

Optimal Location and Coordinated Control of FACTS Controllers in Power Systems

AKASH GUPTA

Abstract:-This paper presents the review on methods for optimal location and coordinated control of FACTS controllers such as TCSC, SVC, STATCOM, SSSC, D-STATCOM, UPFC, IPFC, DVR, GUPFC, GIPFC and HPFC in power systems from different power system performance viewpoint such as minimization of real and reactive power loss, improvement of voltage profile, minimization of environmental pollutions, and minimization of short circuit current capacity etc. This paper also presents the current status on optimal placement and coordinated control of FACTS controllers in power systems. This article is very much useful for scientific persons, industrial persons and researchers in field of optimal placement and coordinated control of FACTS controllers in power systems.

Keywords:-FACTS, FACTS Controllers, Power Systems, Power Flow Analysis, Optimal Location and Coordination Control.

Nomenclature

SVC	Static Var Compensator
TCSC	Thyristor Controlled Series Capacitor
STATCOM	Static Compensator
SSSC	Series- Sub Synchronous Compensator
D-STATCOM	Distributed-STATCOM
UPFC	Unified Power Flow Controllers
IPFC	Interlink Power Flow Controller
DVR	Dynamic Voltage Restorer
GUPFC	Generalized Unified Power Flow Controller
GIPFC	Generalized Interlink Power Flow Controller
HPFC	Hybrid Power Flow Controller
VSC	Variable Series Compensation
PSS	Power System Stabilizer
CDO	Coordinated Optimal
PID	Proportional Integral Derivative
SPS	Static Phase Shifter

I. INTRODUCTION

In power system networks, various FACTS controllers are incorporated from different power system analysis such as minimization of real and reactive power loss in minimization of power system oscillation, maximization of bus voltage, maximization of variable power transfer capacity, maximization of loadability of system, enhancement of power system stability, enhancement of power system reliability etc.

The varying FACTS controllers are incorporated in system networks from two important issue such as optimal placement and properly coordinated FACTS controllers for better power system performance. The various FACTS controllers are optimally placed but not properly coordinated that's why the voltage and current interaction problem arises which is harmful for FACTS controllers and it may be dangerous. So the properly coordinated control is also an important issue for incorporation of FACTS controllers in power system networks.

A. Types of FACTS controllers:

1) On the basis of connections:-FACTS controllers are broadly classified in four categories on basis of connection diagrams are as follows:

Series connected FACTS controllers (*e.g.* TCSC, TCPAR and SSSC); shunt connected FACTS controllers (*e.g.* SVC, STSTCOM and D-STATCOM); series-Series connected FACTS controllers (*e.g.* IPFC and GIPFC); shunt-Series connected FACTS controllers (*e.g.* GIPFC, GUPFC and HPFC).

2) On the basis of converter topology used:- The FACTS controllers are classified into two categories on the basis of converter topologies as follow-

Thyristor controller based (*e.g.*TCSC, TC-PAR and SVC) VSI based (*e.g.*SSSC, STATCOM, UPFC, GUPFC, D-STATCOM, IPFC, GIPFC and HPFC)

On the basis of generation:- the FACTS controllers are classified on the basis of generation as follow: First generation (*e.g.* TCSC, SVC and TC-PAR)
 Second generation (*e.g.* SSSC and STATCOM)
 Third generation (*e.g.* IPFC, GIPFC, UPFC, GUPFC, HPFC and D-STATCOM)

[B]. Optimal Location of FACTS Controllers Variables

The following considerations of variables are chosen for optimal location of FACTS controllers in PSNs are:-

- I. Location & size
- II. Type, location & size
- III. Size, location & type
- IV. Number, type, location & size
- V. Number, location & size
- VI. Number, type & location etc.

[C]. Coordinated control of FACTS Controllers

The following considerations of variables are chosen for coordinated control of the FACTS controllers are:-

- I. Voltage interaction
- II. Current interaction
- III. Frequency interaction
- IV. Voltage & current interaction
- V. Voltage, current & frequency interaction
- VI. Voltage & frequency interaction etc.

This paper is organized as follows:-

Section II: - Discuss the mathematical modeling of different FACTS controllersSection III: - Discuss a review on optimal placement and coordinated control of FACTS controllers. Section IV: - Presented the summary of paper. Section V: - Presented the conclusions and future scope of the work.

II. **A TAXONOMICAL REVIEW**

Table 1:-A taxonomical review onoptimal placement and properly coordinated control of FACTS controllers in power system networks

Ref.	Authors	Proposed Methods	FACTS Controllers	Parameter enhance	Test System	Future Scope
[1]	K. Vijayakumar et	Genetic Algorithm	TCSC and UPFC	Overall system cost	IEEE- 9 Bus	Multi objective task
[2]	al. Imran Khan et al.	Sensitivity	UPFC	Security	IEEE-14 Bus	Realistic load
[3]	Kumar, B.K. et al.	Line Index	TCSC	Line power flow control	New England 39-bus system.	models Hybrid techniques
[4]	A.R. Phadke et al.	Genetic Algorithm	Shunt FACTS	Voltage stability	IEEE-14 Bus &IEEE-57 Bus	Latest FACTS controllers such as HPFC
[5]	Leung	Genetic Algorithm	Multiple-type FACTS	Cost effectiveness	4-BUS	Latest FACTS controllers such as HPFC
[6]	B. Kalyan Kumar et al.	Controllability Index	SVR, TCSC and UPFC	Damping out oscillations.	New England 39- Bus system and 16- machine, 68-bus system	Realistic load models
[7]	Del Rosso et al.	Novel hierarchical control	TCSC	Stability Improvement	New England 39-bus system.	Hybrid techniques
[8]	Glanzmann G. at al.	Supervisory controller based on optimal power flow (OPF)	SVC, TCSC and TCPST	Avoid congestion	4-BUS	Latest FACTS controllers such as HPFC
[9]	Bindeshwar Singh et al.	Phasor Measurement Units (PMUs)	Multiple-type FACTS	Advanced power system monitoring	IEEE-14 Bus &IEEE-57 Bus	Realistic load models
[10]	SH. Song et al.	Install and operate FACTS devices properly	Shunt controllers, series controllers and combined series- shunt controllers such UPFC	Steady-state security	IEEE 57-Bus	Multi objective task
[11]	Yu, T. et al.	Application of Projective Controls	TCSC and SVC	Dynamic performance of a power system	Single Machine to Infinite Bus System	Hybrid techniques
[12]	Bindeshwar Singh et al.	Optimally placed Distributed Generation (DG)	Multiple-type FACTS	Enhancement of different performance parameters	IEEE 57-Bus	Hybrid techniques
[13]	Li. G. et al.	Digital simulation	VSC	Power system damping	PSCAD/EMTDC software package	Realistic load models
[14]	M.W. Mustafa at el.	Residue factor	SVC	Improve voltage and reactive power conditions	25 Bus of south Malaysian power system	Hybrid techniques
[15]	Bindeshwar Singh et al.	Techniques for coordination	Multiple-type FACTS	Co-ordination control between FACTS controllers	IEEE 14-bus	Multi objective task
[16]	Talebi, N. et al.	Steady State Models	SVC and TCSC	Voltage Collapse	IEEE 14 Bus test system	Latest FACTS controllers such as

Volume: 04 Issue: 05 | May -2020

[17]	Zarghami M. et al.	Finding an	Shunt controllers,	Stability	68 bus, 16 generator	HPFC Multi objective task
		equivalent reduced affine nonlinear system	series controllers and combined series- shunt controllers		system of the New England/New York network.	
[18]	H. Shayeghi et al.	Particle swarm optimization (PSO) technique	TCSC and PSS	Dynamic stability	Multi-machine power system	Latest FACTS controllers such as HPFC
[19]	Guojie Li et al.	Damp inter-area oscillations	CDO and TCSC	Damping during large disturbances	Two-machine power system through real- time digital simulation studies using a PSCAD/RTDS	Realistic load models
[20]	Jordehi A.R. et al.	Evolution Strategies (ES)	SVC, TCSC and UPFC	Maximize the system loadability	IEEE 30-Bus test system	Hybrid techniques
[21]	Yashar Hashemi et al.	Particle Swarm Optimization Algorithm	PSS and UPFC	Damping of power system oscillations.	IEEE 14-bus	Latest FACTS controllers such as HPFC
[22]	M. K. Verma et al.	SVC placement computes sensitivity of system loading factor with respect to reactive power generation	SVAR and SVC	Voltage security	75-Bus Indian system with respect to enhancement of the static as well as dynamic voltage stability margins.	Multi objective task
[23]	Abdelsalam H.A et al.	Steady state injection model of UPFC	UPFC	Identify the optimal location of the unified power flow controller UPFC in electrical power systems	IEEE 14-bus Test System	Realistic load models
[24]	Baghaee, H.R et al.	Genetic Algorithm (GA)	Multiple-type FACTS	Stability	IEEE 30-Bus power system	Latest FACTS controllers such as HPFC
[25]	E.S. Ali et al.	Bacteria Foraging Optimization Algorithm (BFOA) based Thyristor Controlled Series Capacitor (BFTCSC)	TCSC	Superior efficiency	IEEE 57-Bus	Multi objective task
[26]	Yong Li et al.	Robust Control Theory	SVC and TCSC	Stability	16-Machine 5-area system	Hybrid techniques
[27]	Mahdad, B et al.	Fuzzy Logic Theory	SVC and STATCOM	Improvement of index power quality	IEEE 57-Bus	Realistic load models
[28]	M.M. Farsangi et al.	A mixed H_2/H_{∞} with regional pole placement	SVC, SSSC and UPFC	Accurate specification of the desirable closed- loop behaviour	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[29]	R. Benabid et al.	Particle Swarm Optimization (PSO)	TCSC and SVC	Multi-objective optimization	IEEE 30-bus and realistic Algerian 114-Bus power system	Multi objective task
[30]	N. Magaji et al.	Residue Factor	UPFC	Increase transmission capacity	TNB 25 Bus system of south Malaysian network and New England 39 bus system	Multi objective task
[31]	Baghaee, H.R et al.	Genetic Algorithm	Multi-type FACTS	Allocation of FACTS devices	IEEE 30 Bus power system	Multi objective task
[32]	Joorabian, M. et al.	LMP Based	TCSC	Secure operation	IEEE 14-Bus and IEEE 30-Bus test systems	Latest FACTS controllers such as HPFC
[33]	José A. Domínguez- Navarro et al.	Evolutionary Strategy	Multiple-type FACTS	Study of power systems	IEEE 57-Bus	

