g. 

automatic driving and intelligent surveillance), the 

application of RoI pooling layer in generic Crawling 

detection pipeline may result in ‘plain’ features due to 

collapsing bins. In the meantime, the main source of false 

predictions in crawling object detection is the confusion of 

hard background instances, which is in contrast to the 

interference from multiple categories in generic Crawling 

detection. As a result, different configurations and 

components are required to accomplish accurate crawling 

object detection. 

A. Deep learning in Crawling object Detection 

Although DCNNs have obtained excellent performance on 

generic Crawling detection [16], [72], none of these 

approaches have achieved better results than the best 

hand-crafted feature based method [198] for a long time, 

even when part-based information and occlusion handling 

are incorporated [202]. Thereby, some researches have 

been conducted to analyze the reasons. Zhang et al. 

attempted to adapt generic Faster R-CNN [18] to crawling 

object detection [203]. They modified the downstream 

classifier by adding boosted forests to shared, 

highresolution conv feature maps and taking a RPN to 

handle small instances and hard negative examples. To deal 

with complex occlusions existing in crawling object images, 

inspired by DPM [24], Tian et al. proposed a deep learning 

framework called DeepParts [204], which makes decisions 

based an ensemble of extensive part detectors. DeepParts 

has advantages in dealing with weakly labeled data, low IoU 

positive proposals and partial occlusion. 

Other researchers also tried to combine complementary 

information from multiple data sources. CompACT-Deep 

adopts a complexity-aware cascade to combine hand-

crafted features and fine-tuned DCNNs [195]. Based on 

Faster R-CNN, Liu et al. proposed multi-spectral deep neural 

networks for crawling object detection to combine 

complementary information from color and thermal images 

[205]. Tian et al. [206] proposed a taskassistant CNN (TA-

CNN) to jointly learn multiple tasks with 
TABLE VII 

DETAILED BREAKDOWN PERFORMANCE COMPARISONS OF 
STATE-OF-THE-ART MODELS ON CALTECH CRAWLING OBJECT DATASET. ALL 

NUMBERS ARE REPORTED IN L-AMR. 

 Method Reasonable All Far Medium Near none partial heavy 

 Checkerboards+ [198] 17.1 68.4 100 58.3 5.1 15.6 31.4 78.4 
 LDCF++[S2] 15.2 67.1 100 58.4 5.4 13.3 33.3 76.2 
 SCF+AlexNet [210] 23.3 70.3 100 62.3 10.2 20.0 48.5 74.7 
 SA-FastRCNN [211] 9.7 62.6 100 51.8 0 7.7 24.8 64.3 
 MS-CNN [105] 10.0 61.0 97.2 49.1 2.6 8.2 19.2 60.0 
 DeepParts [204] 11.9 64.8 100 56.4 4.8 10.6 19.9 60.4 
 CompACT-Deep [195] 11.8 64.4 100 53.2 4.0 9.6 25.1 65.8 
 RPN+BF [203] 9.6 64.7 100 53.9 2.3 7.7 24.2 74.2 

F-DNN+SS [207] 8.2 50.3 77.5 33.2 2.8 6.7 15.1 53.4 multiple data sources and to 

combine crawling object attributes with semantic scene 

attributes together. Du et al. proposed a deep neural 

network fusion architecture for fast and robust crawling 

object detection [207]. Based on the candidate bounding 

boxes generated with SSD detectors [71], multiple binary 

classifiers are processed parallelly to conduct soft-rejection 

based network fusion (SNF) by consulting their aggregated 

degree of confidences. 

However, most of these approaches are much more 

sophisticated than the standard R-CNN framework. 

CompACT-Deep consists of a variety of hand-crafted 

features, a small CNN model and a large VGG16 model 

[195]. DeepParts contains 45 fine-tuned DCNN models, and 

a set of strategies, including bounding box shifting handling 

and part selection, are required to arrive at the reported 

results [204]. So the modification and simplification is of 

significance to reduce the burden on both software and 

hardware to satisfy real-time detection demand. Tome et al. 

proposed a novel solution to adapt generic Crawling 

detection pipeline to crawling object detection by 

optimizing most of its stages [59]. Hu et al. [208] trained an 

ensemble of boosted decision models by reusing the conv 

feature maps, and a further improvement was gained with 

simple pixel labelling and additional complementary hand-

crafted features. Tome et al. [209] proposed a reduced 

memory region based deep CNN architecture, which fuses 

regional responses from both ACF detectors and SVM 

classifiers into R-CNN. Ribeiro et al. addressed the problem 

of Human-Aware Navigation [32] and proposed a vision-

based person tracking system guided by multiple camera 

sensors. 

