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understanding, we should not only concentrate on classifying different images, but also try to 
precisely estimate the concepts and locations of objects contained in each image. This task is referred as 
object detection [1][S1], which usually consists of different subtasks such as face detection [2][S2], 
pedestrian detection [3][S2] and skeleton detection [4][S3]. As one of the fundamental computer vision 
problems, object detection is able to provide valuable information for semantic understanding of images and 
videos, and is related to many applications, including image classification [5], [6], human behavior analysis 
[7][S4], face recognition [8][S5] and autonomous driving [9], [10]. Meanwhile, Inheriting from neural 
networks and related learning systems, the progress in these fields will develop neural network algorithms, 
and will also have great impacts on object detection techniques which can be considered as learning systems. 
[11]–[14][S6]. However, due to large variations in viewpoints, poses, occlusions and lighting conditions, it’s 
difficult to perfectly accomplish object detection with an additional object localization task. So much 
attention has been attracted to this field in recent years [15]–[18]. 

The problem definition of object detection is to determine where objects are located in a given image 
(object localization) and which category each object belongs to (object classification). So the pipeline of 
traditional object detection models can be mainly divided into three stages: informative region selection, 
feature extraction and classification. 
Informative region selection. As different objects may appear in any positions of the image and have 
different aspect ratios or sizes, it is a natural choice to scan the whole image with a multi-scale sliding 
window. Although this exhaustive strategy can find out all possible positions of the objects, its shortcomings 
are also obvious. Due to a large number of candidate windows, it is computationally expensive and produces 
too many redundant windows. However, if only a fixed number of sliding window templates are applied, 
unsatisfactory regions may be produced. 
Feature extraction. To recognize different objects, we need to extract visual features which can provide a 
semantic and robust representation. SIFT [19], HOG [20] and Haar-like [21] features are the representative 
ones. This is due to the fact that these features can produce representations associated with complex cells in 
human brain [19]. However, due to the diversity of appearances, illumination conditions and backgrounds, 
it’s difficult to manually design a robust feature descriptor to perfectly describe all kinds of objects. 
Classification. Besides, a classifier is needed to distinguish a target object from all the other categories and to 
make the representations more hierarchical, semantic and informative for visual recognition. Usually, the 
Supported Vector Machine (SVM) [22], AdaBoost [23] and Deformable Part-based Model 
(DPM) [24] are good choices. Among these classifiers, the DPM is a flexible model by combining object 
parts with deformation cost to handle severe deformations. In DPM, with the aid of a graphical model, 
carefully designed low-level features and kinematically inspired part decompositions are combined. And 
discriminative learning of graphical models allows for building high-precision part-based models for a 
variety of object classes. 

Based on these discriminant local feature descriptors and shallow learnable architectures, state of the art 
results have been obtained on PASCAL VOC object detection competition [25] and real-time embedded 
systems have been obtained with a low burden on hardware. However, small gains are obtained during 2010-
2012 by only building ensemble systems and employing minor variants of successful methods [15]. This fact 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 07 | July -2020                                                                                                          ISSN: 2582-3930                                      

 

© 2020, IJSREM      | www.ijsrem.com Page 2 

 

is due to the following reasons: 1) The generationneration of candidate bounding boxes with a sliding 
window strategy is redundant, inefficient and inaccurate. 2) The semantic gap cannot be 

 

Fig. 1. The application domains of object detection. 

bridged by the combination of manually engineered low-level descriptors and discriminatively-trained 
shallow models. 

Thanks to the emergency of Deep Neural Networks (DNNs) [6][S7], a more significant gain is obtained 
with the introduction of Regions with CNN features (R-CNN) [15]. DNNs, or the most representative CNNs, 
act in a quite different way from traditional approaches. They have deeper architectures with the capacity to 
learn more complex features than the shallow ones. Also the expressivity and robust training algorithms 
allow to learn informative object representations without the need to design features manually [26]. 

Since the proposal of R-CNN, a great deal of improved models have been suggested, including Fast R-
CNN which jointly optimizes classification and bounding box regression tasks [16], Faster R-CNN which 
takes an additional subnetwork to generate region proposals [18] and YOLO which accomplishes object 
detection via a fixed-grid regression [17]. All of them bring different degrees of detection performance 
improvements over the primary R-CNN and make real-time and accurate object detection become more 
achievable. 

In this paper, a systematic review is provided to summarise representative models and their different 
characteristics in several application domains, including generic object detection [15], [16], [18], salient 
object detection [27], [28], face detection [29]–[31] and pedestrian detection [32], [33]. Their relationships 
are depicted in Figure 1. Based on basic CNN architectures, generic object detection is achieved with 
bounding box regression, while salient object detection is accomplished with local contrast enhancement and 
pixel-level segmentation. Face detection and pedestrian detection are closely related to generic object 
detection and mainly accomplished with multi-scale adaption and multi-feature fusion/boosting forest, 
respectively. The dotted lines indicate that the corresponding domains are associated with each other under 
certain conditions. It should be noticed that the covered domains are diversified. Pedestrian and face images 
have regular structures, while general objects and scene images have more complex variations in geometric 
structures and layouts. Therefore, different deep models are required by various images. 

There has been a relevant pioneer effort [34] which mainly focuses on relevant software tools to 
implement deep learning techniques for image classification and object detection, but pays little attention on 
detailing specific algorithms. Different from it, our work not only reviews deep learning based object 
detection models and algorithms covering different application domains in detail, but also provides their 
corresponding experimental comparisons and meaningful analyses. 

The rest of this paper is organized as follows. In Section 

2, a brief introduction on the history of deep learning and the basic architecture of CNN is provided. Generic 
object detection architectures are presented in Section 3. Then reviews of CNN applied in several specific 
tasks, including salient object detection, face detection and pedestrian detection, are exhibited in Section 4-6, 
respectively. Several promising future directions are proposed in Section 7. At last, some concluding 
remarks are presented in Section 8. 

II. A BRIEF OVERVIEW OF DEEP LEARNING 

Prior to overview on deep learning based object detection approaches, we provide a review on the history 
of deep learning along with an introduction on the basic architecture and advantages of CNN. 
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A. The History: Birth, Decline and Prosperity 

Deep models can be referred to as neural networks with deep structures. The history of neural networks 
can date back to 1940s [35], and the original intention was to simulate the human brain system to solve 
general learning problems in a principled way. It was popular in 1980s and 1990s with the proposal of back-
propagation algorithm by Hinton et al. [36]. However, due to the overfitting of training, lack of large scale 
training data, limited computation power and insignificance in performance compared with other machine 
learning tools, neural networks fell out of fashion in early 2000s. 