Volume: 04 Issue: 05 | May -2020

[34]	S. Panda et al.	Particle Swarm Optimization (PSO)	PSS and TCSC	Stability	Algerian 114-Bus power system	Realistic load models
[35]	C. T. Vinay Kumar et al.	Fuzzy Technique	TCSC and UPFC	Optimal location for FACTS devices	IEEE 57-Bus	Hybrid techniques
[36]	So, P.L. et al.	Coordinated Control	TCSC and SVC	Stability	2-Area interconnected 4- machine system	Latest FACTS controllers such as HPFC
[37]	Candelo, J.E et al.	FACTS Controllers	Multiple-type FACTS	Voltage Stability	IEEE 30-Bus power system	Latest FACTS controllers such as HPFC
[38]	Shakib, A.D. et al.	Sensitivity Index	Shunt FACTS	Improve Security	IEEE 57-Bus system.	Hybrid techniques
[39]	Benabid, R. et al.	Particle Swarm Optimization (PSO)	TCSC and SVC	Multiobjective Optimization	Two and three objective functions for various FACTS combinations	Hybrid techniques
[40]	P. Ramasubramanian et at.	Evolutionary Programming (EP)	TCSC	Optimal Power Flow (OPF) problem	IEEE 14 Bus system	Multi objective task
[41]	Mandala, M. et al.	Real power performance index	TCSC	Optimal Location	Algerian 114-Bus power system	Multi objective task
[42]	Adepoju, G. A. et al.	Mathematical modeling	STATCOM	Power System Analysis		5-bus using FACTSPF
[43]	N. Mithulananthan et al.	Bifurcation Theory	SVC and PSS	Effectiveness of these controllers	16-Bus test system	Latest FACTS controllers such as HPFC
[44]	Zuwei Yu et al.	Multiple Time Periods	Multiple-type FACTS	Optimal Placement	46-Machine power system	Latest FACTS controllers such as HPFC
[45]	Gupta, S. et al.	Semiconductor Technology Development	Multiple-type FACTS	Voltage Stability	IEEE 118-bus	Realistic load models
[46]	Juan M. Ramírez et al.	Coordinate Stabilizers	TCSC and UPFC	Operational Dynamic Stability Margin	46-Machine power system	Multi objective task
[47]	A.R. Messina et al.	Modified modal power flow oscillation flow	SVR	Optimal Locations For New Devices	46-Machine, 190- bus reduced-Order Equivalent model of the Mexican interconnected system	Realistic load models
[48]	Shen, J et al.	H Infinity Norm	PSS and TCSC	Determines the location of controllers	IEEE-30 Bus	Hybrid techniques
[49]	R.Mohamad Idris et al.	Bees Algorithm	SVC, UPFC and TCSC	Optimal Allocation of FACTS Devices	IEEE-9 Bus test system and IEEE- 118 Bus test system	Latest FACTS controllers such as HPFC
[50]	A. Hernandez1 et al.	Optimization Methods	Multiple-type FACTS	FACTS Location	IEEE-30 Bus	Latest FACTS controllers such as HPFC
[51]	Ramirez, J.M et al.	Closed-loop Characteristic Polynomial	TCSC and UPFC	Power System Damping	Three-machine power system	
[52]	Kaewniyompanit, S. et al.	Microgenetic Algorithm (µGA)	Multiple-type FACTS	Power System Characteristics	Single machine infinite bus	Hybrid techniques
[53]	B. Bhattacharyya et al.	Differential Evolution (DE) based and Particle swarm optimization (PSO)	Multiple-type FACTS	Improved Power transfer Capacity	IEEE 30-Bus system	Multi objective task
[54]	Berizzi, A. et al.	Genetic Algorithm	TCSC and SVC	Efficiency	Suitable Test Systems	Realistic load models
[55]	Ali Darvish Falehi et al.	Generic Algorithm	SVC, PID and PSS	System Stability	Multimachine Power System	Latest FACTS controllers such as HPFC

Volume: 04 Issue: 05 | May -2020

[56]	E. S. Ali et al.	Bacteria Foraging Optimization Algorithm (BFOA)	SVC	Damping Performance	Multimachine Power System	Hybrid techniques
[57]	Lucio Ippolito et al.	Genetic Algorithm	UPFC	Network Operation	IEEE 30-Bus Power system	Hybrid techniques
[58]	Ilea, V. et al.	Modal Sensitivity Analysis	PSS	Optimal Location of FACTS	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[59]	J. Aghaei et al.	Convergence of The Newton-Raphson	TCSC and SVC	Voltage Security Margin	IEEE-5 Bus	Multi objective task
[60]	Wang, Y. rt al.	Variable-Structure Control Theory	Series Capacitor (SC) and Braking Resistor	Transient Stability Control	Single Machine Infinite-Bus (SMIB) System	Hybrid techniques
[61]	Juan M. Raminrez et al.	Co-Ordinate Stabilizer	TCSC and UPFC	Dynamic stability	IEEE-5 Bus	Realistic load models
[62]	C.M. Yam et al.	Singular Value Decomposition Based Controller	UPFC	Dynamic interaction	IEEE-30 Bus	Latest FACTS controllers such as HPFC
[63]	P.K. Dash et al.	Artificial Neural Network	UPFC	Trip boundries	Multi-machine power system	Multi objective task
[64]	Y.L. Abdel-Magid et al.	Genetic Algorithm	TCSC, TCPST, TCVR and SVC	the location of the devices, their types and their values	IEEE-118Bus	Realistic load models
[65]	N.P. Padhy et al.	Newton–Raphson Power Flow Algorithm	GUPFC, TCSC and UPFC	power transfer	IEEE-30 Bus	Latest FACTS controllers such as HPFC
[66]	M.A. Adibo et al.	Genetic Algorithm	FACTS devices	Stability	IEEE 57-Bus	Multi objective task
[67]	Y.L. Abdel-Magid et al.	Real-Coded Genetic Algorithm	TCSC	Stability	Multi-machine power system	Hybrid techniques
[68]	Bindeshwar Singh et al.	FACTS Controller	TCSC, SVC, SSSC, STATCOM, UPFC, IPFC	Stability	IEEE-5 Bus	Multi objective task
[69]	Naresh Acharya et al.	Co-ordinate Stabilizers	UPFC	Dynamic stability	IEEE-14 Bus	Latest FACTS controllers such as HPFC
[70]	K.S. Verma et al.	Suitable Location For UPFC	UPFC	Sensitivity	IEEE-14 Bus	Hybrid techniques
[71]	Gabriela Glanzmann	FACTS	SVC, STATCOM, TCR, TSR,TSC, TSSC, TCSC, GCSC, SSSC, UPFC, IPFC	Transfer capability	IEEE-9 Bus test system	Multi objective task
[72]	Bindeshwar Singh et al.	Application Of FACTS Controller	TCR, TSC, TCSC, SVC, TC-PAR, SSSC, STATCOM, D-STATCOM, UPFC, GUPFC, IFPC, GIPFC, HPFC, SMES, BESS, TCBR, TSSR	Performance parameters	IEEE-5 Bus	Multi objective task
[73]	B.A. Renz et al.	Inez Installation	UPFC, SSSC	Optimization of power flow	IEEE-9 Bus test system	Hybrid techniques
[74]	Arthit Sode-Yome et al.	Alleviate Voltage Control	SVC, STATCOM	Stability	IEEE-14 Bus	Latest FACTS controllers such as HPFC
[75]	N. Mithulananthan et al.	Power System Stabilizers	SVC, STATCOM	Inertia and oscillation	IEEE-145 Bus	Hybrid techniques
[76]	Mr.P.S.Chindhi et al.	Optimization Technique	FACTS Devices	Stability	Multi-machine power system	Latest FACTS controllers such as HPFC
[77]	Salim. Haddad et al.	Simulation By Matlab	UPFC	Modelling	IEEE-9 Bus test system	Multi objective task
[78]	S. Surendar Reddy et al.	multi-objective genetic algorithm	SVC, TCSC	Line impedance, terminal voltage and angle	Multi-machine power system	Multi objective task
[79]	Gregory Reed et al.	FACTS Controller	STATCOM	Power transmisson control	IEEE-5 Bus	Latest FACTS controllers such as HPFC

Volume: 04 Issue: 05 | May -2020

[80]	Naresh Acharya et al.	FACTS installation	TCSC, STATCOM, SVC, UPFC	Stability	IEEE 57-Bus	Multi objective task
[81]	Bindeshwar Singh et al.	Mitigation Of Power Quality	STATCOM, DSTATCOM	Performance parameter	IEEE-5 Bus	Realistic load models
[82]	M. A. Abido	FACTS damping controllers	SVC, TCSC, TCPS, STATCOM, SSSC, UPFC, IPFC	Stability	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[83]	Jun-Yong Liu et al.	Power Injection Model	UPFC	Voltage magnitude, line current	28-node	Multi objective task
[84]	Guang Ya Yang et al.	linear programming	TCSC	Loadability	Multi-machine power system	Multi objective task
[85]	A.H.M.A. Rahim et al.	Excitation Control	SVC	Stability	46-Machine power system	Realistic load models
[86]	Sidhartha Panda et al.	Simulation by MATLAB	TCSC, STATCOM and UPFC	Modelling	IEEE 57-Bus	Multi objective task
[87]	D.J. Gotham et al.	Wheeling And Interchange Power Flow Control	FACTS Devices	Modelling	IEEE 57-Bus	Realistic load models
[88]	Michael J. Gibbard et al.	Power System Stabilizer	FACTS Devices	Damping	Multi-machine power system	Latest FACTS controllers such as HPFC
[89]	L. Bahiense et al.	mixed integer linear disjunctive formulation	none	Transmission planning	IEEE-9 Bus test system	Realistic load models
[90]	Liangzhong Yao et al.	Congestion management	SSSC	Transfer Capability	IEEE-30 Bus	Realistic load models
[91]	Yong Li et al.	Robust CO- ordinated approach	SVC, TCSC	Inertia And Oscillation	Single Machine Infinite-Bus (SMIB) System	Latest FACTS controllers such as HPFC
[92]	S. M. Abd-Elazim et al.	Hybrid Algorithm	TCSC	Damping Oscillations	IEEE-9 Bus test system	Realistic load models
[93]	Sandeep Gupta et al.	FACTS Installations	IPFC, SVC, STATCOM, SSSC, TCSC, TCPS, UPFC	Voltage Stability	Single Machine Infinite-Bus (SMIB) System	Multi objective task
[94]	Mark Ndubuka Nwohu et al.	Simulation	SVC	Voltage Stability	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[95]	R. Nelson et al.	Transient Stability Simulations	SVC, TCSC, STATCOM, UPFC	Stability	IEEE-5 Bus	Multi objective task
[96]	S. K. Tso et al.	Nonlinear Design Technique	SVC, TCSC	Overall Performance	Single Machine Infinite-Bus (SMIB) System	Realistic load models
[97]	L. Rouco	Electromechanical Oscillations	none	Sensitivity	IEEE-9 Bus test system	Multi objective task
[98]	A. R. Messina et al.	Decentralised Control Theory	FACTS Devices	Inter-Area Oscillations	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[99]	G. N. Taranto et al.	H∞-Optimisation Technique	SVC, TCSC	Inertia	Single Machine Infinite-Bus (SMIB) System	Multi objective task
[100]	Q. Yu et al.	Cascade Multilevel Configuration	STATCOM	Control	IEEE 57-Bus	Realistic load models
[101]	J. Paserba	FACTS Installations	FACTS Devices	Dynamic Performance	46-Machine power system	Realistic load models
[102]	M. M. Farsangi et al.	H∞ Loop-Shaping Design	STATCOM, SPFC and UPFC	Robust Control	IEEE-9 Bus test system	Multi objective task
[103]	S. Arabi et al.	Small-Signal Stability Analysis	SVC	Stability	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[104]	K.Matsuno et al.	FACTS Installations	SVC, STATCOM, VSPS	Transfer Capability	46-Machine power system	Multi objective task
[105]	D. J. Hanson et al.	Novel Chain-Circuit Topology	SVC, STATCOM	Efficiency and Security	IEEE-9 Bus test system	Multi objective task
[106]	L. Cong et al.	Feedback Linearization Technique And Robust Control Theory	SVC	Transient Stability And Voltage Regulation	Single Machine Infinite-Bus (SMIB) System	Realistic load models

