On completely (1,2)*- $\psi \hat{g}$-irresolute functions

Dr.N.Ramya
Assistant Professor
Sri Shakthi Institute of Engineering and Technology
Coimbatore.

Abstract

In this paper, we introduce the new class of functions called completely(1,2)*- $\psi \hat{g}$-irresolute functions.Some comparative properties of thesefunctions are studied.

Keywords: $(1,2)^{*}-\psi \hat{g}$-irresolute functions ,completely $(1,2)^{*}-\psi \hat{g}$-irresolute functions.

1.Introduction

Crossley and Hildebrand[1] defind irresolute functions by utilizing semi-opensets due to Levine[10].As weak forms of irresoluteness,weak irresoluteness, θ-irresoluteness,almost irresoluteness and quasi irresoluteness have been definedand investigated are equivalent[4]. On the other hand,Dube [2,3]et al have introducedthe notion of almost irresolute functions which is independent of thatof almost irresolute functions in the sense of Thakur and Palk[11].Recently authors[5,6,7,8,9,12] studied various functions in bitopologicalspaces. The aimof this paper is introduce and investigate the new class of functions calledcompletely $(1,2)^{*}-\psi \hat{g}$-irresolute functions.

2.Preliminaries

Throughout the present $\operatorname{paper}\left(\mathrm{X}, \tau_{1}, \tau_{2}\right),\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right),\left(Z, \eta_{1}, \eta_{2}\right)$ briefly $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ bebitopological spaces.
Definition 2.1 AsubsetSofabitopologicalspace($\mathrm{X}, \tau_{1}, \tau_{2}$) issaidtobe $\tau_{1,2}$-openif
$\mathrm{S}=\mathrm{A} \cup \mathrm{B}$ where $\mathrm{A} \in \tau_{1}$ andB $\in \tau_{2}$.AsubsetSofXis $\tau_{1,2}$-closedifthecomplementofSis $\tau_{1,2}$-open.

Definition2.2

(i) The $\tau_{1,2}$-interiorofasubsetAofX, denotedby $\tau_{1,2}-\operatorname{int}(\mathrm{A})$ isdefinedtobe theunion ofall $\tau_{1,2}$-opensetscontaining A.
(ii) The $\tau_{1,2}$-closureofasubsetAofX, denotedby $\tau_{1,2^{-}} \mathrm{cl}$ (A)is definedtobe theintersection ofall $\tau_{1,2}$-closedsetscontaining A.

Remark2.3 (i) $\tau_{1,2}-\operatorname{int}(S)$ is $\tau_{1,2}$-openforeachS $\subset \operatorname{Xand} \tau_{1,2}-\mathrm{cl}(S)$ is $\tau_{1,2}$-closedforeachS $\subset X$.
(ii) AsetS $\subset \mathrm{X}$ is $\tau_{1,2}$-open iffS $=\tau_{1,2}-\operatorname{int}(\mathrm{S})$ andis $\tau_{1,2}$-closediffS $=\tau_{1,2}-\mathrm{cl}(\mathrm{S})$.
(iii) $\tau_{1,2}-\operatorname{int}(S)=$ int $_{\tau_{1}}(S)$ Uint $\tau_{2}(S)$
(iv)For anyfamily $\mathrm{S}_{\mathbf{i}} / \mathbf{i} \in$ IofsubsetsofXwehave
(a) $\underset{\mathrm{i}}{\mathrm{U}} \tau_{1,2}-\operatorname{int}\left(\mathrm{S}_{\mathrm{i}}\right) \subset \tau_{1,2}-\operatorname{int}\left(\underset{\mathrm{i}}{\mathrm{U}} \mathrm{S}_{\mathrm{i}}\right)$
(b) $\underset{\mathrm{i}}{\mathrm{U}} \tau_{1,2}-\mathrm{cl}\left(\mathrm{S}_{\mathrm{i}}\right) \subset \tau_{1,2}-\mathrm{cl}\left(\mathrm{US}_{\mathrm{i}}\right)$
(c) $\tau_{1,2}-\operatorname{int}\left(\bigcap_{i} \mathrm{~S}_{\mathrm{i}}\right) \subset \bigcap_{i} \tau_{1,2}-\operatorname{int}\left(\mathrm{S}_{\mathrm{i}}\right)$
(d) $\tau_{1,2}-\mathrm{cl}\left(\bigcap_{i} \mathrm{~S}_{\mathrm{i}}\right) \subset \bigcap_{i} \tau_{1,2}-\mathrm{cl}\left(\mathrm{S}_{\mathrm{i}}\right)$
(v) $\tau_{1,2}$-open setsneednotformatopology