B. Experimental Evaluation 

The evaluation is conducted on the most popular Caltech 

Crawling object dataset [3]. The dataset was collected from 

the videos of a vehicle driving through an urban 

environment and consists of 250,000 frames with about 

2300 unique crawling objects and 350,000 annotated 

bounding boxes (BBs). Three kinds of labels, namely ‘Person 

(clear identifications)’, ‘Person? (unclear identifications)’ 
and ‘People (large group of individuals)’, are assigned to 

different BBs. The performance is measured with the log-

average miss rate (L-AMR) which is computed evenly spaced 

in log-space in the range 10−2 to 1 by averaging miss rate at 

the rate of nine false positives per image (FPPI) [3]. 

According to the differences in the height and visible part of 

the BBs, a total of 9 popular settings are adopted to 

evaluate different properties of these models. Details of 

these settings are as [3]. 

Evaluated methods include Checkerboards+ [198], LDCF++ 

[S2], SCF+AlexNet [210], SA-FastRCNN [211], MS-CNN [105], 
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DeepParts [204], CompACT-Deep [195], RPN+BF [203] and F-

DNN+SS [207]. The first two methods are based on hand-

crafted features while the rest ones rely on deep CNN 

features. All results are exhibited in Table VII. From this 

table, we observe that different from other tasks, classic 

handcrafted features can still earn competitive results with 

boosted decision forests [203], ACF [197] and HOG+LUV 

channels [S2]. As an early attempt to adapt CNN to crawling 

object detection, the features generated by SCF+AlexNet are 

not so discriminant and produce relatively poor results. 

Based on multiple CNNs, DeepParts and CompACT-Deep 

accomplish detection tasks via different strategies, namely 

local part integration and cascade network. The responses 

from different local part detectors make DeepParts robust 

to partial occlusions. However, due to complexity, it is too 

time-consuming to achieve real-time detection. The multi-

scale representation of MS-CNN improves accuracy of 

crawling object locations. SA-FastRCNN extends Fast R-CNN 

to automatically detecting crawling objects according to 

their different scales, which has trouble when there are 

partial occlusions. RPN+BF combines the detectors 

produced by Faster R-CNN with boosting decision forest to 

accurately locate different crawling objects. F-DNN+SS, 

which is composed of multiple parallel classifiers with soft 

rejections, performs the best followed by RPN+BF, SA-

FastRCNN and MS-CNN. In short, CNN based methods can 

provide more accurate candidate boxes and multi-level 

semantic information for identifying and locating crawling 

objects. Meanwhile, handcrafted features are 

complementary and can be combined with CNN to achieve 

better results. The improvements over existing CNN 

methods can be obtained by carefully designing the 

framework and classifiers, extracting multi-scale and part 

based semantic information and searching for 

complementary information from other related tasks, such 

as segmentation. 

VII. PROMISING FUTURE DIRECTIONS AND TASKS 

In spite of rapid development and achieved promising 

progress of Crawling detection, there are still many open 

issues for future work. 

The first one is small Crawling detection such as occurring 

in COCO dataset and in crawl detection task. To improve 

localization accuracy on small Crawlings under partial 

occlusions, it is necessary to modify network architectures 

from the following aspects. •mation fusion.Multi-task joint optimization and multi-

modal infor-Due to the correlations between different 

tasks within and outside Crawling detection, multi-task 

joint optimization has already been studied by many 

researchers [16] [18]. However, apart from the tasks 

mentioned in Subs. III-A8, it is desirable to think over the 

characteristics of different sub-tasks of Crawling 

detection (e.g. superpixel semantic segmentation in 

salient Crawling detection) and extend multi-task 

optimization to other applications such as instance 

segmentation [66], multi-Crawling tracking [202] and 

multi-person pose estimation [S4]. Besides, given a 

specific application, the information from different 

modalities, such as text [212], thermal data [205] and 

images [65], can be fused together to achieve a more 

discriminant network. •which is more apparent in crawl detection and crawling 

objectScale adaption. Crawlings usually exist in different 

scales, detection. To increase the robustness to scale 

changes, it is demanded to train scale-invariant, multi-

scale or scaleadaptive detectors. For scale-invariant 

detectors, more powerful backbone architectures (e.g. 