Volume: 04 Issue: 05 | May -2020

[107]	H. F. Wang et al.	Phillips-Heffron Model	SVC, CSC, TCPS	Power System Oscillation Stability	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[108]	E. Acha et al.	Newton-Raphson Load Flow	SVC	Voltage Control	Single Machine Infinite-Bus (SMIB) System	Multi objective task
[109]	T. S. Chung et al.	Hybrid GA Approach	FACTS Devices	Power Flow	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[110]	Ning Yang et al.	Residue Method	TCSC	Impedance	IEEE 14-bus	Realistic load models
[111]	B. Chaudhuri et al.	$H\infty$ Control	SVC, CSC, CPS	Inter-Area Mode Damping	IEEE 14-bus	Hybrid techniques
[112]	A. Berizzi et al.	Congestion Management	FACTS Devices	Power Flow	IEEE 57-Bus	Hybrid techniques
[113]	W. Shao et al.	Linear Programming (LP) Based Optimal Power Flow (OPF) Algorithm	FACTS Devices	Sensitivity	IEEE-9 Bus test system	Realistic load models
[114]	A. M. Kulkarni et al.	Optimal Control	TCSC and SSSC	Frequency Oscillations	IEEE 57-Bus	Multi objective task
[115]	R. M. Hamouda et al.	Modal Speeds	SVC	Oscillation	46-Machine power system	Latest FACTS controllers such as HPFC
[116]	L. Fan et al.	Residue-Based Indices	TCSC	Oscillation		Realistic load models
[117]	Y. Ye et al.	Power Converter Modules	UPFC, IPFC	Power Flow Control	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[118]	P. Duvoor et al.	Matlab/Simulink	FACTS Devices	Overall system cost	IEEE-9 Bus	Realistic load models
[119]	P. Paterni	Genetic Algorithum	Series FACTS such as series capacitors or phase shifters	Increased loadability and reduced cost of production	IEEE-9 Bus test system	Realistic load models
[120]	E. J. de Oliveira	Allocation and transmission pricing	Installation of FACTS devices	minimize the operational costs caused by an overloaded transmission system i	IEEE-14 Bus	Hybrid techniques
[121]	Sidhartha Panda et al.	Mid-Point location	SVC	Transient stability	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[122]	Mahmoud H. M et al.	Continuation power flow	SVC	stability and maximum loadability	IEEE-14 Bus	Realistic load models
[123]	Claudio A. Caiiizares	Voltage collapse	TCSC	system loadability	IEEE 118-bus	LatestFACTScontrollerssuch asHPFC
[124]	E. A. Leonidaki et al.	Decision trees	TCSC	loading margin	Single Machine Infinite-Bus (SMIB) System	Multi objective task
[125]	Roberto Mínguez et al.	nonlinear programming	SVC	loading margin	IEEE 57-Bus	Realistic load models
[126]	Ranjit Kumar Bindal et al.	Control of phase angle	SVC	transmission system availability	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[127]	Cai, L.J et al.	Genetic algorithm	UPFC	Overall system cost		Realistic load models
[128]	M. Saravanan et al.	particle swarm optimization	TCSC	system loadability	IEEE 118-bus	Realistic load models
[129]	Wibowo, R.S et al.	large-scale optimization	SVC	Investment cost	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[130]	Santiago-Luna et al.	evolutionary algorithm	TCSC	Loadability	IEEE 30-bus	Realistic load models

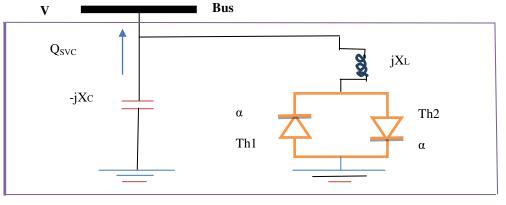
Volume: 04 Issue: 05 | May -2020

[132] [133]		differential evolution	TCSC	Processing	IEEE 30-bus	Multi objective task
[133]	Lashkar Ara et al.	general algebraic modeling system	UPFC	Economy	IEEE 14-bus	Realistic load models
	El Metwally et al.	genetic algorithms	SVC	Economy	Single Machine Infinite-Bus (SMIB) System	Realistic load models
[134]	A. Lashkar Ara et al.	General Algebraic Modelling System	UPFC	Optimization	IEEE 30-bus	Latest FACTS controllers such as HPFC
[135]	Naresh Acharya et al.	LMP difference	TCSC	Minimizing congestion	IEEE 30-bus	Hybrid techniques
[136]	Sajad Rahimzadeh et al.	averaging technique	STATCOM	Managing congestion	IEEE 14-bus	Multi objective task
[137]	M. Gitizadeh et al.	goal attainment method	TCSC	Optimization	IEEE 14-bus	Realistic load models
[138]	Gerbex, S et al.	genetic algorithm	SVC	Loadability	IEEE 118-bus	Realistic load models
[139]	Ying Xiao et al.	power-injection model	TCSC	Operational flexibility	IEEE 1500-bus	Multi objective task
[140]	L. Gyugyi et al.	unified power flow	TCSC	Economy	IEEE 57-Bus	Latest FACTS controllers such as HPFC
[141]	Noroozian, M et al.	energy function method	UPFC	Effectiveness of control	IEEE-14 Bus	Multi objective task
[142]	Gotham, D.J et al.	Wheeling power flow control	TCSC	Flexibility	IEEE-9 Bus test system	Hybrid techniques
[143]	Hingorani, N.G et al.	Transmission system	TCSC	Efficiency	Single Machine Infinite-Bus (SMIB) System	Latest FACTS controllers such as HPFC
[144]	Minguez, R. et al.	Benders decomposition technique	SVC	optimal placement	IEEE-14 Bus	Realistic load models
[145]	Orfanogianni, T et al.	optimal power-flow algorithm	UPFC	Maximise power	IEEE 118-bus	Multi objective task
[146]	Li-Jun Cai et al.	parameter- constrained optimization algorithm	PSS	Efficiency	IEEE-9 Bus test system	Latest FACTS controllers such as HPFC
[147]	Wang Feng et al.	genetic algorithm	TCSC	Increase power transfer	IEEE 57-Bus	Realistic load models
[148]	Sidhartha Panda et al.	Particle Swarm Optimization Technique	SSSC	Improve transient stability	IEEE-14 Bus	Latest FACTS controllers such as HPFC
[149]	Bindeshwar singh et al.	Planning and protection	SSSC	Voltage profile	IEEE 118-bus	Multi objective task
[150]	Ashwani kumar et al.	controlling the power flows	TCSC	Lodability	IEEE 24-bus	Multi objective task
[151]	Vijayakumar Krishnasamy et al.	Genetic Algorithm	UPFC	Power flow	IEEE 9-bus	Multi objective task
	Kiran kumar kuthadi et al.	Var compensation	TCSC	Voltage profile	IEEE 5-bus	Latest FACTS controllers such as HPFC
[152]	ot ui.					
[152]	K. Lokanadham et al.	Genetic Algorithm	TCSC	Power Efficiency	IEEE 30	Multi objective task
	K. Lokanadham et	Genetic Algorithm Genetic Algorithm	TCSC SVC	Power Efficiency Suppressed Oscillation	IEEE 30 IEEE-9 Bus test system	Multi objective task Hybrid techniques
[153]	K. Lokanadham et al.			Suppressed	IEEE-9 Bus test	
[153] [154]	K. Lokanadham et al. E. S. Ali et al. Mahmoud H. M et	Genetic Algorithm continuation power	SVC	Suppressed Oscillation	IEEE-9 Bus test system	Hybrid techniques
[153] [154] [155]	K. Lokanadham et al. E. S. Ali et al. Mahmoud H. M et al. S.M. AbdElazim et	Genetic Algorithm continuation power flow	SVC SVC	Suppressed Oscillation Lodability Suppressed	IEEE-9BustestsystemIEEE14-busIEEE-9Bustest	Hybrid techniques Hybrid techniques Multi objective task Latest FACTS
[153] [154] [155] [156]	K. Lokanadham et al. E. S. Ali et al. Mahmoud H. M et al. S.M. AbdElazim et al.	Genetic Algorithm continuation power flow Genetic Algorithm coordinated	SVC SVC SVC	Suppressed Oscillation Lodability Suppressed Oscillation	IEEE-9 system Bus test IEEE 14-bus IEEE-9 Bus test system test	Hybrid techniques Hybrid techniques Multi objective task Latest FACTS controllers such as

Volume: 04 Issue: 05 | May -2020

				Capability ATC		
[161]	A. B.Bhattacharyya et al.	Genetic Algorithm	UPFC	Power transfer	IEEE 30-bus	Multi objective task
[162]	A. Karami et al.	reactive power management	IPFC	Voltage stability	IEEE 14-Bus	Latest FACTS controllers such a HPFC
[163]	Jigar S.Sardaet al.	improve system loadability	UPFC	loadability of the line	IEEE-30	
[164]	Nadarajah Mithulananthan	investment recovery of FACTSdevices	TCSC	investment recovery	Five bus	Latest FACTS controllers such as HPFC
[165]	A.A. Alabduljabbara, et al.	Technoeconomic contribution of FACTS devices	TCSC	economic value of the proposed methodology.	IEEE-14 Bus	Multi objective task
[166]	ZOU Zhenyu et al.	Multiobjective Evolutionary Algorithm	TCSC	coordination design problem of multiple FACTS controllers	IEEE-14 Bus	Hybrid techniques
[167]	Rusejla sadikovi´c et al.	Power Flow Control and Damping of Oscillations in Power Systems	UPFC	power system stability	IEEE 39	Latest FACTS controllers such as HPFC
[168]	Esmat Rashedi et al.	Gravitational Search Algorithm	SVC	transmission system voltage	IEEE-9 Bus test system	Realistic load models
[169]	Ren, H. et al.	Review of FACTS	Multiple-type FACTS	better and safer operation of the grid	IEEE 14-bus	Latest FACTS controllers such as HPFC
[170]	Yoke Lin Tan et al.	adaptive nonlinear coordinated	SPS	transient stability	IEEE 14-bus	Multi objective task
[171]	Padhy, N.P. et al.	genetic algorithms	TCSC	suboptimal solution for reactive power planning	IEEE 30	Hybrid techniques
[172]	Faried, S.O. et al.	Probabilistic technique	STATCOMs	maximum transmission capacity to be utilised.	IEEE-9 Bus test system	Hybrid techniques
[173]	Xinghao Fang et al.	Sensitivity	VSC	transfer capability and stability	1673bus	Latest FACTS controllers such as HPFC
[174]	Ja'fari, M. et al.	Shunt FACTS Devices	Multiple-type FACTS	system voltage stability	IEEE 14bus	Multi objective task
[175]	Wenjuan Zhang et al.	shunt dynamic Var source	STATCOM,	static and dynamic voltage stability	IEEE-9 Bus test system	Hybrid techniques
[176]	L.Rajalakshmi et al.	Locating Series FACTS Devices	TCSC	improved stability of the networ	IEEE 14	Hybrid techniques
[177]	Naresh Acharya et al.	Practical Installations and Benefits	SVC	distribute the electrical energy more economically	IEEE-14 Bus	Latest FACTS controllers such as HPFC
[178]	Ahmad rezaee jordehi et al.	Heuristic Methods	STATCOM	multi-objective optimization	IEEE 30	Multi objective task

II. DISCUSSES THE MATHEMATICAL MODELLING OF DIFFERENT FACTS CONTROLLERS


1. Fundamentals of SVC:

Static VAR Compensator (SVC) is a shunt connected FACTS controller whose main functionality is to regulate the voltage at a given bus by controlling its equivalent reactance. Basically it consists of a fixed capacitor (FC) and a thyristor controlled reactor (TCR). Generally they are two configurations of the SVC.

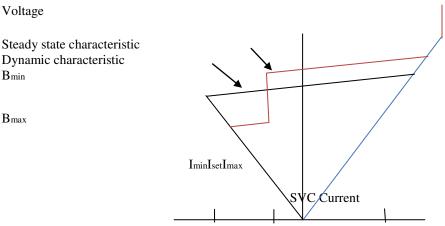
a) SVC total susceptance model. A changing susceptance Bsvc represents the fundamental frequency equivalent susceptance of all shunt modules making up the SVC as shown in Fig.

2(a).

b) SVC firing angle model. The equivalent reactance XSVC, which is function of a changing firing angle α , is made up of the parallel combination of a thyristor controlled reactor (TCR) equivalent admittance and a fixed capacitive reactance as shown in Fig. 2 (b). This model provides information on the SVC firing angle required to achieve a given level of compensation.

Fig.1 SVC firing angle model

Fig.2 SVC total susceptance model


Figure 3 shows the steady-state and dynamic voltage-current characteristics of the SVC. In the active control range, current/susceptance and reactive power is varied to regulate voltage according to a slope (droop) characteristic. The slope value depends on the desired voltage regulation, the desired sharing of reactive power production between various sources, and other needs of the system. The slope is typically1-5%. At the capacitive limit, the SVC becomes a shunt capacitor. At the inductive limit, the SVC becomes a shunt reactor (the current or reactive power may also be limited)

Bus

αBSVC

V

IminIsetImax

Voltage

 \mathbf{B} min

Bmax

Fig.3 steady-state and dynamic voltage/current Characteristics of the SVC

SVC firing angle model is implemented in this paper. Thus, the model can be developed with respect to a sinusoidal voltage, differential and algebraic equations can be writtenas

 $I_{SVC} = -jB_{SVC}V_{\kappa}$

The fundamental frequency TCR equivalent reactance X_{TCR}

$$X_{TCR} = \frac{\pi X_L}{\sigma - \sin \sigma}$$

Where $\sigma = 2(\pi - \alpha)$, X_{L=} ω L

And in terms of firing angle

$$X_{TCR} = \frac{\pi X_L}{2(\pi - \alpha) + \sin 2\alpha}$$

 σ and α are conduction and firing angles respectively

At $\alpha = 90^{\circ}$, TCR conducts fully and the equivalent reactance X_{TCR} becomes X_L , while at $\alpha = 180^{\circ}$, TCR is blocked and its equivalent reactance becomes infinite.