Deep learning has become popular since 2006 [37][S7] with a break through in speech recognition [38]. 
The recovery of deep learning can be attributed to the following factors. 

•as ImageNet [39], to fully exhibit its very large learningThe emergence of large scale annotated training 
data, such 

capacity; 

•systems, such as GPU clusters;Fast development of high performance parallel computing 

•and training strategies. With unsupervised and layerwiseSignificant advances in the design of network structures pre-training 
guided by Auto-Encoder (AE) [40] or Restricted Boltzmann Machine (RBM) [41], a good initialization is 
provided. With dropout and data augmentation, the overfitting problem in training has been relieved [6], 
[42]. With batch normalization (BN), the training of very deep neural networks becomes quite efficient 
[43]. Meanwhile, various network structures, such as AlexNet [6], Overfeat [44], GoogLeNet [45], VGG 
[46] and ResNet [47], have been extensively studied to improve the performance. 
What prompts deep learning to have a huge impact on the entire academic community? It may owe to the 

contribution of Hinton’s group, whose continuous efforts have demonstrated that deep learning would bring 
a revolutionary breakthrough on grand challenges rather than just obvious improvements on small datasets. 
Their success results from training a large CNN on 1.2 million labeled images together with a few techniques 
[6] (e.g., ReLU operation [48] and ‘dropout’ regularization). 

B. Architecture and Advantages of CNN 

CNN is the most representative model of deep learning [26]. A typical CNN architecture, which is referred 
to as VGG16, can be found in Fig. S1. Each layer of CNN is known as a feature map. The feature map of the 
input layer is a 3D matrix of pixel intensities for different color channels (e.g. RGB). The feature map of any 
internal layer is an induced multi-channel image, whose ‘pixel’ can be viewed as a specific feature. Every 
neuron is connected with a small portion of adjacent neurons from the previous layer (receptive field). 
Different types of transformations [6], [49], [50] can be conducted on feature maps, such as filtering and 
pooling. Filtering (convolution) operation convolutes a filter matrix (learned weights) with the values of a 
receptive field of neurons and takes a nonlinear function (such as sigmoid [51], ReLU) to obtain final 
responses. Pooling operation, such as max pooling, average pooling, L2-pooling and local contrast 
normalization [52], summaries the responses of a receptive field into one value to produce more robust 
feature descriptions. 

With an interleave between convolution and pooling, an initial feature hierarchy is constructed, which can 
be fine-tuned in a supervised manner by adding several fully connected (FC) layers to adapt to different 
visual tasks. According to the tasks involved, the final layer with different activation functions [6] is added 
to get a specific conditional probability for each output neuron. And the whole network can be optimized on 
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an objective function (e.g. mean squared error or cross-entropy loss) via the stochastic gradient descent 
(SGD) method. The typical VGG16 has totally 13 convolutional (conv) layers, 3 fully connected layers, 3 
max-pooling layers and a softmax classification layer. The conv feature maps are produced by convoluting 
3*3 filter windows, and feature map resolutions are reduced with 2 stride max-pooling layers. An arbitrary 
test image of the same size as training samples can be processed with the trained network. Re-scaling or 
cropping operations may be needed if different sizes are provided [6]. 

The advantages of CNN against traditional methods can be summarised as follows. 

•level representations from pixel to high-level semantic fea-Hierarchical feature representation, which is the multitures learned 

by a hierarchical multi-stage structure [15], [53], can be learned from data automatically and hidden 

factors of input data can be disentangled through multi-level nonlinear mappings. 

•architecture provides an exponentially increased expressiveCompared with traditional shallow models, a deeper capability. 

• The architecture of CNN provides an opportunity to jointly optimize several related tasks together (e.g. 
Fast RCNN combines classification and bounding box regression into a multi-task leaning manner). 

•CNNs, some classical computer vision challenges can beBenefitting from the large learning capacity of deep recast as high-

dimensional data transform problems and solved from a different viewpoint. 

Due to these advantages, CNN has been widely applied into many research fields, such as image super-
resolution reconstruction [54], [55], image classification [5], [56], image retrieval [57], [58], face recognition 
[8][S5], pedestrian detection [59]–[61] and video analysis [62], [63]. 

 
III. GENERIC OBJECT DETECTION 

Generic object detection aims at locating and classifying existing objects in any one image, and labeling 
them with rectangular bounding boxes to show the confidences of existence. The frameworks of generic 
object detection methods can mainly be categorized into two types (see Figure 2). One follows traditional 
object detection pipeline, generating region proposals at first and then classifying each proposal into 
different object categories. The other regards object detection as a regression or classification problem, 
adopting a unified framework to achieve final results (categories and locations) directly. The region proposal 
based methods mainly include R-CNN [15], SPP-net [64], Fast R-CNN [16], Faster R-CNN [18], R-FCN 
[65], FPN [66] and Mask R-CNN [67], some of which are correlated with each other (e.g. SPP-net modifies 
RCNN with a SPP layer). The regression/classification based methods mainly includes MultiBox [68], 
AttentionNet [69], G-CNN [70], YOLO [17], SSD [71], YOLOv2 [72], DSSD [73] and DSOD [74]. The 
correlations between these two pipelines are bridged by the anchors introduced in Faster RCNN. Details of 
these methods are as follows. 