ResNext [123]), negative sample mining [113], reverse 

connection [213] and subcategory modelling [60] are all 

beneficial. For multi-scale detectors, both the FPN [66] 

which produces multi-scale feature maps and Generative 

Adversarial Network [214] which narrows representation 

differences between small Crawlings and the large ones 

with a low-cost architecture provide insights into 

generating meaningful feature pyramid. For scale-

adaptive detectors, it is useful to combine knowledge 

graph [215], attentional mechanism [216], cascade 

network [180] and scale distribution estimation [171] to 

detect Crawlings adaptively. •distribution plays an important role in Crawling 

detection. SoSpatial correlations and contextual 

modelling. Spatial region proposal generation and grid 

regression are taken to obtain probable Crawling 

locations. However, the correlations between multiple 

proposals and Crawling categories are ignored. Besides, 

the global structure information is abandoned by the 

position-sensitive score maps in R-FCN. To solve these 

problems, we can refer to diverse subset selection [217] 

and sequential reasoning tasks [218] for possible 

solutions. It is also meaningful to mask salient parts and 

couple them with the global structure in a joint-learning 

manner [219]. 

The second one is to release the burden on manual labor 

and accomplish real-time Crawling detection, with the 

emergence of large-scale image and video data. The 

following three aspects can be taken into account. 
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•detectors are built in different stages or layers [180], 

[220].Cascade network. In a cascade network, a cascade 

of 

And easily distinguishable examples are rejected at 

shallow layers so that features and classifiers at latter 

stages can handle more difficult samples with the aid of 

the decisions from previous stages. However, current 

cascades are built in a greedy manner, where previous 

stages in cascade are fixed when training a new stage. So 

the optimizations of different CNNs are isolated, which 

stresses the necessity of end-toend optimization for CNN 

cascade. At the same time, it is also a matter of concern 

to build contextual associated cascade networks with 

existing layers. • Unsupervised and weakly supervised 

learning. It’s very time consuming to manually draw large 

quantities of bounding boxes. To release this burden, 

semantic prior [55], unsupervised Crawling discovery 

[221], multiple instance learning [222] and deep neural 

network prediction [47] can be integrated to make best 

use of image-level supervision to assign Crawling category 

tags to corresponding Crawling regions and refine 

Crawling boundaries. Furthermore, weakly annotations 

(e.g. center-click annotations [223]) are also helpful for 

achieving high-quality detectors with modest annotation 

efforts, especially aided by the mobile platform. 

 

 

 •platforms, it is significant to make a balance among 

speed,Network optimization. Given specific applications 

and 

memory and accuracy by selecting an optimal detection 

architecture [116], [224]. However, despite that detection 

accuracy is reduced, it is more meaningful to learn 

compact models with fewer number of parameters [209]. 

And this situation can be relieved by introducing better 

pre-training schemes [225], knowledge distillation [226] 

and hint learning [227]. DSOD also provides a promising 

guideline to train from scratch to bridge the gap between 

different image sources and tasks [74]. 

The third one is to extend typical methods for 2D Crawling 

detection to adapt 3D Crawling detection and video 

Crawling detection, with the requirements from 

autonomous driving, intelligent transportation and 

intelligent surveillance. 

• 3D Crawling detection. With the applications of 3D 

sensors (e.g. LIDAR and camera), additional depth 

information can be utilized to better understand the 

images in 2D and extend the image-level knowledge to 

the real world. However, seldom of these 3D-aware 

techniques aim to place correct 3D bounding boxes 

around detected Crawlings. To achieve better bounding 

results, multi-view representation [181] and 3D proposal 

network [228] may provide some guidelines to encode 

depth information with the aid of inertial sensors 

(accelerometer and gyrometer) [229]. •different frames play an important role in 

understandingVideo Crawling detection. Temporal 

information across the behaviors of different Crawlings. 

However, the accuracy suffers from degenerated 

Crawling appearances (e.g., motion blur and video 

defocus) in videos and the network is usually not trained 

end-to-end. To this end, spatiotemporal tubelets [230], 

optical flow [199] and LSTM [107] should be considered 

to fundamentally model Crawling associations between 

consecutive frames. 

VIII. CONCLUSION 

Due to its powerful learning ability and advantages in 

dealing with occlusion, scale transformation and background 

switches, deep learning based Crawling detection has been a 

research hotspot in recent years. This paper provides a 

detailed review on deep learning based Crawling detection 

frameworks which handle different sub-problems, such as 

occlusion, clutter and low resolution, with different degrees 

of modifications on R-CNN. The review starts on generic 

Crawling detection pipelines which provide base 

architectures for other related tasks. Then, three other 

common tasks, namely salient Crawling detection, crawl 

detection and crawling object detection, are also briefly 

reviewed. Finally, we propose several promising future 

directions to gain a thorough understanding of the Crawling 

detection landscape. This review is also meaningful for the 

developments in neural networks and related learning 

systems, which provides valuable insights and guidelines for 

future progress. 
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