The SVC effective reactance X_{SVC} is determined by the parallel combination of X_c and X_{TCR}

$$X_{SVC}(\alpha) = \frac{\pi X_C X_L}{Xc[2(\pi - \alpha) + \sin 2\alpha] - \pi XL}$$

Where $X_C = 1/\omega C$

$$Q_k = -V_k^2 \left\{ \frac{X_C[2(\pi - \alpha) + \sin 2\alpha]}{X_L X_C} \right\}$$

The SVC equivalent reactance is given above equation. It is shown in Fig. that the SVC equivalent susceptance $(B_{SVC} = 1/X_{SVC}$) profile, as function of firing angle, does not present discontinuities, i.e., B_{SVC} varies in a continuous, smooth fashion in both operative regions. Hence, linearization of the SVC power flow equations, based on B_{SVC} with respect to firing angle, will exhibit a better numerical behavior than the linearized model based on X_{SVC} .

The initialization of the SVC variables based on the initial values of ac variables and the characteristic of the equivalent susceptance (Fig.), thus the impedance is initialized at the resonance point $X_{TCR}=X_C$, i.e. $Q_{SVC}=0$, corresponding to firing angle $\alpha =$ 115° , for chosen parameters of X_L and X_C i.e. X_L= 0.1134 Ω and X_C = 0.2267 Ω .

2. Proposed SVC power flow model:

The proposed model takes firing angle as the state variable in power flow formulation. From above equation the SVC linearized power flow equation can be written as

$$\begin{bmatrix} \nabla P_k \\ \nabla Q_k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{2V_k^2}{\pi X_L} [\cos 2\alpha - 1] \end{bmatrix}^{(i)} \begin{bmatrix} \nabla \theta_k \\ \nabla \alpha \end{bmatrix}^{(i)}$$

At the end of iteration i, the variable firing angle α is updated according to $\alpha^{i} = \alpha^{(i-1)} + \nabla \alpha^{i}$

3. SVC CONTROLLER MODEL:

The state equations of the SVC can be written from above figure

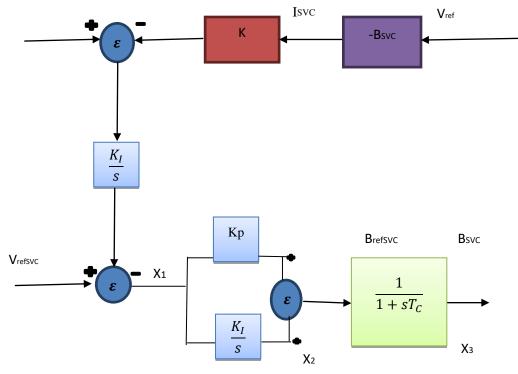


Fig.4 Block diagram of SVC

The state equations of the SVC can be written from above figure

$$\begin{split} \dot{X}_{1svc} &= \frac{1}{T_m} [V_{SVC} (1 + KX_{3SVC}) - X_{1SVC}] \\ \dot{X}_{2svc} &= K_I (V_{ref,svc} - X_{1SVC}) \\ \dot{X}_{3svc} &= \frac{1}{T_c} [X_{2SVC} + K_P (V_{ref,svc} - X_{1SVC}) - X_{3SVC}] \\ \text{The reactive power } Q_{SVC} \text{ supplied by the SVC can be written as } \\ Q_{SVC} &= V_{SVC}^2 X_{3SVC} \\ \text{Linearization of above equations ()-() yields} \\ \Delta \dot{X}_{1svc} &= \frac{1}{T_m} [\Delta V_{SVC} (1 + KX_{3SVCo}) + V_{SVCo} K \Delta X_{3SVC} - \Delta X_{1SVC}] \\ \Delta \dot{X}_{2svc} &= K_I (\Delta V_{ref,svc} - \Delta X_{1SVC}) \end{split}$$

ISSN: 2582-3930

 $\Delta \dot{X}_{3svc} = \frac{1}{T_c} [\Delta X_{2SVC} + K_P (\Delta V_{ref,svc} - \Delta X_{1SVC}) - \Delta X_{3SVC}]$

$$\Delta Q_{SVC} = 2V_{SVCo} \Delta V_{SVC} X_{3SVCo} + V_{SVCo}^2 \Delta X_{3SVC}$$

Where " Δ " denotes perturbed value and subscript "o" denotes the nominal value. The above equations are linearized, reordered and then expressed as

$$\begin{bmatrix} \Delta \dot{X}_{1svc} \\ \Delta \dot{X}_{2svc} \\ \Delta \dot{X}_{3svc} \end{bmatrix} = \begin{bmatrix} \frac{-1}{T_m} & 0 & \frac{KV_{SVCo}}{T_m} \\ -K_I & 0 & 0 \\ \frac{-K_P}{T_L} & \frac{1}{T_L} & \frac{-1}{T_L} \end{bmatrix} \begin{bmatrix} \nabla X_{1SVC} \\ \nabla X_{2SVC} \\ \nabla X_{3SVC} \end{bmatrix} + \begin{bmatrix} \frac{1}{T_m} (1 + KX_{3SVC0}) \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \nabla V_{SVC} \end{bmatrix}$$
Above equation can be written as
$$\nabla \dot{X}_{svc} = A_{AVC} \nabla X_{SVC} + B_{SVC} \nabla V_{SVC}$$
Where

$$A_{svc} = \begin{bmatrix} \frac{-1}{Tm} & 0 & \frac{KV_{SVCo}}{Tm} \\ -K_I & 0 & 0 \\ \frac{-K_P}{T_c} & \frac{1}{T_c} & \frac{-1}{T_c} \end{bmatrix}$$

And

$$B_{svc} = \begin{bmatrix} \frac{1}{T_m} (1 + KX_{3SVC0}) \\ 0 \\ 0 \end{bmatrix}$$

4. INCORPORATION OF SVC IN MULTI-MACHINE POWER SYSTEMS:

In its simplest form SVC is composed of FC-TCR configuration as shown in Fig.2. The SVC is connected to a coupling transformer that is connected directly to the ac bus whose voltage is to be regulated. The effective reactance of the FC-TCR is varied by firing angle control of the thyristors. The firing angle can be controlled through a PI controller in such a way that the voltage of the bus where the SVC is connected is maintained at the desired reference value.

The SVC can be connected at either the existing load bus or at a new bus that is created between two buses. As DAE model is based on power-balance, rewriting of the power-balance equations at the buses with SVC connected in the system requires modification of D2new. When SVC is connected at specified load buses, and gets modified as given below

$$P_{SVCi} + P_{Li}(V_i) \cdot \sum_{k=1}^{n} V_i V_k Y_{ik} \cos(\theta_i \cdot \theta_k \cdot \alpha_{ik}) = 0$$

i=m+1,....,n

 $Q_{SVCi} + Q_{Li}(V_i) - \sum_{k=1}^{n} V_i V_k V_{ik} \sin(\theta_i - \theta_k - \alpha_{ik}) = 0$

i=m+1,....,n

Obtained	state	equation	after	linearization	of	above	equations
$C_{SVC} \nabla V_1 + D_{SVC}$	$_{C}\nabla X_{SVC} + D_{1}\nabla V_{g}$	$+D_2\nabla V_1=0$					
	0						
Or							
$D_{SVC} \nabla X_{svc} + D_1$	$\nabla V_g + D_{2svc} \nabla V_1$	=0					

Where

 $D_{2svc} = C_{svc} + D_2$

The incorporation of the SVC into DAE model of the multi-machine power system is done on the same line as explained in [2] given as follows:

$$\begin{bmatrix} \nabla \dot{X} \\ \dot{X}_{svc} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A_{1mod} P_{1SVC} & P_{2new} & A_{3new} \\ P_{2SVC} & A_{SVC} & P_{3SVC} & B_{SVC_new} \\ K_2 & P_{4svc} & K_{1new} & C_{4new} \\ G_2 & D_{SVC} & D_{1new_svc} & D_{2new_SVC} \end{bmatrix} \begin{bmatrix} \nabla X \\ \nabla X_{SVC} \\ \nabla z \\ \nabla v \end{bmatrix} + \begin{bmatrix} E \\ 0 \\ 0 \\ 0 \end{bmatrix} \nabla U$$

The state equation for the SVC is given as follow:

$$\nabla X_{sys_svc} = A_{sys_svc} \nabla X_{sys_svc} + E_{svc} \nabla U$$

The system matrix with SVC is given as

$$A_{SYS_SVC} = A_{sv2} * (inv(A_{SVY}) * A_{SV3})$$

Where

 $A_{SV1} = \begin{bmatrix} A_{1mod} & P_{1SVC} \\ P_{2SVC} & A_{SVC} \end{bmatrix}$ $A_{SV2} = \begin{bmatrix} A_{2new} & A_{3new} \\ P_{3svc} & B_{svcnew} \end{bmatrix}$ $A_{SV3} = \begin{bmatrix} K_2 & P_{4svc} \\ G_1 & D_{SVC} \end{bmatrix}$

$$A_{SV4} = \begin{bmatrix} K_{1new} & C_{4new} \\ D_{1new_svc} & D_{2new_svc} \end{bmatrix}$$

III. SUMMARY OF PAPER

A. Conventional method for optimal placement and properly coordinated control of FACTS controllers

 Table 2: % Distribution of Conventional method for optimal placement and properly coordinated control of FACTS controllers

S.No.	Conventional method	No. literatures	of % of literatures
1	Phasor measurement	1	1.07
2	Installation	6	6.45
3	Application of projective controls	1	1.07
4	Technique for co-ordination	1	1.07
5	Steady-state model	1	1.07
6	Damp inter-area oscillation	1	1.07

7	SVC placement	1	1.07
8	Steady-state	1	1.07
	injection model		
9	Robust control theory	2	2.15
10	LMP based	2	2.15
11	Application	1	1.07
	FACTS		
12	controllers Sensitivity index	4	4.30
12	Real power	1	1.07
	performance	-	
14	Multiple time	1	1.07
15	periods Semiconductor	1	1.07
	technology		1.07
16	development Co-ordinate	2	0.15
16	stabilizer	2	2.15
17	Modified model	1	1.07
10	of power flow		
18	Line index	1	1.07
19	Controllability index	1	1.07
20	Distributed	1	1.07
21	generation		
21	Residue factor	4	4.30
22	Coordinated control	2	2.15
23	FACTS	6	6.45
2.1	controllers		
24	Closed-loop characteristic	1	1.07
	polynomial		
25	Newton-Raphson	3	3.2
26	Variable-	1	1.07
	structure control theory		
27	Singular value	1	1.07
	decomposition		
28	based controller Location for	2	2.15
20	UPFC	_	2.13
29	Voltage control	2	2.15
30	Power system	2	2.15
31	stabilizer Migration of	2	2.15
	power quality	_	
32	FACTS damping	1	1.07
33	Controller Power injection	2	2.15
55	model	-	2.13
34	Excitation	1	1.07
35	control Injection	2	2.15
55	management	2	2.13
36	Electromechanic	1	1.07
37	al oscillation Decentralized	1	1.07
51	control theory	1	1.07
38	Cascade	1	1.07
	multilevel configuration		
39	Small-signal	1	1.07
40	stability analysis Phillips-Heffron	1	1.07