A. Region Proposal Based Framework 

The region proposal based framework, a two-step process, matches the attentional mechanism of human 
brain to some extent, which gives a coarse scan of the whole scenario firstly and then focuses on regions of 
interest. Among the pre-related works [44], [75], [76], the most representative one is Overfeat [44]. This 
model inserts CNN into sliding window method, which predicts bounding boxes directly from locations of 
the topmost feature map after obtaining the confidences of underlying object categories. 
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1) R-CNN: It is of significance to improve the quality of candidate bounding boxes and to take a deep 
architecture to extract high-level features. To solve these problems, R-CNN [15] was proposed by Ross 
Girshick in 2014 and obtained a mean average precision (mAP) of 53.3% with more than 30% improvement 
over the previous best result (DPM HSC [77]) on PASCAL VOC 2012. Figure 3 shows the flowchart of R-
CNN, which can be divided into three stages as follows. 
Region proposal generation. The R-CNN adopts selective search [78] to generate about 2k region proposals 
for each image. The selective search method relies on simple bottom-up grouping and saliency cues to 
provide more accurate candidate boxes of arbitrary sizes quickly and to reduce the searching space in object 
detection [24], [39]. 
CNN based deep feature extraction. In this stage, each region proposal is warped or cropped into a fixed 
resolution and the CNN module in [6] is utilized to extract a 4096dimensional feature as the final 
representation. Due to large learning capacity, dominant expressive power and hierarchical structure of 
CNNs, a high-level, semantic and robust feature representation for each region proposal can be obtained. 
Classification and localization. With pre-trained categoryspecific linear SVMs for multiple classes, different 
region proposals are scored on a set of positive regions and background (negative) regions. The scored 
regions are then adjusted with 

R-FCN 

Fig. 2. Two types of frameworks: region proposal based and regression/classification based. SPP: Spatial 
Pyramid Pooling [64], FRCN: Faster R-CNN [16], RPN: Region Proposal Network [18], FCN: Fully 

Convolutional Network [65], BN: Batch Normalization [43], Deconv layers: Deconvolution layers [54]. 

R-CNN: Regions with CNN features 
Tv monitor? no. 

1. Input 2. Extract region 3. Compute 4. Classify image proposals (~2k) CNN features regions 

Fig. 3. The flowchart of R-CNN [15], which consists of 3 stages: (1) extracts bottom-up region proposals, (2) 
computes features for each proposal using a CNN, and then (3) classifies each region with class-specific 
linear SVMs. 

bounding box regression and filtered with a greedy nonmaximum suppression (NMS) to produce final 
bounding boxes for preserved object locations. 

When there are scarce or insufficient labeled data, pretraining is usually conducted. Instead of 
unsupervised pretraining [79], R-CNN firstly conducts supervised pre-training on ILSVRC, a very large 
auxiliary dataset, and then takes a domain-specific fine-tuning. This scheme has been adopted by most of 
subsequent approaches [16], [18]. 

In spite of its improvements over traditional methods and significance in bringing CNN into practical 
object detection, there are still some disadvantages. 
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•fixed-size (e.g.,Due to the existence of FC layers, the CNN requires a227×227) input image, which directly 

leads to the re-computation of the whole CNN for each evaluated region, taking a great deal of time in the 

testing period. 

•a convolutional network (ConvNet) on object proposals isTraining of R-CNN is a multi-stage pipeline. At first, fine-tuned. 

Then the softmax classifier learned by finetuning is replaced by SVMs to fit in with ConvNet features. 

Finally, bounding-box regressors are trained. 

•extracted from different region proposals and stored on theTraining is expensive in space and time. Features are disk. It will 

take a long time to process a relatively small training set with very deep networks, such as VGG16. At the 

same time, the storage memory required by these features should also be a matter of concern. 

•with relatively high recalls, the obtained region proposalsAlthough selective search can generate region proposals are still 

redundant and this procedure is time-consuming (around 2 seconds to extract 2k region proposals). 

To solve these problems, many methods have been proposed. GOP [80] takes a much faster geodesic based 
segmentation to replace traditional graph cuts. MCG [81] searches different scales of the image for multiple 
hierarchical segmentations and combinatorially groups different regions to produce proposals. Instead of 
extracting visually distinct segments, the edge boxes method [82] adopts the idea that objects are more likely 
to exist in bounding boxes with fewer contours straggling their boundaries. Also some researches tried to re-
rank or refine pre-extracted region proposals to remove unnecessary ones and obtained a limited number of 
valuable ones, such as DeepBox [83] and SharpMask [84]. 

In addition, there are some improvements to solve the problem of inaccurate localization. Zhang et al. [85] 
utilized a bayesian optimization based search algorithm to guide the regressions of different bounding boxes 
sequentially, and trained class-specific CNN classifiers with a structured loss to penalize the localization 
inaccuracy explicitly. Saurabh Gupta et al. improved object detection for RGB-D images with semantically 
rich image and depth features [86], and learned a new geocentric embedding for depth images to encode each 
pixel. The combination of object detectors and superpixel classification framework gains a promising result 
on semantic scene segmentation task. Ouyang et al. proposed a deformable deep CNN (DeepID-Net) [87] 
which introduces a novel deformation constrained pooling (def-pooling) layer to impose geometric penalty 
on the deformation of various object parts and makes an ensemble of models with different settings. Lenc et 
al. [88] provided an analysis on the role of proposal generation in CNN-based detectors and tried to replace 
this stage with a constant and trivial region generation scheme. The goal is achieved by biasing sampling to 
match the statistics of the ground truth bounding boxes with K-means clustering. However, more candidate 
boxes are required to achieve comparable results to those of R-CNN. 

2) SPP-net: FC layers must take a fixed-size input. That’s why R-CNN chooses to warp or crop each 
region proposal into the same size. However, the object may exist partly in the cropped region and unwanted 
geometric distortion may be produced due to the warping operation. These content losses or distortions will 
reduce recognition accuracy, especially when the scales of objects vary. 

To solve this problem, He et al. took the theory of spatial pyramid matching (SPM) [89], [90] into 
consideration and proposed a novel CNN architecture named SPP-net [64]. SPM takes several finer to 
coarser scales to partition the image into a number of divisions and aggregates quantized local features into 
mid-level representations. 
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The architecture of SPP-net for object detection can be found in Figure 4. Different from R-CNN, SPP-net 
reuses feature maps of the 5-th conv layer (conv5) to project region 
 

Fig. 5. The architecture of Fast R-CNN [16]. 

proposals of arbitrary sizes to fixed-length feature vectors. The feasibility of the reusability of these feature 
maps is due to the fact that the feature maps not only involve the strength of local responses, but also have 
relationships with their spatial positions [64]. The layer after the final conv layer is referred to as spatial 
pyramid pooling layer (SPP layer). If the number of feature maps in conv5 is 256, taking a 3-level pyramid, 
the final feature vector for each region proposal obtained after SPP layer has a dimension of 256 × (12 + 22 + 
42) = 5376. 

SPP-net not only gains better results with correct estimation of different region proposals in their 
corresponding scales, but also improves detection efficiency in testing period with the sharing of 
computation cost before SPP layer among different proposals. 

