
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

Processor using RISC-V ISA

Prof. A.S. Nigade1, Prof. S.K. Pawar2, Abhijeet Banerjee3, Nihar Das4, Sanket Ghosh5

1Mrs. A.S. Nigade (Asst. Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune,
India)

2Mrs. S.K. Pawar (Asst. Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune,
India)

3Abhijeet Banerjee (Student, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India)
4Nihar Das (Student, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India)

5Sanket Ghosh (Student, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India)
---***---
Abstract - Majority of all the processors and micro-
controllers utilized all over world now are either based on x86
Instruction Set Architecture (ISA) or are ARM based. Both of
these ISAs are proprietary and cannot be easily availed by
people wishing to design their own CPU or extend the ISA for
their specific use case. In light of this problem the RISC-V
ISA was designed which is an open specification ISA. In this
project we are designing our own CPU utilizing the RISC-V
ISA. To realise this project we are not going the usual of route
using a generic Hardware Descriptive language(HDL) like
VHSIC Hardware Description Language (VHDL) or Verilog.
But we are using a scala based library called SpinalHDL to
design our CPU. There are various benifits of using
SpinalHDL to define a CPU like there is no need for re-stating
same objects within the HDL code and having higher level of
abstraction for defining the logic.

Key Words: RISC–V ISA, Central Processessing Unit (CPU),
HDL, SpinalHDL

1.INTRODUCTION

When a processor is designed first things to be considered
is the application environment for the processor. Such as
whether the application needs a single core (processor) or
multi core design. The designing of the data path takes place
next which works as the logic control flow network. The
datapath is laid out to handle the necessary capabilities.It is the
hardware that performs all the required operations, for
example, ALU, registers, and internal buses. Then the
instruction set is then evaluated to check if it needs to be
extended for a particular task. The designing of the logic
control unit is done next. The design of the logic control unit
determines how the datapath operates. In this way, the control
unit can specify how the data flows through the datapath.The
implementaion can be implemented as an instruction register
or a instruction decode unit. This is all done while taking into
account the address path required for the processor function
The cpu designed here is a low performance / low power
design and will be usefull for applications needs such as in
embedded systems, industrial iot, remote monitering systems
etc.

RISC – V is an ISA that is easy to implement, simple and
inclinates towards low power designs. Its is a free and open
instruction-set architecture (ISA) that is licensed under BSD
license.

It is designed to be modular with a 32, 64, 128-bit integer
base and provide various optional extensions like floating
point. It has been designed while taking into account for all
market use cases such as in microcontrollers, image, graphics,

and PC/server processors. It is also suitable for implementation
ranging from FPGAs to fully custom layouts. With an
increasing interest in design and application of accelerators ,
extensibility has been made an essential part of universality.
For an ISA to be easily extensible all the while having to
maintain a large software support is tricky as software
developers need a consistent target. In order to resolve for this
issue the base integer instruction set and a few optional and
predefined extensions have been guaranteed to be stay the
same and a mechanism for creating various extensions has
been provided The base ISA is architected to simplify
implementation. To enable extensions, some portions of the
instruction encoding space has been set aside for future use
cases.

Aside for monetary value a compelling reason behind
choosing RISC V is that existing popular instruction set
architecture have several drawbacks associated with it.

Drawbacks with x86-64

 Power inefficient : x86 architecture tends to be power
hungry when compared to alternatives and therefore
naturally, produce more heat.

 Huge and Complex Instruction Set : x86 is decades
old architecture and developments took place over
decades. 64 bit instruction set AMD64 is just
extension of 32 bit x86 architecture. Thus, with
changes and revisions instruction set has become
unnecessarily complex.

 Scalability : Scaling the x86 architecture is very
complex and time consuming to achieve.

 Security : With revisions in instruction set, a lot of
bugs are introduced which can be a potential security
flaw. These bugs cannot be corrected and present
permanently.

 Proprietary IP : x86 is an intellectual property and
monopoly of Advanced Micro Devices and Intel.
Thus dealing IP is time consuming and complex.

Drawbacks with ARM (A32, A64)

 Proprietary IP : Working with intellectual property is
costly and time consuming and often comes with
many hindrances.

 Complex decoding : ARM ISA instructions requires a
complex decoding process which increases overhead
for program execution.

 Complex addressing modes: Various features of the
CISC architecture have been incorporated into the
ARM ISA such as their multiple load/store

© 2021, IJSREM | www.ijsrem.com | Page 1

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

instruction. This has lead to increased complexity of
the processor and also increases the processor die
size.