ISSN: 2582-3930

41	model	1	1.05
41	Modal speeds	1	1.07
42	Power convertor module	1	1.07
43	Allocation &	1	1.07
	transmission		1.07
	pricing		
44	Mid-point	1	1.07
	location		
45	Continuation	4	4.30
	power flow		
46	Control of phase	1	1.07
	angle		
47	Algebraic	1	1.07
40	modeling	1	1.05
48	Averaging	1	1.07
49	technique Goal attachment	1	1.07
49	method	1	1.07
50	Unified power	1	1.07
50	flow	1	1.07
51	Energy function	1	1.07
51	method	1	1.07
52	Transmission	1	1.07
52	system	1	1.07
53	Planning &	1	1.07
	protection	-	1.07
54	Var	1	1.07
	compensation		1.07
55	Reactive power	1	1.07
	management		
56	System	1	1.07
	loadability		
57	Investment	1	1.07
	recovery of		
	FACTS devices		
58	Techno	1	1.07
	economical		
	contribution of		
59	FACTS Probabilistic	1	1.07
59	technique	1	1.07
60	Shunt dynamic	1	1.07
00	Var source	1	1.07
61	Practical	1	1.07
01	installation &	1	1.07
	benefits		
62	Heuristic method	1	1.07
		-	1.07

Figure

B. Optimization method for optimal placement and properly coordinated control of FACTS controllers

Table 3: % Distribution of optimi	zation methodsreviewed f	for optimal placement	and properly coordinated
control of FACTS controllers			

S.No.	Optimization method	No. literatures	of	% of literatures
1	Optimal power flow	2		28.57
2	Optimization method	3		42.85
3	Optimal control	1		14.28
4	Optimization algorithm	1		14.28

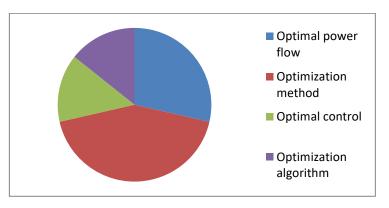


Figure 6: % Pie chart distribution of optimization methods reviewed for optimal placement and properly coordinated control of FACTS controllers

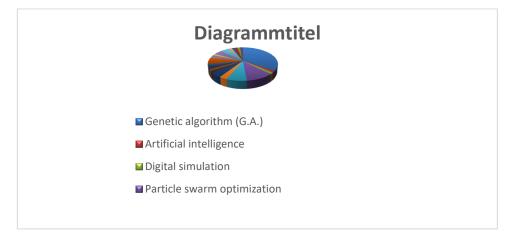
C. Artificial intelligence computational (AIC) technique for optimal location and coordinated control of FACTS controllers in power systems.

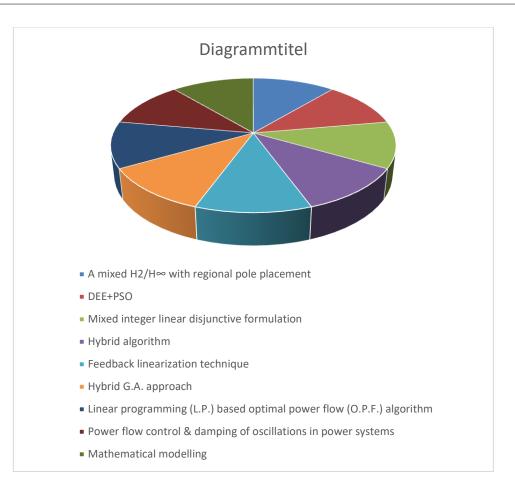
 Table 4: % Distribution for Artificial intelligence computational (AIC) technique for optimal location and coordinated control of FACTS controllers in power systems

S.No.	AIC technique	No. of literatures	% of literatures
1	Genetic algorithm (G.A.)	22	34.37
2	Artificial intelligence	1	1.56
3	Digital simulation	1	1.56
4	Particle swarm optimization	7	10.93
5	Evolution strategy	5	7.81
6	Bacteria Foraging Optimization Algorithm (BFOA)	2	3.12
7	Fuzzy logic theory	3	4.68
8	Bifurcation theory	1	1.56
9	H infinity norm	1	1.56
10	Bees algorithm	2	3.12
11	Micro genetic algorithm $(\mu G.A.)$	1	1.56
12	Simulation by MATLAB	4	6.25
13	Linear programming	1	1.56
14	Simulation	1	1.56

ISSN: 2582-3930

15	Transient stability simulation	1	1.56
16	Non-linear design technique	3	4.68
17	H∞-optimization technique	3	4.68
18	Novel chain	1	1.56
19	Decision trees	1	1.56
20	Differential algorithm	1	1.56
21	Benders decomposition technique	1	1.56
22	Gravitational search algorithm	1	1.56




Figure 7: % Pi chart for Artificial intelligence computational (AIC) technique for optimal location and coordinated control of FACTS controllers in power systems

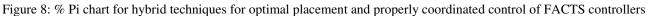

D. Hybrid techniques for optimal placement and properly coordinated control of FACTS controllers

 Table 5: % Distribution for hybrid techniques for optimal placement and properly coordinated control of FACTS controllers

S.No.	Hybrid technique	No. of literatures	% of literatures
1	A mixed H_2/H_{∞} with regional pole placement	1	11.11
2	DEE+PSO	1	11.11
3	Mixed integer linear disjunctive formulation	1	11.11
4	Hybrid algorithm	1	11.11
5	Feedback linearization technique	1	11.11
6	Hybrid G.A. approach	1	11.11
7	Linear programming (L.P.) based optimal power flow (O.P.F.) algorithm	1	11.11
8	Power flow control & damping of oscillations in power systems	1	11.11
9	Mathematical modelling	1	11.11

IVCONCLUSION AND FUTURE SCOPE OF WORK

The following conclusions made from this survey article as follows:

- AI techniques are more suitable as compared to conventional and optimization techniques for optimal DG planning in distribution power system networks from different power system performance point of view.
- Hybrid AI techniques are also more suitable as compared to conventional and optimization techniques for optimal DG planning in distribution power system networks from different power system performance point of view.

The following recommendation for future scope of research work as follows:

- Comparison of different types of DG planning with static as well as realistic load modals by AI techniques.
- Comparison of different types of DG planning with static as well as realistic load modals by hybrid AI techniques.
- Comparison of different types of DG and FACTS controller planning with static as well as realistic load modals by AI techniques.
- Comparison of different types of DG and FACTS controller planning with static as well as realistic load modals by hybrid AI techniques

References

- [1] K. Vijayakumar and Dr. R. P. Kumudinidevi, "A New Method For Optimal Location Of Facts Controllers Using Genetic Algorithm," Journal of Theoretical and Applied Information Technology, 2005 2007 Jatit, pp.15—25.
- [2] Imran Khan, M.A. Mallick, Malik Rafi and Mohd. Shadab Mirza, "Optimal placement of FACTS controller scheme for enhancement of power system security in Indian scenario," Journal of Electrical Systems and Information Technology xxx (2015) xxx-xxx.
- [3] Kumar, B.K., Singh, S.N. and Srivastava, S.C., "A modal controllability index for optimal placement of TCSC to damp inter-area oscillations" Power Engineering Society General Meeting, 2005. IEEE, 12-16 June 2005, pp. 1653 - 1657 Vol. 2.
- [4] A.R. Phadke, Manoj Fozdar and K.R. Niazi, "A new multi-objective fuzzy-GA formulation for optimal placement and sizing of shunt FACTS controller" International Journal of Electrical Power & Energy SystemsVolume 40, Issue 1, September 2012, pp. 46–53
- [5] Leung, H.C., "Optimal placement of FACTS controller in power system by a genetic-based algorithm" Power Electronics and Drive Systems, 1999. PEDS '99. Proceedings of the IEEE 1999 International Conference on (Volume:2) pp. 833 - 836 vol.2.
- [6] B. Kalyan Kumar, S.N. Singh, S.C. Srivastava "Placement of FACTS controllers using modal controllability indices to damp out power system oscillations" IET Generation, Transmission & Distribution, Volume 1, Issue 2, March 2007, pp. 209 – 217.
- [7] Del Rosso, A.D.Canizares, C.A. andDona, V.M., "A study of TCSC controller design for power system stability improvement" Power Systems, IEEE Transactions on (Volume:18, Issue: 4), pp. 1487 – 1496.
- [8] Glanzmann, G. and Andersson, G., "Coordinated control of FACTS devices based on optimal power flow"Power Symposium, 2005. Proceedings of the 37th Annual North American, 23-25 Oct. 2005, pp. 141 – 148.
- [9] Bindeshwar Singh, N.K. Sharma, A.N. Tiwari, K.S. Verma and S.N. Singh, "Applications of phasor measurement units (PMUs) in electric power system networks incorporated with FACTS controllers" International Journal of Engineering, Science and Technology Vol. 3, No. 3, 2011, pp. 64-82.
- [10] S.-H. Song, J.-U. Lim, and S.-I. Moon, "Installation and operation of FACTS devices for enhancing steady-state security," Electric: Power Systems Research, vol. 70, pp. 7-15, 2004.
- [11] Yu, T. and o, P.L., "Coordinated control of TCSC and SVC for system damping improvement," Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on 2000, pp. 7 – 12.
- [12] Bindeshwar Singh, K.S. Verma1, Deependra Singh and S.N. Singh, "A novel approach for optimal placement of distributed generation & facts controllers in power systems: an overview and key issues" International Journal of Reviews in Computing 30th September 2011. Vol. 7.
- [13] Li. G., Lie T.T., Shrestha, G.B. and Lo, K.L., "Design and application of co-ordinated multiple FACTS controllers" Generation, Transmission and Distribution, IEE Proceedings-(Volume:147, Issue: 2), pp. 112 – 120.
- [14] M.W. Mustafa and N. Magaji, "Optimal Location of Static Var Compensator Device for Damping Oscillations" American J. of Engineering and Applied Sciences 2 (2): 353-359, 2009.
- [15] Bindeshwar Singh, N.K. Sharma and A.N. Tiwari, "A Comprehensive survey of optimal placement and coordinated control techinues of FACTS controllers in multi-machine power system environment" Journal of Electrical Engineering & Technology Vol. 5, No. 1, pp. 79-102, 2010.
- [16] Talebi, N., Ehsan, M. and Bathaee, S.M.T., "Effects of SVC and TCSC Control Strategies on Static Voltage Collapse Phenomena," SoutheastCon, 2004. Proceedings. IEEE, 26-29 March 2004, pp. 161 – 168.
- [17] Zarghami, M.Crow, M.L. and Jagannathan, S., "Nonlinear Control of FACTS Controllers for Damping Inter area Oscillations in Power Systems" Power Delivery, IEEE Transactions on (Volume:25, Issue: 4), pp. 3113 – 3121.
- [18] H. Shayeghi, A. Safari and H.A. Shayanfar, "PSS and TCSC damping controller coordinated design using PSO in multi-machine power system" Energy Conversion and ManagementVolume 51, Issue 12, December 2010, Pages 2930–2937.
- [19] Guojie Li, T.T. Lie, G.B. Shrestha and K.L. Lo, "Real-time coordinated optimal facts controllers" Electric Power Systems ResearchVolume 52, Issue 3, 1 December 1999, pp. 273–286.0
- [20] Jordehi, A.R. AND Joorabian, M.' "Optimal placement of Multi-type FACTS devices in power systems using evolution strategies" Power Engineering and Optimization Conference (PEOCO), 2011 5th International 6-7 June 2011,pp. 352 – 357.
- [21] Yashar Hashemi, Javad Morsali, Rasool Kazemzadeh, Mohammad Reza Azizian and Ahmad Sadeghi Yazdankhah, "Simultaneous Coordinated Tuning of UPFC and Multi-Input PSS for Damping of Power System Oscillations" 26th International Power System Conference 31st Oct-02 Nov. 2011 Tehran-Iran.
- [22] M. K. Verma and S.C. Srivastava, "Optimal Placement of SVC for Static and Dynamic Voltage Security Enhancement" International Journal of Emerging Electric Power Systems Volume 2, Issue 2, ISSN (Online) 1553-779X, DOI: 10.2202/1553-779X.1050, March 2005.
- [23] Abdelsalam, H.A, Aly, G.E.M., Abdelkrim, M. and Shebl, K.M., "Optimal location of the unified power flow controller in electrical power systems" Power Engineering, 2004. LESCOPE-04. 2004 Large Engineering systems Conference on 28-30 July 2004, pp. 41 – 46.
- [24] Baghaee, H.R., Jannati, M, Vahidi, B. and Hosseinian, S.H., "Improvement of voltage stability and reduce power system losses by optimal GA-based allocation of multi-type FACTS devices" Optimization of Electrical and Electronic Equipment, 2008. OPTIM 2008. 11th International Conference on 22-24 May 2008, pp. 209 214.
- [25] E.S. Ali and S.M. Abd-Elazim, "TCSC damping controller design based on bacteria foraging optimization algorithm for a multi-machine power system" International Journal of Electrical Power & Energy SystemsVolume 37, Issue 1, May 2012, pp. 23–30.
- [26] Yong Li, Rehtanz, C., Ruberg, S. and Longfu Luo, "Wide-Area Robust Coordination Approach of HVDC and FACTS Controllers for Damping Multiple Inter area Oscillations" Power Delivery, IEEE Transactions on (Volume:27, Issue: 3) 1096 – 1105, pp. 0885-8977.
- [27] Mahdad, B., Bouktir, T. and Srairi, K., "Flexible Methodology Based in Fuzzy Logic Rules for Reactive Power Planning of Multiple Shunt FACTS Devices to Enhance System Load ability" Power Engineering Society General Meeting, 2007. IEEE 24-28 June 2007, pp. 1 – 6.
- [28] M.M. Farsangi, Y.H. Song and M. Tan, "Multi-objective design of damping controllers of FACTS devices via mixed H₂/H_x with regional pole placement" International Journal of Electrical Power & Energy SystemsVolume 25, Issue 5, June 2003, pp. 339–346.
- [29] R. Benabid,M. Boudour and M.A. Abido, "Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization" Electric Power Systems ResearchVolume 79, Issue 12, December 2009, pp. 1668–1677.