 
6) FPN: Feature pyramids built upon image pyramids (featurized image pyramids) have been widely 

applied in many object detection systems to improve scale invariance [24], [64] (Figure 7(a)). However, 
training time and memory consumption increase rapidly. To this end, some techniques take only a single 
input scale to represent high-level semantics and increase the robustness to scale changes (Figure 7(b)), and 
image pyramids are built at test time which results in an inconsistency between train/test-time inferences 
[16], [18]. The in-network feature hierarchy in a deep ConvNet produces feature maps of different spatial 
resolutions while introduces large semantic gaps caused by different depths (Figure 7(c)). To avoid using 
low-level features, pioneer works [71], [95] usually build the pyramid starting from middle layers or just 
sum transformed feature responses, missing the higher- 

 
Fig. 8. The Mask R-CNN framework for instance segmentation [67]. 

resolution maps of the feature hierarchy. 
understanding, we should not only concentrate on classifying different images, but also try to 

precisely estimate the concepts and locations of objects contained in each image. This task is referred as 
object detection [1][S1], which usually consists of different subtasks such as face detection [2][S2], 
pedestrian detection [3][S2] and skeleton detection [4][S3]. As one of the fundamental computer vision 
problems, object detection is able to provide valuable information for semantic understanding of images and 
videos, and is related to many applications, including image classification [5], [6], human behavior analysis 
[7][S4], face recognition [8][S5] and autonomous driving [9], [10]. Meanwhile, Inheriting from neural 
networks and related learning systems, the progress in these fields will develop neural network algorithms, 
and will also have great impacts on object detection techniques which can be considered as learning systems. 
[11]–[14][S6]. However, due to large variations in viewpoints, poses, occlusions and lighting conditions, it’s 
difficult to perfectly accomplish object detection with an additional 
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object localization task. So much attention has been attracted to this field in recent years [15]–[18]. 
The problem definition of object detection is to determine where objects are located in the given image 

(object localization) and which category each object belongs to (object classification). So the pipeline of 
traditional object detection models can be mainly divided into three stages: informative region selection, 
feature extraction and classification. 
Informative region selection. As different objects may appear in any positions of the image and have 
different aspect ratios or sizes, it is a natural choice to scan the whole image with a multi-scale sliding 
window. Although this exhaustive strategy can find out all possible positions of the objects, its shortcomings 
are also obvious. Due to a large number of candidate windows, it is computationally expensive and produces 
too many redundant windows. However, if only a fixed number of sliding window templates are applied, 
unsatisfactory regions may be produced. 
Feature extraction. To recognize different objects, we need to extract visual features which can provide a 
semantic and robust representation. SIFT [19], HOG [20] and Haar-like [21] features are the representative 
ones. This is due to the fact that these features can produce representations associated with complex cells in 
human brain [19]. However, due to the diversity of appearances, illumination conditions and backgrounds, 
it’s difficult to manually design a robust feature descriptor to perfectly describe all kinds of objects. 
Classification. Besides, a classifier is needed to distinguish a target object from all the other categories and to 
make the representations more hierarchical, semantic and informative for visual recognition. Usually, the 
Supported Vector Machine (SVM) [22], AdaBoost [23] and Deformable Part-based Model 
(DPM) [24] are good choices. Among these classifiers, the DPM is a flexible model by combining object 
parts with deformation cost to handle severe deformations. In DPM, with the aid of a graphical model, 
carefully designed low-level features and kinematically inspired part decompositions are combined. And 
discriminative learning of graphical models allows for building high-precision part-based models for a 
variety of object classes. 
Based on these discriminant local feature descriptors and shallow learnable architectures, state of the art 
results have been obtained on PASCAL VOC object detection competition [25] and real-time embedded 
systems have been obtained with a low burden on hardware. However, small gains are obtained during 2010-
2012 by only building ensemble systems and employing minor variants of successful methods [15]. This fact 
is due to the following reasons: 1) The generationB. Regression/Classification Based Framework 

Region proposal based frameworks are composed of several correlated stages, including region proposal 
generation, feature extraction with CNN, classification and bounding box regression, which are usually 
trained separately. Even in recent end-to-end module Faster R-CNN, an alternative training is still required 
to obtain shared convolution parameters between RPN and detection network. As a result, the time spent in 
handling different components becomes the bottleneck in realtime application. 

One-step frameworks based on global regression/classification, mapping straightly from image pixels to 
bounding box coordinates and class probabilities, can reduce time expense. We firstly reviews some pioneer 
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CNN models, and then focus on two significant frameworks, namely You only look once (YOLO) [17] and 
Single Shot MultiBox Detector (SSD) [71]. 

1) Pioneer Works: Previous to YOLO and SSD, many researchers have already tried to model object 
detection as a regression or classification task. 

Szegedy et al. formulated object detection task as a DNNbased regression [118], generating a binary mask 
for the test image and extracting detections with a simple bounding box inference. However, the model has 
difficulty in handling overlapping objects, and bounding boxes generated by direct upsampling is far from 
perfect. 

Pinheiro et al. proposed a CNN model with two branches: one generates class agnostic segmentation 
masks and the other predicts the likelihood of a given patch centered on an object [119]. Inference is 
efficient since class scores and segmentation can be obtained in a single model with most of the CNN 
operations shared. 

Erhan et al. proposed regression based MultiBox to produce scored class-agnostic region proposals [68], 
[120]. A unified loss was introduced to bias both localization and confidences of multiple components to 
predict the coordinates of classagnostic bounding boxes. However, a large quantity of additional parameters 
are introduced to the final layer. 

Yoo et al. adopted an iterative classification approach to handle object detection and proposed an 
impressive end-toend CNN architecture named AttentionNet [69]. Starting from the top-left (TL) and 
bottom-right (BR) corner of an image, AttentionNet points to a target object by generating quantized weak 
directions and converges to an accurate object boundary box with an ensemble of iterative predictions. 
However, the model becomes quite inefficient when handling multiple categories with a progressive two-
step procedure. 

Najibi et al. proposed a proposal-free iterative grid based object detector (G-CNN), which models object 
detection as 

 
Fig. 9. Main idea of YOLO [17]. 

finding a path from a fixed grid to boxes tightly surrounding the objects [70]. Starting with a fixed multi-
scale bounding box grid, G-CNN trains a regressor to move and scale elements of the grid towards objects 
iteratively. However, G-CNN has a difficulty in dealing with small or highly overlapping objects. 