2. SYSTEM OVERVIEW
In our project, we are designing a low power processor for

utilization in embedded system environment using RV32IM
instruction set. RV32I is a base 32-bit integer ISA. It
comprises of 47 instructions. There are eight instructions that
are system instructions (system calls and performance
counters) which if implemented as a single trapping
instruction, reduces the number of user-level hardware
instructions to 40. The instructions are 32 bits long. They are
stored naturally aligned in memory in little - endian byte order.

The pipeline consists of 5 stages (Fetch, Decode, Execute,
Memory, WriteBack).

The designing of the processor has been done with
SpinalHDL. The scala library SpinalHDL has been used to
ease the designing complexity of the processor design stage.
The use of modern language paradigms such as those
implemented in scala means that with a library for hardware
descriptive keywords; it can function as a much better HDL
than VHDL or Verilog. It is able to provide a higher
abstraction level meaning less lines of code for defining the
logic and lesser hindrance with defining all states in every
entity.

3. WORKING

Stage 1 : Instruction Fetch
Instruction is fetched from memory.
Instructions from the address given from the Program Counter
are sent to next stage. Then the Program Counter is
incremented.
Instruction register stores the pre-fetched instructions of the
program being executed.

Stage 2 : Instruction Decode
Instruction is decoded in the Instruction Decoder. Then the
operator and operands are sent to register.

imm (Immediate) is value added in the instruction itself,
instead of register or memory location. This is used in
instructions that perform arithmetic or logical operations on
constant.
Control Unit gets instructions from instruction decoder and
gives control signals and timing signals to the execution units
of the CPU such as ALU, registers.

Stage 3 : Execute
ALU (Arithmetic Logic Unit) is digital circuit that performs
arithmetic operations such as the add, subtract, increment,
decrement; bitwise logical operations such as AND, OR, XOR
and ones complement and bitshift operation on the numbers. It
is the fundamental block of the CPU where all the principal
operations are performed.

Stage 4 : Memory Access
Load and Store instructions are performed in this stage. Data
Memory stores the instructions.

Stage 5 : Write back
The Program Counter is updated. Branch makes decision
regarding the flow of instruction. In order to change the flow,
jumps are performed depending on the conditions. When a
jump is done, the Program Counter is updated and instruction
that will be executed next are updated.

4. CONCLUSIONS

By utilizing the newer available digital hardware design
methods and an open specification ISA the designing and
development of complex digital hardware can be made much
simpler and easier to implement. With the end result of having
the option of improving and securing the previous iteration
much quicker than what is seen in the industry today.

© 2021, IJSREM | www.ijsrem.com | Page 2

Figure 1: Block diagram

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

5. FUTURE SCOPE

Our project is based on an open ISA, so any improvements
done on the instruction architecture can be easily expanded
and changes can be easily incorporated in future iterations.
Which is something not seen in todays consumer processors
as the design and implementaion methodology is highly
complex leading to multiple re-implementations of the same
logic designs. This is also exacerbated due to the constraints
of the currently used HDLs due to its verbosity.

REFERENCES

[1] The RISC-V Instruction Set Manual
 https://github.com/riscv/riscv-isa-manual/releases/download/Ratif

ied-IMAFDQC/riscv-spec-20191213.pdf

[2] A RISC-V instruction set processor-micro-architecture design
and analysis
DOI: 10.1109/VLSISATA.2016.7593047

[3] Single Cycle RISC-V Micro Architecture Processor and its FPGA
Prototype
DOI:10.1109/ISED.2017.8303926

[4] Design of the RISC-V Instruction Set Architecture Technical
Report No. UCB/EECS-2016-1
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
1.htm

[5] Instruction Sets Should Be Free: The Case For RISC-V Technical
Report No. UCB/EECS-2014-146
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
146.html

[6] Software tools, risc-v foundation
https://riscv.org/software-tools/

[7] S.P. Dandamudi, Guide to RISC Processors: For Programmers
and Engineers. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2005

[8]J. Tandon, “The openrisc processor: Open hardware and linux,”
Linux J., vol. 2011, no. 212, Dec. 2011.
http://dl.acm.org/citation.cfm?id=2123870.2123876

© 2021, IJSREM | www.ijsrem.com | Page 3

http://dl.acm.org/citation.cfm?id=2123870.2123876
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.htm
http://www.ijsrem.com/

	International Journal of Scientific Research in Engineering and Management (IJSREM)
	Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930
	Abstract
	1.INTRODUCTION
	2. SYSTEM OVERVIEW
	3. WORKING
	4. CONCLUSIONS
	5. FUTURE SCOPE
	REFERENCES