- [30] N. Magajiand M.W. Mustafa, "Optimal location and signal selection of UPFC device for damping oscillation," International Journal of Electrical Power & Energy SystemsVolume 33, Issue 4, May 2011, pp.1031–1042.
- [31] Baghaee, H.R, Jannati, M., Vahidi, B. and Hosseinian, S.H., "Optimal multi-type FACTS allocation using genetic algorithm to improve power system security," Power System Conference, 2008. MEPCON 2008. 12th International Middle-East 12-15 March 2008, pp. 162 – 166.
- [32] Joorabian, M., Saniei, M. and Sepahvand, H., "Locating and parameters setting of TCSC for congestion management in deregulated electricity market" Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, 21-23 June 2011, pp. 2185 2190.
- [33] José A. Domínguez-Navarro, José L. Bernal-Agustín, Alexis Díaz, Durlym Requena and Durlym Requena, "Optimal parameters of FACTS devices in electric power systems applying evolutionary strategies" International Journal of Electrical Power & Energy SystemsVolume 29, Issue 1, January 2007, pp. 83–90.
- [34] S. Panda, N. P. Padhy and R. N. Patel, "Robust Coordinated Design of PSS and TCSC using PSO Technique for Power System Stability Enhancement" J. Electrical Systems 3-2 (2007): 109-123.
- [35] C. T. Vinay Kumar and J.Sreenivasulu, "Comparison of Facts Devices to Relieve Congestion in Deregulated Power Sector by Using Fuzzy Technique" International Journal of Science and Research (IJSR).
- [36] So, P.L. and Yu, T., "Coordination of TCSC and SVC for inter-area stability enhancement" Power System Technology, 2000. Proceedings. Power Con 2000. International Conference on (Volume:1) 2000, pp. 553 558 vol.1.
- [37] Candelo, J.E., Caicedo, N.G.andCastro-Aranda, F., "Proposal for the Solution of Voltage Stability Using Coordination of Facts Devices" Transmission & Distribution Conference and Exposition: Latin America, 2006. TDC '06. IEEE/PES 15-18 Aug. 2006, pp. 1 – 6.
- [38] Shakib, A.D. and Balzer, G., "Optimal location and control of shunt FACTS for transmission of renewable energy in large power systems" MELECON 2010 2010 15th IEEE Mediterranean Electrotechnical Conference 26-28 April 2010, pp. 890 – 895.
- [39] Benabid, R.,Boudour, M. and Abido, M.A., "Optimal placement of FACTS devices for multi-objective voltage stability problem" Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES 15-18 March 2009, pp. 1 11.
- [40] P. Ramasubramanian, G. Uma Prasana and K. Sumathi, "Optimal Location of FACTS Devices by Evolutionary Programming Based OPF in Deregulated Power Systems," British Journal of Mathematics & Computer Science 2(1): 21-30, 2012 SCIENCEDOMAIN international.
- [41] Mandala, M. and Gupta, C.P., "Congestion management by optimal placement of FACTS device" Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India, 2010 Joint International Conference on 20-23 Dec. 2010, pp. 1 – 7.
- [42] Adepoju, G. A. and Komolafe, O.A., "Analysis and Modelling of Static Synchronous Compensator (STATCOM): A comparison of Power Injection and Current Injection Models in Power Flow Study," International Journal of Advanced Science and Technology Vol. 36, November, 2011.
- [43] N. Mithulananthan, Claudio A. Can~izares and John Reeve, "Hopf Bifurcation Control in Power Systems Using PowerSystemStabilizersandStaticVarCompensators" North American Power Symposium (NAPS), San Luis Obispo, California, October 1999.
- [44] Zuwei Yuand D. Lusan, "Optimal placement of FACTs devices in deregulated systems considering line losses" International Journal of Electrical Power & Energy SystemsVolume 26, Issue 10, December 2004, pp. 813–819.
- [45] Gupta, S., Tripathi, R.K. and Shukla, R.D., "Voltage stability improvement in power systems using facts controllers: State-of-the-art review" Power, Control and Embedded Systems (ICPCES), 2010 International Conference on Nov. 29 2010-Dec. 1 2010, pp. 1 – 8.
- [46] Juan M. Ramírez, Ricardo J. Dávalos, Abraham Valenzuela and Ixtláhuatl Coronado, "FACTS-based stabilizers coordination" International Journal of Electrical Power & Energy Systems Volume 24, Issue 3, March 2002, pp. 233–243.
- [47] A.R. Messina, H. Hernández, E. Barocio, M. Ochoa, and J. Arroyo, "Coordinated application of FACTS controllers to damp out inter-area oscillations" Electric Power Systems ResearchVolume 62, Issue 1, 28 May 2002, pp. 43–53.
- [48] Shen, J.,Liu, C., Yokoyama, R. and Ishimaru, M., "Coordinated control of PSS and FACTS for poor damping long-term oscillations in multi-machine power systems" Universities Power Engineering Conference, 2004. UPEC 2004. 39th International (Volume:1)8-8 Sept. 2004, pp. 323 - 327 Vol. 1.
- [49] R.Mohamad Idris, A.Khairuddin and M.W.Mustafa, "Optimal Allocation of FACTS Devices in Deregulated Electricity Market Using Bees Algorithm" WSEAS Transactions on Power Systems http://www.researchgate.net/publication/267998167.
- [50] A. Hernandez1, M.A. Rodriguez, E. Torres and P. Eguia, "A Review and Comparison of FACTS Optimal Placement for Solving Transmission System Issue" International Conference on Renewable Energies and Power Quality (ICREPQ'13) Bilbao (Spain), 20th to 22th March, 2013.
- [51] Ramirez, J.M., Davalos, R.J. and Coronado, I., "Use of an optimal criterion for co-ordinating FACTS-based stabilizers" Generation, Transmission and Distribution, IEE Proceedings- (Volume:149, Issue: 3), pp. 345 – 351.
- [52] Kaewniyompanit, S.,Mitani, Y. and Tsuji, K., "A method of μGA combined neighboring search for approaching to an optimal type selection and placement of a FACTS device for power system stabilizing purpose in a multimachine power system" Power System Technology, 2004. PowerCon 2004. 2004 International Conference on (Volume:2), 21-24 Nov. 2004, pp. 1451 - 1456 Vol.2.
- [53] B. Bhattacharyya, S.K.Goswami and Vikash Kumar Gupta, "Application of DE & PSO Algorithm For The Placement of FACTS Devices For Economic Operation of a Power System" WSEAS Transactions on Power Systems, E-ISSN: 2224-350X, Issue 4, Volume 7, October 2012.
- [54] Berizzi, A., Bovo, C. and Ilea, V., "Optimal placement of FACTS to mitigate congestions and inter-area oscillations" PowerTech, 2011 IEEE Trondheim, 19-23 June 2011, pp. 1

 8.
- [55] Ali Darvish Falehi, Mehrdad Rostami, Aref Doroudi and Abdulaziz Ashrafian, "Optimization and coordination of SVC-based supplementary controllers and PSSs to improve power system stability using a genetic algorithm" Turk J Elec Eng & Comp Sci, Vol.20, No.5, 2012, T^{*}UB'ITAK.
- [56] E. S. Ali and S. M. Abd-Elazim, "Bacteria Foraging: A New Technique for Optimal Design of FACTS Controller to Enhance Power System Stability" WSEAS Transactions on Systems, E-ISSN: 2224-2678, Issue 1, Volume 12, January 2013.
- [57] Lucio Ippolito, Antonio La Cortiglia and Michele Petrocelli, "Optimal Allocation of FACTS Devices by Using Multi-Objective Optimal Power Flow and Genetic Algorithms" International Journal of Emerging Electric Power Systems Volume 7, Issue 2 (Sep 2006).
- [58] Ilea, V., Berizzi, A. and Eremia, M., "Damping inter-area oscillations by FACTS devices" Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International, 1-4 Sept. 2009, pp. 1 – 5.
- [59] J. Aghaei, M. Gitizadeh and M. Kaji, "Placement and operation strategy of FACTS devices using optimal continuous power flow" Scientia IranicaVolume 19, Issue 6, December 2012, pp. 1683–1690.