2) YOLO: Redmon et al. [17] proposed a novel framework called YOLO, which makes use of the whole 
topmost feature map to predict both confidences for multiple categories and bounding boxes. The basic idea 
of YOLO is exhibited in Figure 9. YOLO divides the input image into an S × S grid and each grid cell is 
responsible for predicting the object centered in that grid cell. Each grid cell predicts B bounding boxes and 

their corresponding confidence scores. Formally, confidence scores are defined as , 

which shows confidences of its prediction (indicates how likely there exist objects ( Pr(Object). At 
the same) ≥ 0) and time, regardless of the number of boxes, C conditional class probabilities 
(Pr(Class

i|Object)) should also be predicted in each grid cell. It should be noticed that only the contribution 
from the grid cell containing an object is calculated. 
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At test time, class-specific confidence scores for each box are achieved by multiplying the individual box 
confidence predictions with the conditional class probabilities as follows. 

 

where the existing probability of class-specific objects in the box and the fitness between the predicted box 
and the object are both taken into consideration. 

During training, the following loss function is optimized, 

 

 
In a certain cell i, (xi,yi) denote the center of the box relative to the bounds of the grid cell, (wi,hi) are the 
normalized width and height relative to the image size, Ci represents confidence scores, 1obj

i indicates the 
existence of objects and 1obj

ij denotes that the prediction is conducted by the jth bounding box predictor. Note 
that only when an object is present in that grid cell, the loss function penalizes classification errors. 
Similarly, when the predictor is ‘responsible’ for the ground truth box (i.e. the highest IoU of any predictor 
in that grid cell is achieved), bounding box coordinate errors are penalized. 

The YOLO consists of 24 conv layers and 2 FC layers, of which some conv layers construct ensembles of 
inception modules with 1 × 1 reduction layers followed by 3 × 3 conv layers. The network can process 
images in real-time at 45 FPS and a simplified version Fast YOLO can reach 155 FPS with better results 
than other real-time detectors. Furthermore, YOLO produces fewer false positives on background, which 
makes the cooperation with Fast R-CNN become possible. An improved version, YOLOv2, was later 
proposed in [72], which adopts several impressive strategies, such as BN, anchor boxes, dimension cluster 
and multi-scale training. 

3) SSD: YOLO has a difficulty in dealing with small objects in groups, which is caused by strong spatial 
constraints imposed on bounding box predictions [17]. Meanwhile, YOLO struggles to generalize to objects 
in new/unusual aspect ratios/ configurations and produces relatively coarse features due to multiple 
downsampling operations. 

Aiming at these problems, Liu et al. proposed a Single Shot MultiBox Detector (SSD) [71], which was 
inspired by the anchors adopted in MultiBox [68], RPN [18] and multi-scale representation [95]. Given a 
specific feature map, instead of fixed grids adopted in YOLO, the SSD takes advantage of a set of default 
anchor boxes with different aspect ratios and scales to discretize the output space of bounding boxes. To 
handle objects with various sizes, the network fuses predictions from multiple feature maps with different 
resolutions . 
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The architecture of SSD is demonstrated in Figure 10. Given the VGG16 backbone architecture, SSD adds 
several feature layers to the end of the network, which are responsible for predicting the offsets to default 
boxes with different scales and aspect ratios and their associated confidences. The network is trained with a 
weighted sum of localization loss (e.g. Smooth L1) and confidence loss (e.g. Softmax), which is similar to 
(1). Final detection results are obtained by conducting NMS on multi-scale refined bounding boxes. 

Integrating with hard negative mining, data augmentation and a larger number of carefully chosen default 
anchors, SSD significantly outperforms the Faster R-CNN in terms of accuracy on PASCAL VOC and 
COCO, while being three times faster. The SSD300 (input image size is 300×300) runs at 59 FPS, which is more 

accurate and efficient than YOLO. However, SSD is not skilled at dealing with small objects, which can be relieved by 
adopting better feature extractor backbone (e.g. ResNet101), adding deconvolution layers with skip 
connections to introduce additional large-scale context [73] and designing better network structure (e.g. Stem 
Block and Dense Block) [74]. 

 

Fig. 10. The architecture of SSD 300 [71]. SSD adds several feature layers to the end of VGG16 backbone 

network to predict the offsets to default anchor boxes and their associated confidences. Final detection 
results are obtained by conducting NMS on multi-scale refined bounding boxes. 
C. Experimental Evaluation 

We compare various object detection methods on three benchmark datasets, including PASCAL VOC 
2007 [25], PASCAL VOC 2012 [121] and Microsoft COCO [94]. The evaluated approaches include R-CNN 
[15], SPP-net [64], Fast R-CNN [16], NOC [114], Bayes [85], MR-CNN&S-CNN 
[105], Faster R-CNN [18], HyperNet [101], ION [95], MS- 
GR [104], StuffNet [100], SSD300 [71], SSD512 [71], OHEM 
[113], SDP+CRC [33], GCNN [70], SubCNN [60], GBD-Net 
[109], PVANET [116], YOLO [17], YOLOv2 [72], R-FCN 
[65], FPN [66], Mask R-CNN [67], DSSD [73] and DSOD [74]. If no specific instructions for the adopted 
framework are provided, the utilized model is a VGG16 [46] pretrained on 1000-way ImageNet 
classification task [39]. Due to the limitation of paper length, we only provide an overview, including 
proposal, learning method, loss function, programming language and platform, of the prominent 
architectures in Table I. Detailed experimental settings, which can be found in the original papers, are 
missed. In addition to the comparisons of detection accuracy, another comparison is provided to evaluate 
their test consumption on PASCAL VOC 2007. 

1) PASCAL VOC 2007/2012: PASCAL VOC 2007 and 

2012 datasets consist of 20 categories. The evaluation terms are Average Precision (AP) in each single 
category and mean Average Precision (mAP) across all the 20 categories. Comparative results are exhibited 
in Table II and III, from which the following remarks can be obtained. 

•bone CNN models can definitely improve object detectionIf incorporated with a proper way, more powerful 

backperformance (the comparison among R-CNN with AlexNet, R-CNN with VGG16 and SPP-net with 

ZF-Net [122]). 