Definition2.4 AsubsetAofabitopologicalspaces($\mathrm{X}, \tau_{1}, \tau_{2}$) iscalled

1. $(1,2)^{*}$-closed if $\mathrm{f}(\mathrm{V})$ is $\sigma_{1,2}$-closed in Y , for every $\tau_{1,2}$-closed set V of X .
2. $(1,2)^{*}$-generalized closed $\left((1,2)^{*}\right.$-g-closed)if $\tau_{1,2}-\operatorname{cl}(\mathrm{A}) \subseteq$ UwheneverA \subseteq Uand Uis $\tau_{1,2^{-}}$ openinX.
3. $(1,2)^{*}-\psi$-closedset if $(1,2)^{*}-\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}-$ sg-open in X .
4. $(1,2)^{*}-\psi$ generalized closed set (briefly $(1,2)^{*}-\psi$ g-closed $) \operatorname{if}(1,2)^{*}-\psi \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}$-open in X .
5. $(1,2)^{*}$ - $\hat{\mathrm{g}}$-closed set if $(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{G}$ whenever $\mathrm{A} \subseteq \mathrm{G}$ and G is $(1,2)^{*}$ - semi-open in X .
6. $(1,2)^{*}-\psi \hat{g}$-closedif $(1,2)^{*}-\psi \operatorname{cl}(\mathrm{A}) \subseteq U w h e n e v e r A \subseteq U a n d U i s(1,2)^{*}-\hat{\mathrm{g}}$-openinX.

Definition 2.5 A function $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is called

1. $(1,2)^{*}$ - continuous if $f^{-1}(\mathrm{~V})$ is $(1,2)^{*}$-closed in X for every $\sigma_{1,2}$-closed set V of Y .
2. $(1,2)^{*}$ - completely-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}$-regular-closed in X for every $\sigma_{1,2^{-}}$ closed set V of Y .
3. $(1,2)^{*}-\psi$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\psi$-closed in Xfor every $\sigma_{1,2}$-closed set V of Y .
4. $(1,2)^{*}-\psi$ g-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\psi$ g-closed in Xfor every $\sigma_{1,2}$-closed set V of Y.
5. $(1,2)^{*}-\psi \widehat{g}$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\psi \hat{\mathrm{g}}$-closed in Xfor every $\sigma_{1,2}$-closed set V of Y .
6. $(1,2)^{*}$-irresolute $\operatorname{iff}^{-1}(\mathrm{~V})$ is $(1,2)^{*}$-semi-closed in X for every $(1,2)^{*}$-semi-closed set V of Y.

3.(1,2)*- $\psi \hat{g}$-Irresolute Functions

In this section, we introduced $(1,2)^{*-} \psi \widehat{g}$-irresolute functions in bitopological spaces and study some of their characterizations and properties.
Definition3.1:Afunctionf $\quad: \quad\left(\mathrm{X}, \quad \tau_{1}, \quad \tau_{2}\right) \quad \rightarrow \quad\left(\mathrm{Y}, \quad \sigma_{1}, \quad \sigma_{2}\right)$ fromabi topologicalspaceXintoab i topologicalspaceYiscalled $(1,2)^{*}$ $\psi \hat{g}$-irresolute iftheinverseimageofevery $(1,2)^{*}-\psi \hat{g}$-closedsetinYis(1,2)*- $\psi \hat{g}$-closedsetinX.

