
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 1

QuickSort- A Chronological and Experimental Survey

Nisha Rathi
1
, Nidhi Nigam

2

1
Department of Computer Science and Engineering, Acropolis Institute of Technology and Research

2
Department of Computer Science and Engineering, Acropolis Institute of Technology and Research

---***---

Abstract - Sorting is perhaps the widely studied operation

on data in computer science, both because of its intrinsic

theoretical importance and its use in so many applications. In

this paper a complete review and experimental study of the

Quicksort algorithm is provided. The survey examines in

detail the variants of Quicksort starting with the original

version developed by Hoare in 1961[6]. The paper compares

the performances of the various versions of Quicksort based

on comparison of execution time used for sorting arrays of

various sizes of integers with unsorted and already sorted

values.

Key Words: QuickSort, Median-of-Three Rule, Median-of-

Five Rule, Dynamic Pivot Selection, Sorting, Survey, Bsort,

Qsorte, qsort7, Quickersort, Singleton, SedgewickFast.

1. INTRODUCTION

QuickSort was first introduced in 1961 by Hoare [6]. It is

an in-place algorithm (uses a small auxiliary stack), and has an

average sorting time of O (n log 2 n) to sort n items. It is

considered to be the most efficient internal sorting algorithm

and is the method of choice for many applications. The

algorithm is simple to put into practice, works very well for

different types of input data, and is known to use less resource

than any other sorting algorithm [16]. All these factors have

made it widely accepted sorting algorithm. Quicksort is a

divide-and-conquer algorithm. For sorting, it partitions the

array into two parts, placing small elements on the left and

large elements on the right, and then recursively sorts the two

subarrays. Sedgewick studied Quicksort in his Ph.D. thesis

[13] and it is extensively explained and studied in [8], [3], [4],

[14] and [18].

2. Enhancements in Basic Quicksort

algorithm
Since its development by Hoare, the Quicksort algorithm

has gone through a series of amendments intended to improve

its worst case behavior of O (n
2
). The enhancements can be

divided into four major categories: enhancements based on the

choice of pivot, enhancements based on use of another sorting

algorithm by an algorithm, enhancements based on different

ways of partitioning lists and sublists, and enhancements based

on adaptive sorting that tries to improve on the O (n
2
) behavior

of the Quicksort algorithm when used for sorting lists that are

sorted or nearly sorted. This last category was proposed as a

research area by [20].

I. Enhancement based on the choice of pivot: It includes

Hoare’s original Quicksort algorithm based on random pivot

[6], [7], Scowen’s Quickersort algorithm where middle

element of the list to be sorted is considered as pivot [15], and

Singleton’s algorithm where pivot selection is based on the

median-of-three method [17].

Sedgewick [17] suggests the Median-of-Three splitting

technique of random pivot selection which reduces the

probability of occurrence for the worst case scenario. It

proposes selecting the median of the values stored in the first,

last and ((first + last) /2) indexes as a pivot. This decreases the

likelihood of the worst-case state and increases the probability

of the average-case performance of the algorithm. However,

there is no assurance of dividing the array into equal parts.

Thus, it may cause the worst case performance of QuickSort.

The performance of the algorithm is responsive to small

alteration for the array contents.

 Janez B. [27] provides the Median-of-Five with random

index selection technique by adding the values stored in two

randomly picked indexes to the values stored in the first, last

and ((first + last) /2) indexes. This technique may provide a

more equal splitting; but it can still suffer from the same

slowdowns of the prior techniques. Mohammed [28] suggests

modification which aims to reduce the overhead associated

with the random number generation picks the median of the

five values stored in fixed indexes as the pivot; namely, first,

((first + last) /4), ((first + last) /2), (3 *(first + last) /4) and last .

This technique reduces the overhead of the random number

generation by using five fixed indexes, but it necessitates time

to pick and choose the median of five elements at each

recursive call. Mohammed [29] in 2007 mentioned Median-of-

Seven and Median-of-Nine either with or without random

index selection. This method of increasing in number of

elements may provide a more unbiased split but the time

needed to pick the pivot at each recursive call increases with

the number of elements. The most important shortcoming of

the earlier methods is that the selection of the pivot is based on

a specific number of elements which does not necessarily

reflect the nature of the array. The possibility of worst case

behavior of the QuickSort algorithm is still there when using

any of these pivot selection techniques.

An intelligent QuickSort algorithm based on a dynamic

pivot selection technique was proposed by Dalhoum [30]. He

enhanced the average case and eliminates the worst case

behaviors of the algorithm. This technique is data-dependent to

increase the chances of splitting the array or list into relatively

equal sizes in order to reduce the number of recursive calls

made for the Quicksort algorithm. In addition; the modified

algorithm converts the worst case state into a best case state

with Θ (n) execution time. The algorithm is sufficiently
intelligent to distinguish a sorted array or sub-array so doesn’t
require further processing.

Another useful modification is the use of median-of-

medians or Blum-Floyd-Pratt-Rivest-Tarjan (BFPRT)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 2

algorithm [31], the pivot selection algorithm in the linear

median finding algorithm.

II. Enhancements based on use of another sorting

algorithm by an algorithm: It includes all algorithms that use

another sorting algorithm for sorting small sublists, usually

Insertion sort [16]. The concept was first suggested for

improving the performance of Quicksort by Hoare ,. A more

feasible technique for small sublists was proposed by

Sedgewick [18], whereby sublists of sizes < M, where M is

between 6 and 15, should be ignored and not partitioned. After

the algorithm come to an end, the list will be almost sorted,

and the whole list is sorted using Insertion sort.