•end multi-task architecture (FRCN) and RPN (Faster R-With the introduction of SPP layer (SPP-net), 
end-to- 

CNN), object detection performance is improved gradually and apparently. 
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•obtain multi-level robust features, data augmentation is veryDue to large quantities of trainable parameters, in order to 

important for deep learning based models (Faster R-CNN with ‘07’ ,‘07+12’ and ‘07+12+coco’). 

•affecting object detection performance, such as multi-scaleApart from basic models, there are still many other factors and 
multi-region feature extraction (e.g. MR-CNN), modified classification networks (e.g. NOC), additional 
information from other correlated tasks (e.g. StuffNet, HyperNet), multi-scale representation (e.g. ION) 
and mining of hard negative samples (e.g. OHEM). 

• As YOLO is not skilled in producing object localizations 
of high IoU, it obtains a very poor result on VOC 2012. However, with the complementary information 
from Fast R-CNN (YOLO+FRCN) and the aid of other strategies, such as anchor boxes, BN and fine 
grained features, the localization errors are corrected (YOLOv2). 

•network as a fully convolutional one, R-FCN achieves aBy combining many recent tricks and modelling 

the whole more obvious improvement of detection performance over other approaches. 

2) Microsoft COCO: Microsoft COCO is composed of 300,000 fully segmented images, in which each 
image has an average of 7 object instances from a total of 80 categories. As there are a lot of less iconic 
objects with a broad range of scales and a stricter requirement on object localization, this dataset is more 
challenging than PASCAL 2012. Object detection performance is evaluated by AP computed under different 
degrees of IoUs and on different object sizes. The results are shown in Table IV. 

Besides similar remarks to those of PASCAL VOC, some other conclusions can be drawn as follows from 
Table IV. 

•ing object detection performance, which provide additionalMulti-scale training and test are beneficial in improvinformation 
in different resolutions (R-FCN). FPN and DSSD provide some better ways to build feature pyramids to 
achieve multi-scale representation. The complementary information from other related tasks is also helpful 
for accurate object localization (Mask R-CNN with instance segmentation task). 

•Faster R-CNN and R-FCN, perform better than regres-Overall, region proposal based methods, such as sion/classfication 

based approaches, namely YOLO and SSD, due to the fact that quite a lot of localization errors are 

produced by regression/classfication based approaches. 

•which provides additional information by consulting nearbyContext modelling is helpful to locate small objects, objects and 

surroundings (GBD-Net and multi-path). 

•small objects, the results on this dataset are much worseDue to the existence of a large number of nonstandard than those of 

VOC 2007/2012. With the introduction of other powerful frameworks (e.g. ResNeXt [123]) and useful 

strategies (e.g. multi-task learning [67], [124]), the performance can be improved. 

•importance of network design to release the requirementsThe success of DSOD in training from scratch stresses the for 

perfect pre-trained classifiers on relevant tasks and large numbers of annotated samples. 

3) Timing Analysis: Timing analysis (Table V) is conducted on Intel i7-6700K CPU with a single core and 
NVIDIA Titan 
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TABLE I 

AN OVERVIEW OF PROMINENT GENERIC OBJECT DETECTION ARCHITECTURES. 

FrameworkProposalMulti-scale Input Learning Method Loss FunctionSoftmax LayerEnd-to-end Train
PlatformLanguage 

R-CNN [15]Selective Search - SGD,BPHinge loss (classification),Bounding box regression

 + - Caffe Matlab 

SPP-net [64]EdgeBoxes + SGDHinge loss (classification),Bounding box regression +

 - Caffe Matlab 

Fast RCNN [16]Selective Search + SGDClass Log loss+bounding box regression

 + - Caffe Python 

Faster R-CNN [18] RPN + SGDClass Log loss+bounding box regression + +

 CaffePython/Matlab 

R-FCN [65]RPN + SGDClass Log loss+bounding box regression - + Caffe

 Matlab 

Mask R-CNN [67] RPN + SGDClass Log loss+bounding box regression+Semantic sigmoid loss +

 +TensorFlow/Keras Python 

FPN [66] RPN +Synchronized SGDClass Log loss+bounding box regression+ +
TensorFlowPython 

YOLO [17] - - SGDClass sum-squared error loss+bounding box regression+object 

confidence+background confidence + + Darknet C 

SSD [71] - - SGDClass softmax loss+bounding box regression - + Caffe

 C++ 

YOLOv2 [72] - - SGDClass sum-squared error loss+bounding box 

regression+object confidence+background confidence + + Darknet C 

* ‘+’ denotes that corresponding techniques are employed while ‘-’ denotes that this technique is not 

considered. It should be noticed that R-CNN and SPP-net can not be trained end-to-end with a multi-task 

loss while the other architectures are based on multi-task joint training. As most of these architectures are 

re-implemented on different platforms with various programming languages, we only list the information 

associated with the versions 

 
by the referenced authors. 

TABLE II 
COMPARATIVE RESULTS ON VOC 2007 TEST SET (%). 

 Methods Trained onareo bikebirdboatbottle bus car catchaircowtable doghorsembikepersonplant
 sheep sofa train tvmAP 

R-CNN (Alex) [15] 07 68.172.856.8 43.036.866.3 74.267.634.4 63.554.561.269.168.6 58.733.4
 62.9 51.1 62.568.658.5 
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R-CNN(VGG16) [15] 07 73.477.063.445.4 44.675.178.1 79.840.573.762.279.478.1 73.164.235.6
 66.8 67.2 70.471.166.0 

SPP-net(ZF) [64] 07 68.571.758.7 41.942.567.7 72.173.834.7 67.063.466.072.571.3 58.932.8
 60.9 56.1 67.968.860.9 

GCNN [70] 07 68.377.368.5 52.438.678.5 79.581.047.1 73.664.577.280.575.866.6 34.365.2
 64.4 75.6 66.466.8 

 Bayes [85] 07 74.183.267.0 50.851.676.2 81.477.248.1 78.965.677.378.475.170.1 41.469.6
 60.8 70.2 73.768.5 

Fast R-CNN [16] 07+1277.0 78.169.359.438.3 81.678.686.7 42.878.868.984.782.076.6 69.931.8
 70.1 74.8 80.470.470.0 

SDP+CRC [33]07 76.179.468.2 52.646.078.4 78.481.046.7 73.565.378.681.076.777.3 39.065.1
 67.2 77.5 70.368.9 

SubCNN [60] 07 70.280.569.5 60.347.979.0 78.784.248.5 73.963.082.780.676.070.2 38.262.4
 67.7 77.7 60.568.5 