Example3.2:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \phi,\{\mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\} . \operatorname{Letf}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) bean identity function. Then fis $(1,2)^{*}-\psi \hat{g}$-irresolute.

Theorem3.3:Afunction $\mathrm{f}:\left(\mathrm{X}, \quad \tau_{1}, \quad \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \quad \sigma_{1}, \quad \sigma_{2}\right)$ is $(1,2)^{*}-\psi \hat{g}$-irresolute ifand onlyiftheinverseimageofevery(1,2)*- $\psi \hat{g}$-open set inYis $(1,2)^{*}-\psi \hat{g}$-openinX.

Proof:Assume that fis(1,2)*- $\psi \hat{g}$-irresolute. LetAbeany (1,2)*- $\psi \hat{g}$-open set in Y. ThenA ${ }^{\text {c }}$ is $(1,2)^{*}-\psi \hat{g}-$ closedinY. Since fis $(1,2)^{*}-\psi \hat{g}$-irresolute, $f^{-1}\left(A^{c}\right)$ is $(1,2)^{*}-\psi \hat{g}-\operatorname{closedinX} \operatorname{Butf}^{-1}\left(A^{c}\right)=X-f^{-1}(A)$ $\operatorname{andsof}^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\psi \hat{g}$-openinX. Hencetheinverseimageofevery $(1,2)^{*}-\psi \hat{g}$-open setinYis $(1,2)^{*-} \psi \hat{g}-$ openinX.Conversely, assumethattheinverseimageofevery $(1,2)^{*}-\psi \hat{g}$-opensetinYis(1,2)*- $\psi \hat{g}$-openinX. LetA beany $(1,2)^{*-} \psi \hat{g}$-closedinY. ThenA $A^{c}(1,2)^{*-} \psi \hat{g}$-openinY. Byassumption, $f^{-1}\left(A^{c}\right)$ is $(1,2)^{*}-\psi \hat{g}-$ open inX. But $f^{-1}\left(A^{c}\right)=X-f^{-1}(A)$ and $\operatorname{sof}^{-1}(A)$ is $(1,2)^{*-} \psi \hat{g}$-closedinX. Therefore fis(1,2)*- $\psi \hat{g}-$ irresolute.

Theorem3.4:Afunction $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)^{*}-\psi \hat{g}$-irresolute ifandonlyifitis $(1,2)^{*}-\psi \hat{g}-$

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 04 Issue: 06 | June -2020
continuous.
Proof:Assumethat fis(1,2)*- $\psi \hat{g}$-irresolute .LetFbeany $\sigma_{1,2}$-closedsetinY.As every $\sigma_{1,2}$-closedsetis(1,2)*$\psi \hat{g}$-closed, Fis $(1,2)^{*-} \psi \hat{g}$-closedinY. Sincefis $(1,2)^{*-} \quad \psi \hat{g}-$ irresolute, $f^{-1}(\mathrm{~F})$ is $(1,2)^{*}-\psi \hat{g}-c l o s e d i n X$. Therefore fis(1,2)*- $\psi \hat{g}$-continuous.

Conversely, assume thatfis $(1,2)^{*-} \psi \hat{g}$-continuous. LetF beany $\sigma_{1,2}$-closedset in Y.Asevery $\sigma_{1,2}$-closed set is $(1,2)^{*}-\psi \hat{g}$-closed ,F is $(1,2)^{*}-\psi \hat{g}$-closed in Y. Since fis $(1,2)^{*-} \psi \hat{g}$-continuous, $\mathbf{f}^{-1}(\mathrm{~F})$ is $(1,2)^{*-} \psi \hat{g}-$ closedinX. Therefore fis(1,2)*- $\psi \hat{\mathrm{g}}$-irresolute.