- ISSN: 2582-3930
- [60] Wang, Y., Mohler, R.R., Spee, R. and Mittelstadt, W., "Variable-structure facts controllers for power system transient stability" Power Systems, IEEE Transactions on (Volume:7, Issue: 1), pp. 307 313.
- [61] Juan M. Raminrez, Ricardo J. Davalos, Abraham, Valenzuela, and Ixtlahuate Coronado, "FACTS Based Stabilizers Coordination," Electrical Power and Energy Systems, Vol. 124, pp. 233-243, 2002.
- [62] C.M. Yam, M.H. Haque, "A SVD based controller of UPFC for power flow control"Electric Power Systems Research Volume 70, Issue 1, June 2004, Pages 76–84
- [63] P.K. Dash , A.K. Pradhan, G. Panda, "Distance protection in the presence of unified power flow controller" Electric Power Systems Research 54 (2000) 189–198.
- [64] Stéphane Gerbex, Rachid Cherkaoui, and Alain J. Germond, "Optimal Location of Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms" IEEE Transactions On Power Systems, Vol. 16, No. 3, August 2001
- [65] Narayana Prasad Padhy, M.A. Abdel Moamen, "Power flow control and solutions with multiple and multi-type FACTS devices" Electric Power Systems Research 74 (2005) 341–351.
- [66] M.A. Adibo, Y.L. Abdel-Magid, "Analysis and design of power system stabilizers and FACTS based stabilizers using genetic algorithm"14th PSCC" Sevilla, 24-28 june 2002, Session 14, Paper 3.
- [67] Y.L. Abdel-Magid, M.A. Abido, "Robust coordinated design of excitation and TCSC-based stabilizers using genetic algorithms" Electric Power Systems Research 69 (2004) 129–141.
- [68] Bindeshwar Singh, "Applications of facts controllers in powersystems for enhance the power system stability: a state-of-the-art" International Journal of Reviews in Computing 15th July 2011. Vol. 6.
- [69] Jaun M. Ramirez, Ricardo J. Dávalos, Abraham Valenzuela, Ixtláhuatl Coronado, "FACTS-based stabilizers coordination" International Journal of Electrical Power & Energy Systems Volume 24, Issue 3, March 2002, Pages 233–243.
- [70] K.S. Verma, S.N. Singh, H.O. Gupta, "Location of unified power flow controller for congestion management" Electric Power Systems Research 58 (2001) 89–96.
- [71] Gabriela Glanzmann, "Flexible Alternating Current Transmission Systems" EEH Power Systems Laboratory, ETH Zurich, 14. January 2005.
- [72] Bindeshwar Singh, K.S. Verma, Pooja Mishra, Rashi Maheshwari, Utkarsha Srivastava, and Aanchal Baranwal, "Introduction to FACTS Controllers: A Technological Literature Survey" International Journal of Automation and Power Engineering Volume 1 Issue 9, December 2012.
- [73] B.A. Renz, A. Keri, A.S. Mehraban, C. Schauder, E. Stacey, L. Kovalsky, L. Gyugyi, A. Edris, "AEP Unified Power Flow Controller Performance" IEEE Transaction on Power Delivery Vol. 14, No. 4, October 1999.
- [74] Arthit Sode-Yome and N. Mithulananthan, "Comparison of shunt capacitor, SVC and STATCOM in static voltage stability margin enhancement" International Journal of Electrical Engineering Education 41/2.
- [75] N. Mithulananthan, C. A. Cañizares and J. Reeve, 'Comparison of PSS, SVC and STATCOM controllers for damping power system oscillation', IEEE Trans. Power Syst., 18 (2003), 786–792.
- [76] Mr.P.S.Chindhi, Prof.H.T.Jadhav, Mr.V.S.Patil, "A Comprehensive Survey for Optimal Location and Coordinated Control Techniques for FACTS Controllers in Power System Environments and Applications" IOSR Journal of Electronics and communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735, PP: 05-11.
- [77] Salim. Haddad, A. Haddouche, and H. Bouyeda, "The use of Facts devices in disturbed Power Systems-Modeling, Interface, and Case Study" International Journal of Computer and Electrical Engineering, Vol. 1, No. 1, April 2009, 1793-8198.
- [78] S. Surendar Reddy, M. Sailaja Kumara, M. Sadulu, "Congestion management in deregulated power system by optimal choice and allocation of FACTS controllers using multiobjective genetic algorithm" Journal of electrical engineering and technology Vol. 4, pp 467-475, 2009.
- [79] Gregory Reed, John Paserba, Terrence Croasdaile, Masatoshi Takeda, Naoki Morishima, Yoshi Hamasaki, Laurie Thomas, William Allard, "STATCOM Application at VELCO Essex Substation" 0-7803-7287-5/01/\$17.00 (C) 2001 IEEE.
- [80] Naresh Acharya, Arthit Sode-Yome, Nadarajah Mithulananthan, "Facts about Flexible AC Transmission Systems (FACTS) Controllers: Practical Installations and Benefits" http://www.researchgate.net/publication/43516579.
- [81] Bindeshwar Singh, Indresh Yadav, Dilip Kumar, "Mitigation of Power Quality Problems Using FACTS Controllers in an Integrated Power System Environment: A Comprehensive Survey"International Journal of Computer Science and Artificial Intelligence Vol.1 Issue 1 2011 PP.1-12.
- [82] M. A. Abido, "Power system stability enhancement using facts controllers: a review" The Arabian Journal for Science and Engineering, Volume 34, Number 1B, April 2009.
- [83] Jun-Yong Liu, Yong-huasong, "Strategies for handling UPFC constraints in steady-state power flow and voltage control" Power Systems, IEEE Transactions on Volume:15, Issue: 2, pp 566-571.
- [84] Guang Ya Yang, Geir Hovland, Rajat Majumder, Zhao Yang Dong, "TCSC Allocation Based on Line Flow Based Equations Via Mixed-Integer Programming" IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007.
- [85] A.H.M.A. Rahim, S.G.A. Nassimi, "Synchronous generator damping enhancement through co-ordinated control of exciter and SVC" IEEE Transm. Distrib. Vol 143, No. 2, March 1996.
- [86] Sidhartha Panda and Narayana Prasad Padhy, "Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm" International Journal of Electrical and Electronics Engineering 1:1 2007.
- [87] D.J. Gotham, G.T.Heydt, "Power flow control and power flow studies for systems with FACTS devices" Power Systems, IEEE Transactions on (Volume:13, Issue: 1), pp 60-65.
- [88] Michael J. Gibbard, David J. Vowles and Pouyan Pourbeik, "Interactions Between, and Effectiveness of, Power System Stabilizers and FACTS Device Stabilizers in Multimachine Systems" IEEE Transactions On Power Systems, Vol. 15, No. 2, May 2000.
- [89] L. Bahiense, G. Oliveira, M. Pereira, and S. Granville, "Amixed integerdisjunctive model for transmission network expansion," IEEE Trans. Power Syst., vol. 16, no. 3, pp. 560– 565, Aug. 2001.
- [90] Liangzhong Yao, Phill Cartwright, Laurent Schmitt, Xiao-Ping Zhang, "Congestion Management of Transmission Systems Using FACTS" 0-7803-9114-4/05/\$20.00 ©2005
 IEEE.
- [91] Yong Li, Christian Rehtanz, Sven Rüberg, Longfu Luo and Yijia Cao, "Wide-Area Robust Coordination Approach of HVDC and FACTS Controllers for Damping MultipleInterarea Oscillations, "IEEE Transactions On Power Delivery, Vol. 27, No. 3, July 2012.

Volume: 04 Issue: 05 | May -2020

- [92] S. M. Abd-Elazim, E. S. Ali, "Synergy of Particle Swarm Optimization and Bacterial Foraging forTCSC Damping Controller Design" E-ISSN: 2224-350X, Issue 2, Volume 8, April 2013.
- [93] Sandeep Gupta, Prof. R. K. Tripathi, Rishabh Dev Shukla, "Voltage Stability Improvement in PowerSystems using Facts Controllers: State-of-the-Art Review" 978-1-4244-8542-0/10/\$26.00 ©2010 IEEE.
- [94] Mark Ndubuka Nwohu, "Voltage Stability Improvement using Static Var Compensator in PowerSystems" Leonardo Journal of SciencesISSN 1583-0233, Issue 14, January-June 2009, p. 167-172.
- [95] R. Nelson, J. Bian, D. Ramey, T. A. Lemak, T. Rietman, and J. Hill, "Transient Stability Enhancement with FACTS Controllers", Proceedings of IEEE Sixth International Conference AC and DC Transmission, London, May 1996.
- [96] S. K. Tso, J. Liang, and X. X. Zhou, "Coordination of TCSC and SVC for Improvement of Power SystemPerformance with NN-based Parameter Adaptation", Int. J. Electrical Power & Energy Systems, 21(1999), pp. 235–244.
- [97] L. Rouco, "Coordinated Design of Multiple Controllers for Damping Power System Oscillations", Electric Power Systems Research, 23(2001), pp. 517–530.
- [98] A.R. Messina, O. Begovich, J.H. López, E.N. Reyes, "Design of multiple FACTS controllers for damping inter-area oscillations: a decentralised control approach" International Journal of Electrical Power & Energy Systems Volume 26, Issue 1, January 2004, Pages 19–29.
- [99] G. N. Taranto, J. K. Shiau, J. H. Chow, and H. A. Othman, "Robust Decentralized Design for Multiple FACTSDamping Controllers", IEE Proc. Genet. Transm. Distrib., 144(1)(1997), pp. 61–67.
- [100] Q. Yu, P. Li, W. Liu and X. Xie, "Overview of STATCOM Technologies", Proceedings of the 2004 IEEEInternational Conference on Electric Utility Deregulation, Restructuring and Power Technologies, DRPT 2004,5–8 April 2004, Vol. 2, pp. 647 – 652.
- [101] J. Paserba, "Recent Power Electronics/FACTS Installations to Improve Power System Dynamic Performance" Proceedings of the 2007 IEEE Power Engineering Society General Meeting, 24-28 June 2007, pp. 1 – 4.
- [102] M. M. Farsangi, Y. H. Song, and M. Tan, "Multi-Objective Design of Damping Controllers of FACTS Devices viaMixed H2/H∞ with Regional Pole Placement", Int. Journal of Electrical Power and Energy Systems, 25(2003), pp. 339–346.
- [103] S. Arabi, G. Rogers, D. Wong, P. Kundur, and M. Lauby, "Small Signal Stability Program Analysis of SVC and HVDC in AC Power Systems", IEEE Trans. PWRS, 6(3)(1991), pp. 1147–1153.
- [104] K.Matsuno, I. Iyoda, and Y. Oue, "An Experience of FACTS Development 1980s and 1990s" IEEE PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, 2(6-10)(2002), pp. 1378 –1381.
- [105] D. J. Hanson, C. Hotwill, B. D. Gemmell, and D. R. Monkhouse, "A STATCOM-Based Relocatable SVC Projectin the UK for National Grid"IEEE Power Engineering Society Winter Meeting, 27-31 January 2002, vol. 1, pp. 532 –537.
- [106] L. Cong, Y. Wang, and D. J. Hill, "Transient Stability and Voltage Regulation Enhancement via CoordinatedControl of Generator Excitation and SVC", Int. J. of Electrical Power & Energy Systems, 27(1)(2005), pp. 121–130.
- [107] H. F. Wang and F. J. Swift, "Multiple Stabilizer Setting in Multimachine Power Systems by the Phase Compensation Method", Int. J. Electrical Power & Energy Systems, 20(4)(1998), pp. 241–246.
- [108] E. Acha, C. R. Fuerte-Esquivel, and H. Ambriz-Perez, "Advanced SVC model for Newton-Raphson Load Flow andNewton Optimal Power Flow Studies", *IEEE Trans. PWRS*, 15(1)(2000), pp. 129–136.
- [109] T. S. Chung and Y. Z. Li, "A Hybrid GA Approach for OPF with Consideration of FACTS Devices", IEEE Power Engineering Review, 21(2)(2001), pp. 47–50.
- [110] Ning Yang, Qinghua Liu, James D. Mc Calley, "TCSC Controller Design for Damping Interarea Oscillations" IEEE Transactions on Power Systems. Vol. 13, No. 4, November 1998.
- [111] B. Chaudhuri, B. C. Pal, A. C. Zolotas, I. M. Jaimoukha and T. C. Green, "Mixed-Sensitivity Approach to H∞Control of Power System Oscillations Employing Multiple FACTS Devices", IEEE Trans. PWRS, 18(3)(2003), pp. 1149–1156.
- [112] A. Berizzi, M. Delfanti, P. Marannino, M. Pasquadibisceglie, and A. Silvestri, "Enhanced Security-ConstrainedOPF with FACTS Devices", IEEE Trans. on PWRS, 20(3)(2005), pp. 1597–1605.
- [113] W. Shao and V. Vittal, "LP-Based OPF for Corrective FACTS Control to Relieve Overloads and Voltage Violations" IEEE Trans. on PWRS, 21(4)(2006), pp. 1832–1839.
- [114] A. M. Kulkarni and K. R. Padiyar, "Damping of Power Swings Using Series FACTS Controllers" Int. Journal of Electrical Power and Energy Systems, 21(1999), pp. 475–495.
- [115] R. M. Hamouda, M. R. Iravani, and R. Hackam, "Coordinated Static VAR Compensators and Power System Stabilizers for Damping Power System Oscillations", IEEE Trans. PWRS, 2(4) (1987), pp. 1059–1067.
- [116] L. Fan, A. Feliachi, and K. Schoder, "Selection and Design of a TCSC Control Signal in Damping Power SystemInterarea Oscillations for Multiple Operating Conditions" Electric Power Systems Research, 62(1)(2002), pp. 127–137.
- [117] Y. Ye, M. Kazerani, "Power Flow Control Schemes for Series-Connected FACTS Controllers" Electric PowerSystems Research, 76(2006), pp. 824-831.
- [118] P.Duvoor, K. Padamati, S. Kotamarty, and K. Srivastava, "Impact of FACTS Devices on Transmission Pricing and Loop Flows", 38th North American Power Symposium, NAPS 2006, September 2006, pp. 149 – 154.
- [119] P. Paterni, S. Vitet, M. Bena and A. Tokoyama "Optimal Location of Phase Shifters In the French Network by Genetic Algorithm", IEEE Transactions on Power System
- [120] E. J. de Oliveira, J. W. M. Lima and J. L. R. Pereira "Flexible AC Transmission System Devices: Allocation and Transmission Pricing", Electrical Power and Energy Systems, vol. 21, no. 2, pp.111 -118 1997.
- [121] Sidhartha Panda and Ramnarayan N. Patel,"improving power system transient stability withan off-centre location of shunt facts devices", Journal of ELECTRICAL ENGINEERING, VOL. 57, NO. 6, 2006, 365–368.
- [122] Mahmoud H. M; M. A. Mehanna and S. K. Elsayed, "Optimal Location of Facts Devices to Enhance the Voltage Stability and Power Transfer Capability", Journal of American Science, 2012;8(1).
- [123] Claudio A. Caiiizares and Zeno T Faur,"Analysis of SVC and TCSC Controllers in Voltage Collapse", IEEE Transactions on Power Systems, Vol. 14, No. 1, February 1999.