StuffNet30 [100] 07 72.681.770.6 60.553.081.5 83.783.952.2 78.970.785.085.777.0 78.742.2
 73.6 69.2 79.273.872.7 

 NOC [114] 07+12 76.381.474.4 61.760.884.7 78.282.953.0 79.269.283.283.278.568.0 45.071.6
 76.7 82.2 75.773.3 

MR-CNN&S-CNN [110]07+1280.3 84.178.570.8 68.588.085.9 87.860.385.273.787.2 86.585.0

 76.4 48.576.375.5 85.081.078.2 

HyperNet [101]07+12 77.483.375.0 69.162.483.1 87.487.457.1 79.871.485.185.180.0 79.151.2
 79.1 75.7 80.976.576.3 

MS-GR [104]07+1280.081.0 77.472.164.388.2 88.188.464.4 85.473.187.387.485.179.6 50.178.4
 79.5 86.9 75.578.6 

OHEM+Fast R-CNN [113]07+12 80.685.779.8 69.960.888.3 87.989.659.785.176.587.1 87.382.4

 78.8 53.780.578.7 84.580.778.9 

ION [95] 07+12+S 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9

 76.5 88.4 87.5 83.4 80.5 52.4 78.1 77.2 86.9 83.5 79.2 Faster R-CNN [18]

 07 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3

 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9 Faster R-CNN [18] 07+12

 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6

 77.5 76.7 38.8 73.6 73.9 83.0 72.6 73.2 

Faster R-CNN [18] 07+12+COCO 84.3 82.0 77.7 68.9 65.7 88.1 88.4 88.9 63.6

 86.3 70.8 85.9 87.6 80.1 82.3 53.6 80.4 75.8 86.6 78.9 78.8 SSD300 [71]

 07+12+COCO 80.9 86.3 79.0 76.2 57.6 87.3 88.2 88.6 60.5 85.4 76.7

 87.5 89.2 84.5 81.4 55.0 81.9 81.5 85.9 78.9 79.6 

SSD512 [71]07+12+COCO86.688.3 82.476.066.3 88.688.989.1 65.188.473.686.588.9 85.384.6
 59.1 85.0 80.487.481.2 81.6 

 
* ‘07’: VOC2007 trainval, ‘07+12’: union of VOC2007 and VOC2012 trainval, ‘07+12+COCO’: trained on 

COCO trainval35k at first and then fine-tuned on 07+12. The S in ION ‘07+12+S’ denotes SBD 

segmentation labels. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 07 | July -2020                                                                                                          ISSN: 2582-3930                                      

 

© 2020, IJSREM      | www.ijsrem.com Page 15 

 

TABLE III 
COMPARATIVE RESULTS ON VOC 2012 TEST SET (%). 

 Methods Trained onareo bikebirdboatbottle bus car catchaircowtable doghorsembikepersonplant
 sheep sofa train tvmAP 

R-CNN(Alex) [15] 12 71.865.852.0 34.132.659.6 60.069.827.6 52.041.769.661.368.3 57.829.6
 57.8 40.9 59.354.153.3 

R-CNN(VGG16) [15] 12 79.672.761.941.2 41.965.966.4 84.638.567.246.782.074.8 76.065.235.6
 65.4 54.2 67.460.362.4 

 Bayes [85] 12 82.976.164.1 44.649.470.3 71.284.642.7 68.655.882.777.179.968.7 41.469.0
 60.0 72.0 66.266.4 

Fast R-CNN [16] 07++12 82.378.470.852.3 38.777.871.6 89.344.273.055.087.580.5 80.872.035.1
 68.3 65.7 80.464.268.4 

SutffNet30 [100] 12 83.076.971.2 51.650.176.4 75.787.848.3 74.855.785.781.280.3 79.544.2
 71.8 61.0 78.565.470.0 

 NOC [114] 07+12 82.879.071.6 52.353.774.1 69.084.946.9 74.353.185.081.379.572.2 38.972.4

 59.5 76.7 68.168.8 
MR-CNN&S-CNN [110]07++12 85.582.976.6 57.862.779.4 77.286.655.079.162.287.0 83.484.7

 78.9 45.373.465.8 80.374.073.9 

HyperNet [101]07++1284.278.5 73.655.653.7 78.779.887.7 49.674.952.186.081.783.3 81.848.6
 73.5 59.4 79.965.771.4 
OHEM+Fast R-CNN [113]07++12+coco90.187.479.9 65.866.386.185.092.962.4 83.469.590.688.9

 88.9 83.659.082.0 74.788.277.3 80.1 

ION [95] 07+12+S 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 

69.2 85.2 73.5 76.4 Faster R-CNN [18] 07++12 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 

86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5 70.4 

Faster R-CNN [18]07++12+coco 87.483.676.8 62.959.681.9 82.091.354.982.659.089.0 85.584.7
 84.1 52.2 78.965.585.4 70.275.9 

YOLO [17] 07++1277.067.2 57.738.322.768.3 55.981.436.2 60.848.577.272.371.363.5 28.952.2
 54.8 73.9 50.857.9 
YOLO+Fast R-CNN [17]07++12 83.478.573.5 55.843.479.1 73.189.449.475.557.087.5 80.981.0

 74.7 41.871.568.5 82.167.270.7 

YOLOv2 [72] 07++12+coco 88.8 87.0 77.8 64.9 51.8 85.2 79.3 93.1 64.4
 81.4 70.2 91.3 88.1 87.2 81.0 57.7 78.1 71.0 88.5 76.8 78.2 SSD300 [71]

 07++12+coco 91.0 86.0 78.1 65.0 55.4 84.9 84.0 93.4 62.1 83.6 67.3

 91.3 88.9 88.6 85.6 54.7 83.8 77.3 88.3 76.5 79.3 
SSD512 [71]07++12+coco91.488.682.6 71.463.187.4 88.193.966.986.666.392.0 91.790.888.560.9
 87.0 75.4 90.280.482.2 

R-FCN (ResNet101) [16]07++12+coco92.3 89.986.774.7 75.286.789.095.870.290.4 66.595.093.2
 92.1 91.171.089.7 76.092.083.4 85.0 
* ‘07++12’: union of VOC2007 trainval and test and VOC2012 trainval. ‘07++12+COCO’: trained on 

COCO trainval35k at first then fine-tuned on 07++12. 
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TABLE IV 
COMPARATIVE RESULTS ON MICROSOFT COCO TEST DEV SET (%). 