Theorem3.5:LetX,YandZbeanybitopologicalspaces. Forany(1,2)*- $\psi \hat{g}$-irresolutefunction $\mathrm{f}:\left(\mathrm{X}, \tau_{1}\right.$, $\left.\tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and any $(1,2)^{*-} \psi \hat{\mathrm{g}}$-continuous function $\mathrm{g}:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$,the compositiong o $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is $(1,2)^{*}-\psi \hat{\mathrm{g}}$-continuous.

Proof:LetFbeany $\eta_{1,2}$-closedsetinZ. Sincegis(1,2)*- $\psi \hat{g}$-continuous, $g^{-1}(\mathrm{~F}) \mathrm{is}(1,2)^{*}{ }^{*} \quad \psi \hat{g}$-closedinY. Sincefis $(1,2)^{*} \quad \psi \hat{g}$-irresolute $\quad f^{-1}\left(g^{-1}(\mathrm{~F})\right)$ is $(1,2)^{*} \quad \psi \hat{g}$-closedinX. But $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~F})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~F})$.Therefore $\mathrm{g} \circ \mathrm{fis}(1,2)^{*-} \psi \hat{g}-$ continuous.

Theorem 3.6:If $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ from a bitopological space X into a bitopological space Y is bijective, open and $(1,2)^{*}-\psi \widehat{g}$-continuous then f is $(1,2)^{*}-\psi \widehat{\mathrm{g}}$-irresolute.

Proof: Let A be a $(1,2)^{*}-\psi \widehat{g}$-closed set in Y. Let $\mathrm{f}^{-1}(\mathrm{~A}) \subseteq \mathrm{U}$. where U is $\tau_{1,2}$-open in X. Therefore, A $\subseteq f(U)$ holds. Since $f(U)$ is $\sigma_{1,2}$-open and A is $(1,2)^{*-} \psi \widehat{g}$-closed in $Y, \tau_{1,2}$-cl(A) $\subseteq f(U)$ holds and hence f ${ }^{1}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{U}$. Since f is $(1,2)^{*}-\psi \widehat{\mathrm{g}}$-continuous and $\mathrm{cl}(\mathrm{A})$ is closed in $\mathrm{Y}, \tau_{1,2}-\mathrm{cl}\left(\mathrm{f}^{-1}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right)\right) \subseteq \mathrm{U}$ and so $\tau_{1,2}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~A})\right) \subseteq \mathrm{U}$. Therefore, $\mathrm{f}^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\psi \widehat{g}$-closed in X. Hence f is $(1,2)^{*}-\psi \widehat{g}$-irresolute.

4Completely $(1,2)^{*}-\psi \hat{g}$-irresolute functions

Definition4.1A functionf $:\left(\mathrm{X}, \quad \tau_{1}, \quad \tau_{2}\right) \quad \rightarrow \quad\left(\mathrm{Y}, \quad \sigma_{1}, \quad \sigma_{2}\right)$ is called completely $(1,2)^{*}-\psi \hat{g}$-irresolute if the inverse image of every $(1,2)^{*}-\psi \hat{g}$-closedsubset of $\mathrm{Yis}(1,2)^{*}$-regular closedinX.

Example 4.2Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\}\}$ and $\tau_{2}=\{\mathrm{X}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$.Then
$\tau_{1,2}$-open $\operatorname{sets}=\{X, \quad \phi,\{a\},\{b, c\}\} \quad$ and $\quad \tau_{1,2}$-closed $\operatorname{sets}=\quad\{X, \quad \phi,\{a\},\{b, c\}\}$. Let $\sigma_{1}=\{\mathrm{Y}, \phi,\{\mathrm{c}\}\}$ and $\sigma_{2}=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$.Then $\sigma_{1,2}$-open sets $=\{\mathrm{Y}, \phi,\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma_{1,2}$-closed sets $=$ $\{\mathrm{Y}, \quad \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ bebedefinedbyf(a)=a,f(b)=b,f(c)=b.Then fis completely $(1,2)^{*}-\psi \hat{g}$-irresolute function.