- [124] E. A. Leonidaki, D. P. Georgiadis, and N. D. Hatziargyriou"Decision Trees for Determination of Optimal Location and Rate of Series Compensation to Increase Power System Loading Margin", IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 3, AUGUST 2006.
- [125] Roberto Mínguez, Federico Milano, Rafael Zárate-Miñano and Rafael Zárate-Miñano,"Optimal Network Placement of SVC Devices", IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007.
- [126] Ranjit Kumar Bindal, "A Review of Benefits of FACTS Devices in Power System", International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-4, April 2014.
- [127] Cai, LJ,"Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms", Power Systems Exposition, 2004. IEEE PES.
- [128] M. Saravanan, S. Mary Raja Slochanal, P. Venkatesh, and J. Prince Stephen Abraham"Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability", Electric Power Systems ResearchVolume 77, Issues 3–4, March 2007, pp 276–283.
- [129] Wibowo, R.S., "FACTS Devices Allocation With Control Coordination Considering Congestion Relief and Voltage", Power Systems, IEEE Transactions on (Volume:26, Issue: 4).
- [130] Santiago-Luna, M., "Optimal Placement of Facts Controllers in Power Systems via Evolution Strategies", Transmission & DistributionExposition: Latin America, 2006. TDC '06. IEEE/PES.
- [131] M. Basu, "Optimal power flow with FACTS devices using differential evolution", International Journal of Electrical Power & Energy Systems.
- [132] Lashkar Ara, "Multiobjective Optimal Location of FACTS Shunt-Series Controllers for Power System Operation Planning", Power Delivery, IEEE Transactions on (Volume:27, Issue:2).
- [133] El Metwally,"Optimal allocation of FACTS devices in power system using genetic algorithms", Power System Convention,2008. MEPCON 2008. 12th International Middle-East.
- [134] A. Lashkar Ara, "Modelling of Optimal Unified Power Flow Controller (OUPFC) for optimal steady-state performance of power systems", Elsevier LtdVolume 52, Issue 2, February 2011, Pages 1325–1333.
- [135] Naresh Acharya, "Locating series FACTS devices for congestion management in deregulated electricity markets", Electric Power Systems Research journal Volume 77, Issues 3– 4, March 2007.
- [136] Sajad Rahimzadeh, "Looking for optimal number and placement of FACTS devices to manage the transmission congestion", Energy Conversion and ManagementVolume 52, Issue 1, January 2011
- [137] M. Gitizadeh, "A novel approach for optimum allocation of FACTS devices using multi-objective function", Energy Conversion and Management Volume 50, Issue 3, March 2009
- [138] Gerbex, S, "Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms", Power Systems, IEEE Transactions on (Volume:16, Issue: 3)
- [139] Ying Xiao, "Power flow control approach to power systems with embedded FACTS devices", Power Systems, IEEE Transactions on (Volume: 17, Issue: 4).
- [140] L. Gyugyi, "Unified power-flow control concept for flexible AC transmission systems", IEE Proceedings C (Generation, Transmission and Distribution), Volume 139, Issue 4, July 1992
- [141] Noroozian, M., "Improving power system dynamics by series-connected FACTS devices", Power Delivery, IEEE Transactions on (Volume:12, Issue: 4).
- [142] Gotham, D.J, "Power flow control and power flow studies for systems with FACTS devices", Power Systems, IEEE Transactions on (Volume:13, Issue: 1).
- [143] Hingorani, N.G,"Flexible AC transmission", Spectrum, IEEE (Volume:30, Issue: 4).
- [144] Minguez, R. "Optimal Network Placement of SVC Devices", Power Systems, IEEE Transactions on (Volume:22, Issue: 4)
- [145] Orfanogianni, T., "Steady-state optimization in power systems with series FACTS devices", Power Systems, IEEE Transactions on (Volume:18, Issue: 1)
- [146] Li-Jun Cai. "Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems" Power Systems, IEEE Transactions on (Volume:20, Issue: 1)
- [147] Wang Feng, "Allocation of TCSC devices to optimize total transmission capacity in a competitive power market", Power Engineering Society Winter Meeting, 2001. IEEE (Volume:2)
- [148] Sidhartha Panda, "A PSO-based SSSC Controller for Improvementof Transient Stability Performance", International Journal of Electrical and Computer Engineering 2:5 2007
- [149] BINDESHWAR SINGH, K.S. VERMA, DEEPENDRA SINGH, C.N. SINGH, ARCHNA SINGH, EKTA AGRAWAL, RAHUL DIXIT, BALJIV TYAGI, "INTRODUCTION TO FACTS CONTROLLERS A CRITICAL REVIEW", International Journal of Reviews in Computing.
- [150] Ashwani kumar, "Optimal Location of UPFC and Comparative Analysis of Maximum Loadability with FACTS in Competitive Electricity Markets", 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 2007.
- [151] Vijayakumar Krishnasamy," Genetic Algorithm for Solving Optimal Power Flow Problem with UPFC", International Journal of Software Engineering and Its Applications Vol. 5 No. 1, January, 2011
- [152] KIRAN KUMAR KUTHADI," Enhancement of Voltage Stability through Optimal Placement of Facts Controllers in Power Systems", American Journal of Sustainable Cities and Society.
- [153] K. Lokanadham," Optimal Location of FACTS Devices In Power System by Genetic Algorithm", Global Journal of Researches in Engineering.
- [154] E. S. Ali, S. M. Abd-Elazim, "Bacteria Foraging: A New Technique for Optimal Design of FACTS Controller to Enhance Power System Stability", WSEAS TRANSACTIONS on SYSTEMS.
- [155] Mahmoud H. M ; M. A. Mehanna and S. K. Elsayed,"Optimal Location of Facts Devices to Enhance the Voltage Stability and Power Transfer Capability", Journal of American Science, 2012;8(1)
- [156] S.M. AbdElazim, E.S. Ali, "Bacteria Foraging Optimization Algorithm based SVC damping controller design for power system stability enhancement", International Journal of Electrical Power & Energy Systems.
- [157] S.M. AbdElazim, E.S. Ali, "Coordinated design of PSSs and SVC via bacteria foraging optimization algorithm in a multimachine power system", International Journal of Electrical Power & Energy Systems.
- [158] Sidhartha Panda, N.P.Padhy, R.N.Patel, "Genetically Optimized TCSC Controller for Transient Stability Improvement", International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering Vol:1, No:2, 2007.

ISSN: 2582-3930

- [159] A. Lashkar Araa, A. Kazemia, S.A. Nabavi Niakib, "Optimal location of Hybrid Flow Controller considering modified Steadystate model", Applied Energy Volume 88, Issue 5
- [160] R.Mohamad Idris, A.Khairuddin, and M.W.Mustafa, "Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm", International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering Vol:3, No:6, 2009
- [161] A. B.Bhattacharyya, B. S.K.Goswami, "OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System", World Academy of Science, Engineering and Technology Vol:5 2011-03-26.
- [162] A. Karami, m. Rashidinejad and a. A. Gharaveisi,"voltage security enhancement and congestio management viastatcom & ipfc using artificial intelligence", Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 31, No. B3, pp 289-301.
- [163] Jigar S.Sarda, Vibha N.Parmar, Dhaval G.Patel, Lalit K.Pate, "Genetic Algorithm Approach for Optimal location of FACTS devices to improve system loadabilityand minimization of losses", International Journal of Advanced Research in Electrical, Electronics and Instrumentation EngineeringVol. 1, Issue 3.
- [164] Nadarajah Mithulananthan, Naresh Acharya, "A proposal for investment recovery of FACTSdevices in deregulated electricity markets", Electric Power System Management, Energy Field of Study, Asian Institute of Technology, Klongluang, Pathumthani , ThailandElectric Power Systems ResearchVolume 77, Issues 5–6, April 2007, Pages 695–703
- [165] A.A. Alabduljabbara, J.V. Milanovićb, "Assessment of technoeconomiccontribution of FACTSdevices to power system operation", Electric Power Systems ResearchVolume 80, Issue 10, October 2010, Pages 1247–1255.
- [166] ZOU Zhenyu, JIANG Quanyuan, ZHANG Pengxiang, LI Liang, CAO Yijia, WANG Haifeng, "Coordinated Design of TCSC and SVC Controllers Based onMultiobjective Evolutionary Algorithm" ZhejiangUniversity, Hangzhou 310027, China) (Bath University, UK).
- [167] Rusejla sadikovi c,"Power Flow Control and Damping of Oscillations in Power Systems", Swiss Federal Institute Of TechnologyZurich.
- [168] Esmat Rashedi , Hossien Nezamabadi-pour, Saeid Saryazdi, Malihe M. Farsangi."Allocation of Static Var Compensator Using Gravitational SearchAlgorithm", Electrical Engineering Department of Shahid Bahonar University, Kerman.
- [169] Ren, H.; Electr. Eng. Dept., North China Electr. Power Univ., Baoding; Watts, D.; Mi, Z.; Lu, J., "A Review of FACTS' PracticalConsideration and Economic Evaluation" Power and Energy Engineering Conference, 2009. APPEEC 2009. AsiaPacific.
- [170] Yoke Lin Tan, Youyi Wang,"Design of series and shunt FACTScontroller using adaptive nonlinear coordinated design techniques", Power Systems, IEEE Transactions on (Volume:12, Issue: 3)
- [171] Padhy, N.P., AbdelMoamen,, Praveen Kumar, "Optimal location and initial parameter settings of multiple TCSCs for reactive power planning using genetic algorithms", Power Engineering Society General Meeting, 2004. IEEE.
- [172] Faried, S.O., Billinton, R., Aboreshaid, S.,"Probabilistic technique for sizingFACTS devices for steadystate voltage profile enhancement", Generation, Transmission & Distribution, IET (Volume:3, Issue: 4).
- [173] Xinghao Fang Chow, J.H.; Xia Jiang; Fardanesh, B., "Sensitivity Methods in the Dispatchand Siting of FACTS Controllers", Power Systems, IEEE Transactions on (Volume:24, Issue: 2).
- [174] Ja'fari, M.,Afsharnia, S.,"Voltage Stability Enhancement inContingency Conditions Using Shunt FACTS Devices", EUROCON, 2007. The International Conference on "Computer as a Tool"
- [175] Wenjuan Zhang, Fangxing Li, L.M. Tolbert,"Optimal allocation of shunt dynamic Var source SVC and STATCOM: a survey",7th IET International Conference on Advances in Power SystemControl, Operation and Management (APSCOM 2006), 2006 page 507 Conference.
- [176] L.Rajalakshmi,M.V.Suganyadevi, S.Parameswari,"Congestion Management in Deregulated Power Systemby Locating Series FACTS Devices", International Journal of Computer Applications (0975 – 8887)Volume 13– No.8, January 2011.
- [177] Naresh Acharya, Arthit Sode-Yome, Nadarajah Mithulananthan, "Facts about Flexible AC Transmission Systems (FACTS)Controllers: Practical Installations and Benefits", http://www.researchgate.net/publication/43516579.
- [178] Ahmad rezaee jordehi,Jasronita Jasni,"Heuristic methods for solution of FACTSoptimization problem in power systems",2011 IEEE Student Conference on Research and Development.

BIBLIOGRAPHY

Akash Gupta isa gradute student of B. Tech, Electrical Engineering from Kamla Nehru Institute of Technology, Sultanpur, U.P., India.