 MethodsTrained on 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L 

Fast R-CNN [16]train20.539.9 19.4 4.1 20.0 35.8 21.3 29.4 30.1 7.3 32.1 52.0 

 ION [95] train 23.643.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6 

NOC+FRCN(VGG16) [114]train21.241.5 19.7 - - - - - - - - - 
NOC+FRCN(Google) [114] train24.844.4 25.2- - - - - - - - - 
NOC+FRCN (ResNet101) [114]train27.248.4 27.6 - - - - - - - -

 - 

 GBD-Net [109]train27.045.8 - - - - - - - - - - 

OHEM+FRCN [113] train 22.6 42.5 22.2 5.0 23.7 34.6 - - - - -
 OHEM+FRCN* [113] train 24.4 44.4 24.8 7.1 26.4 37.9 - - - -

 - - 
OHEM+FRCN* [113]trainval25.545.9 26.1 7.4 27.7 38.5 - - - - - - 

Faster R-CNN [18]trainval 24.2 45.3 23.5 7.7 26.4 37.1 23.8 34.0 34.6 12.0 38.5 54.4 

YOLOv2 [72] trainval35k 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4 SSD300 

[71] trainval35k 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5 
 SSD512 [71]trainval35k 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0 

R-FCN (ResNet101) [65]trainval 29.251.5-10.8 32.8 45.0 - - - - - - 
R-FCN*(ResNet101) [65]trainval 29.951.9-10.4 32.4 43.3 - - - - - - 
R-FCN**(ResNet101) [65]trainval 31.553.2-14.3 35.5 44.2 - - - - - - 
 Multi-path [112]trainval 33.2 51.9 36.3 13.6 37.2 47.8 29.9 46.0 48.3 23.4 56.0 66.4 

FPN (ResNet101) [66]trainval35k 36.259.1 39.0 18.2 39.0 48.2 - - - - - - 

Mask (ResNet101+FPN) [67]trainval35k38.260.3 41.7 20.1 41.1 50.2 - - - - -
 - 
Mask (ResNeXt101+FPN) [67] trainval35k39.862.3 43.4 22.1 43.2 51.2 - - - - -

 - 

DSSD513 (ResNet101) [73] trainval35k 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4 
 DSOD300 [74]trainval 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0 

* FRCN*: Fast R-CNN with multi-scale training, R-FCN*: R-FCN with multi-scale training, R-FCN**: R-

FCN with multi-scale training and testing, Mask: Mask R-CNN. 

X GPU. Except for ‘SS’ which is processed with CPU, the other procedures related to CNN are all evaluated 
on GPU. From Table V, we can draw some conclusions as follows. 

•(SPP-net), test consumption is reduced largely. Test time isBy computing CNN features on shared feature 
maps further reduced with the unified multi-task learning (FRCN) and removal of additional region 
proposal generation stage (Faster R-CNN). It’s also helpful to compress the parameters of FC layers with 
SVD [91] (PAVNET and FRCN). 

TABLE V 
COMPARISON OF TESTING CONSUMPTION ON VOC 07 TEST SET. 

 Methods Trained onmAP(%)Test time(sec/img) Rate(FPS) 
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SS+R-CNN [15] 07 66.0 32.84 0.03 
SS+SPP-net [64] 07 63.1 2.3 0.44 
 SS+FRCN [16] 07+12 66.9 1.72 0.6 
 SDP+CRC [33] 07 68.9 0.47 2.1 

SS+HyperNet* [101] 07+12 76.3 0.20 5 

MR-CNN&S-CNN [110]07+12 78.2 30 0.03 

 ION [95] 07+12+S 79.2 1.92 0.5 
Faster R-CNN(VGG16) [18] 07+12 73.2 0.11 9.1 

Faster R-CNN(ResNet101) [18] 07+12 83.8 2.24 0.4 

YOLO [17] 07+12 63.4 0.02 45 SSD300 [71] 07+12 74.3 0.02 46 
 SSD512 [71] 07+12 76.8 0.05 19 
R-FCN(ResNet101) [65]07+12+coco 83.6 0.17 5.9 

YOLOv2(544*544) [72]07+12 78.6 0.03 40 

DSSD321(ResNet101) [73] 07+12 78.6 0.07 13.6 

 DSOD300 [74]07+12+coco 81.7 0.06 17.4 
PVANET+ [116]07+12+coco 83.8 0.05 21.7 
PVANET+(compress) [116] 07+12+coco 82.9 0.03 31.3 

* SS: Selective Search [15], SS*: ‘fast mode’ Selective Search [16], HyperNet*: the speed up version of 

HyperNet and PAVNET+ (compresss): PAVNET with additional bounding box voting and compressed 

fully convolutional layers. 

• It takes additional test time to extract multi-scale features and contextual information (ION and MR-

RCNN&SRCNN). 

•network (ResNet101 against VGG16) and this time con-It takes more time to train a more complex and deeper sumption can 

be reduced by adding as many layers into shared fully convolutional layers as possible (FRCN). • Regression 

based models can usually be processed in realtime at the cost of a drop in accuracy compared with region 

proposal based models. Also, region proposal based models can be modified into real-time systems with the 

introduction of other tricks [116] (PVANET), such as BN [43], residual connections [123]. 

 
 
 
 

 

VIII. CONCLUSION 

Due to its powerful learning ability and advantages in dealing with occlusion, scale transformation and 
background switches, deep learning based object detection has been a research hotspot in recent years. This 
paper provides a detailed review on deep learning based object detection frameworks which handle different 
sub-problems, such as occlusion, clutter and low resolution, with different degrees of modifications on R-

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 07 | July -2020                                                                                                          ISSN: 2582-3930                                      

 

© 2020, IJSREM      | www.ijsrem.com Page 18 

 

CNN. The review starts on generic object detection pipelines which provide base architectures for other 
related tasks. Then, three other common tasks, namely salient object detection, face detection and pedestrian 
detection, are also briefly reviewed. Finally, we propose several promising future directions to gain a 
thorough understanding of the object detection landscape. This review is also meaningful for the 
developments in neural networks and related learning systems, which provides valuable insights and 
guidelines for future progress. 
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