Theorem4.3Every completely $(1,2)^{*}-\psi \hat{g}$-irresolute function is $(1,2)^{*}-\psi \hat{g}$-irresolute.

Converseofthe abovetheorem neednot betrue as seen fromthe followingexample.

Example4.4Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\}\}$ and $\tau_{2}=\{\mathrm{X}, \phi\}$.Then $\tau_{1,2}$-open sets $=\{\mathrm{X}, \phi,\{\mathrm{a}\}\}$ and $\tau_{1,2}$-closed sets $=\{\mathrm{X}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$. Let $\sigma_{1}=\{\mathrm{Y}, \phi,\{\mathrm{a}\}\}$ and $\sigma_{2}=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$.Then $\sigma_{1,2}$-open sets $=$ $\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma_{1,2}$-closed sets $=\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ bebedefinedbyf $(a)=b, f(b)=c, f(c)=a$.Then fis $(1,2)^{*}-\psi \hat{g}$-irresolute function but not completely $(1,2)^{*}-$ $\psi \hat{g}$-irresolute function,since for the $\sigma_{1,2}$-closed set $\{a\}$ in $Y, \mathrm{f}^{-1}(\{a\})=\{b\}$ is not $(1,2)^{*}$-regular closed in X .

Theorem4.5A functionf : $\left(\mathrm{X}, \quad \tau_{1}, \quad \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \quad \sigma_{1}, \quad \sigma_{2}\right) \quad$ is a completely $(1,2)^{*}-\psi \hat{g}$-irresolute if the inverse image of every $(1,2)^{*}-\psi \hat{g}$-open set is $(1,2)^{*}$-regular open in X. $\mathrm{f}^{-1}(\mathrm{Y}-$ V) is regular closed in $\mathrm{X}, \mathrm{X}-\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}$-regular open in X .Then $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}$-regular closed in X .Hence f is completely $(1,2)^{*}-\psi \hat{g}$-irresolute.

Theorem4.6 Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}-\psi \hat{g}$-irresolutefunction and $\mathrm{f}(\mathrm{X})$ is taken with the subspace bitopology then $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{f}(\mathrm{X})$ is completely $(1,2)^{*} \psi \hat{\mathrm{~g}}$-irresolutefunction.

Proof:Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}-\psi \hat{\mathrm{g}}$-irresolutefunction implies $\mathrm{f}^{-1}(\mathrm{H})$ is $(1,2)^{*}$-regular open for every $(1,2)^{*}-\psi \hat{g}$-open subset H of $Y . \operatorname{Nowf}^{-1}(H \cap f(X))=f^{-1}(H) \cap X=f^{-1}(H)$ is $(1,2)^{*}$ regular open. Therefore $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{f}(\mathrm{X})$ is completely $(1,2)^{*}-\psi \hat{g}$-irresolutefunction.

Definition4.7 A space X is said to be (1,2)*- $\psi \hat{g}-$ Housdroff $\left(\mathbf{r e s p},(\mathbf{1 , 2})^{*}-\mathbf{r}_{\mathbf{2}}\right.$) if for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq$ y ,there exist $(1,2)^{*}-\psi \hat{g}$-open sets (resp. $(1,2)^{*}$-regular open) G and H such that $\mathrm{x} \in \mathrm{G}, \mathrm{y} \in \mathrm{H}$ and $\mathrm{G} \cap \mathrm{H}=\phi$.

Theorem4.8 Letf : $\left(\mathrm{X}, \quad \tau_{1}, \quad \tau_{2}\right) \quad \rightarrow\left(\mathrm{Y}, \quad \sigma_{1}, \quad \sigma_{2}\right)$ be injective and completely $(1,2)^{*}-\psi \hat{g}$-irresolute surjection.IfYis $(1,2)^{*}-\psi \hat{\mathrm{g}}-$ Hausdorff space then $\operatorname{Xis}(1,2)^{*}-\mathrm{rT}_{2}$.

Proof: Letx and y be any two disjoint points of X.Since f is injective, $f(x) \neq f(y)$.Since Y is $(1,2)^{*}-\psi \hat{g}$ Hausdorff space there exist disjoint $(1,2)^{*}-\psi \hat{g}$-open sets G and H such that $f(x) \in G$ and $f(y) \in H$. Since f is a completely $(1,2)^{*}-\psi \hat{g}$-irresolute function $\mathrm{f}^{-1}(\mathrm{G}), \mathrm{f}(\mathrm{H})$ are disjoint function, $\mathrm{f}^{-1}(\mathrm{G}), \mathrm{f}(\mathrm{H})$ are disjoint $(1,2)^{*}$-regular open sets containing x and y respectively. Hence X is $(1,2)^{*}-\mathrm{r} \mathrm{T}_{2}$.

Theorem4.9 Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}$-continnuousandg: $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is completely $(1,2)^{*}-\psi \hat{\mathrm{g}}$-irresolute then $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is a completely $(1,2)^{*}-\psi \hat{g}$-irresolute function.

Proof:LetGbeany $(1,2)^{*}-\psi \hat{g}$-closedsetinZ.
Sincegis
completely
$(1,2)^{*}-\psi \hat{g}$-irresolute, $\quad \mathrm{g}^{-1} \quad(\mathrm{G}) \mathrm{is}(1,2)^{*} \quad$ regular \quad closedinY.Since(1,2)*-regular closed sets is $\sigma_{1,2} \quad$-closed and fis completely $(1,2)^{*}$-continuous $\mathrm{f}^{\mathrm{f}}{ }^{1}\left(\mathrm{~g}^{-1}(\mathrm{G})\right)$ is $(1,2)^{*}$-regular closed inX.Since every $(1,2)^{*}$-regular closed set is $(1,2)^{*}-\psi \hat{g}$ - closed,gof is completely $(1,2)^{*}-\psi \hat{g}$-irresolute function.

Theorem4.10 Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}$ - $\psi \hat{g}$-irresolute andg $:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is $(1,2)^{*}-\psi \hat{g}$-continuous then $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is a completely $(1,2)^{*}-$ continuous function.

Proof:LetGbeany $\eta_{1,2}$-closedsetinZ. Sincegis $(1,2)^{*}-\psi \hat{g}$-continuous, $g^{-1}(\mathrm{G})$ is $\sigma_{1,2}$-closedinY.Since fis completely $(1,2)^{*}-\psi \mathrm{g}$-irresolute, $\mathrm{f}^{-1} \quad\left(\mathrm{~g}^{-1}(\mathrm{G})\right)$ is $(1,2)^{*}$-regular closed inX. But $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{G})\right)=(\mathrm{g} \circ \mathrm{f})^{-}$ ${ }^{1}(\mathrm{G})$. Thereforeg॰fis completely $(1,2)^{*}$-continuous function.

Theorem4.11 Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}$ - $\psi \hat{g}$-irresolute andg $:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is $(1,2)^{*}-\psi \hat{\mathrm{g}}$-irresolute then $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is a completely $(1,2)^{*-}$ irresolute function.

Proof:LetGbeany $(1,2)^{*}-\psi \hat{g}$-closedsetinZ. Sincegis $(1,2)^{*}-\psi \hat{\mathrm{g}}$-irresolute,
$\mathrm{g}^{-1}(\mathrm{G})$ is $(1,2)^{*}-\psi \hat{\mathrm{g}}$-closedin \quad Y.Since fis completely $\quad(1,2)^{*}-\psi \hat{\mathrm{g}}$-irresolute, $f^{-1}\left(g^{-1}(G)\right)$ is $(1,2)^{*}$-regular closed inX. But $f^{-1}\left(g^{-1}(G)\right)=(g \circ f)^{-1}(G)$.Thereforeg॰fis completely $(1,2)^{*}$ irresolute function.

Theorem4.12 Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is completely $(1,2)^{*}$-continuous and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is completely $(1,2)^{*}-\psi \hat{g}$-irresolute then $g \circ f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right)$ is a completely $(1,2)^{*}-\psi \hat{g}$-irresolute function.

Proof:LetGbeany $(1,2)^{*}-\psi \hat{g}$-closedsetinZ. Sinceg is completely
$(1,2)^{*}-\psi \hat{g}$-irresolute, $\quad \mathrm{g}^{-1}(\mathrm{G})$ is $(1,2)^{*}$-regular \quad closedin \quad.Since $(1,2)^{*}$-continuous, $\mathrm{f}^{1} \quad\left(\mathrm{~g}^{-1}(\mathrm{G})\right)$ is $(1,2)^{*}$-regular closed inX. But $\mathrm{f}^{-1} \quad\left(\mathrm{~g}^{-1}(\mathrm{G})\right)$ $=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{G})$. Thereforeg$\circ$ fis completely $(1,2)^{*}$-irresolute function.

REFERENCES

(1) S.G. Crossley and A.K. Hildebrand, Semitopological properties, Fund.Math. 74 (1972) 233-254
(2) K.K.Dube,GyuIhn Chae and O.S.Panwar,UIT Report 14(1983),379-83.
(3) K.K.Dube,GyuIhn Chae and O.S.Panwar,UIT Report 15(1984),373-79.
(4) G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions,Suppl. Rend. Circ. Mat. Palermo (2) 18(1988), 255-273.
(5) M.LellisThivagar and O.Ravi,On stronger forms of (1,2)*-quotient mappingsinbitopological spaces, Internat. J. Math. Game theory and Algebra.,14(6)(2004),481-492.
(6) M.LellisThivagar and O.Ravi,Abitoplogical(1,2)*-semi generalized continuousmaps, Bulletin Malays.Sci.Soc.,2(29)(2006),79-88.
(7) M.LellisThivagar and O.Ravi,Abd El-Monsef M.E,Remarks on bitoplogical(1,2)*-quotient mappings,J.Egypt Math.Soc.,16(1)(2008),17-25.
(8) M.LellisThivagar and O.Ravi,Ekici.E,On(1,2)*-sets and decompositionof bitopological(1,2)*continuous mappings,Kochi J. Math.,3(2008),181-189.
(9) M.LellisThivagar and O.Ravi,Ekici.E,Decompositions of bitopological(1,2)*-continuity and complete (1,2)*-continuity,AnaleleUniversitatii DinOradea-Fasicola Mathematica.,15(2008),29-37.
(10) Ramya.NandParvathi.A, $\psi \hat{g}$-closed sets intopological spaces, InternationalJournal of Mathematical Archive, 2(10)(2011),1992-1996,ISSN 2229-5046.
(11) Ramya.NandParvathi.A, Strong forms of $\psi \hat{g}$-continuous functions in topological spaces, Journal of Mathematics and Computational Science., 2 (2012), No. 1, 101-109. ISSN: 1927-5307.
(12) Ramya.NandParvathi.A, (1, 2)*- $\psi \hat{g}$-closed functions in bitopological spaces, InternationalJournal of Mathematical Archive, 3(8),(2012),3122-3128, ISSN 2229-5046.
(13) Ramya.NandParvathi.A, Quasi $\psi \hat{g}$-open functions and Quasi $\psi \hat{g}$-closed functions intopologicalspaces, Journal of Advanced Research in Computer Engineering,Volume6,Number 2,July-December 2012,103-106,ISSN 0974-4320.