III. Enhancement based on different ways of

partitioning lists and sublists: It is accomplished by

considering different partitioning schemes. A scheme was

suggested by Sedgewick [18] that uses two approaching

indices. Another scheme was proposed by Bentley [1] where

two indices start at the left end of the list/sublist and move

towards the right end. For handling duplicate keys in sublists, a

method to use three-way partitioning instead of two-way

partitioning was suggested by Sedgewick [16]. Martinez [24]

in 2004 suggested to sorts an array of numbers by finding a

pivot and then recursively apply a “partial Quicksort”

technique to the sub-arrays. In case of smaller value of pivot as

compared to M, the partial Quicksort is applied to the right

sub-array as the left sub-array is sorted. In case pivot is greater

than M, the partial Quicksort is applied to the left sub-array.

IV. Enhancements based on adaptive sorting: It tries to

improve on the worst case behavior, O (n
2
), of the Quicksort

algorithm when used for sorting lists that are sorted or nearly

sorted. Adaptive sorting algorithms, like Insertion sort,

considered the already existing order in the input list [10].

An adaptive sorting algorithm, called Bsort, was

developed by Wainwright [19] to improve the average

behavior of Quicksort and eliminate the worst case behavior

for sorted or nearly sorted lists. Wainright [20] developed

another adaptive sorting algorithm, Qsorte, which performs for

lists of random values and breaks the worst case behavior of

Quicksort by performing O(n) comparisons for sorted or nearly

sorted lists.

This paper is organized as follows. Section 3 presents

detailed description of few of the enhanced QuickSort

algorithms. Sections 4 and 5 discuss behavioral analysis of few

of the QuickSort algorithms. This paper concludes with section

6.

3. Sorting Algorithms

The original Quicksort algorithm was developed by Hoare in

1961 [6]. It is considered to be the most efficient internal

sorting algorithm. The major drawback of original Quicksort

is that worst case time complexity of naïve implementation of

Quicksort is O (n
2
) with input size n. The algorithm has been

analyzed and studied extensively in [8], [3], [4], [14], [18],

and [13] research work.

QuickSort follows the technique of divide and conquer by

recursively splitting each array into two sub arrays, which

makes it easier to solve smaller problems than a single larger

one [25], [26]. In QuickSort, a pivot is selected from the

unsorted array and used to split the array into two sub arrays

for which the same algorithm is called recursively until the

sub arrays have size one or zero. The QuickSort algorithm has

an average runtime complexity of Θ (n log n) for an input size
n, and a worst case complexity of Θ (n2

) . The worst case

arises when the input is an already sorted list, thus, the

selected pivot is always a largest element.

The QuickSort algorithm’s runtime depends on the splitting of

the array and the consecutive sub arrays. If splitting constantly

results in a small reduction in the size of the array or sub

array, the resultant runtime will be:

T(n) = n + T(n-c), where c is a constant. This recurrence

relation results to

T(n) = Θ(n2
) (1)

If splitting of array results almost equal size sub-arrays, the

runtime complexity of QuickSort will be reduced to:

 T(n) = n + T(n/2).

Thereby results to logarithmic time complexity:

T(n) = n + T(n/2).

T(n) = Θ(n log n) (2)

Fig -1: The Hoare-Partition Algorithm

The best performance of the QuickSort algorithm came by

splitting the array into almost equal size subarrays. These

almost equal halves reduce the number of recursive calls and

eventually reduce the execution time. The efficiency of

Quicksort ultimately depends on the choice of the pivot [16].

The perfect selection for the pivot would be the one that

divides the list elements nearly to the half. Different variations

of the Quicksort algorithm have aroused from diverse choices

for the pivot. In Hoare’s [6] original algorithm the pivot was

chosen at random, and Hoare proved that choosing the pivot at

random will result in 1.386nlgn expected comparisons [7].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 3

Fig -2: The Random--Partition Algorithm

Another variation of Quicksort is one in which the pivot is

chosen as the first or last key in the list. The following is a

C++ implementation of the partition function, where the pivot

is chosen as the last element in the array:

Fig -3: The PivotasLastPartition Algorithm

In 1965 Scowen [12] proposed Quickersort in which the pivot

is selected as the middle key. If the array is already sorted or

nearly sorted, then the middle key will be a brilliant choice

since it will divide the array into two subarrays of equal size.

As the array and subarrays will always be partitioned evenly

on opting the pivot as the middle element, the running time on

sorted arrays becomes O (n log2 n.)

Fig -4: The ScowenPartition Algorithm

Another improvement to Quicksort was introduced by

Singleton in 1969 [17], in which he suggested the Median-of-

Three Rule for choosing the pivot that improves Quicksort.

The worst case is now more unlikely to take place; the

Median-of-Three Rule is served by one of the three elements

that are observed prior to partitioning so this new approach

removes the need for a key to partition the array and it

decrease the average running time by about 5%. This method

selects the three elements from the left, middle and right of

the array. The three elements are then sorted and positioned

back into the same location in the array. The pivot is the

median of these three elements.

Fig -5: The Medianof3_Partition Algorithm

Sedgewick [16] suggested three-way partitioning as the

method for handling arrays with duplicate keys. The array is

partitioned into three parts: one containing keys smaller than

the pivot, the other containing keys equal to the pivot, and the

last part containing all keys that are larger than the pivot. The

sort is completed after two recursive calls in the three-way

partitioning,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 4

Fig -6: The Median3way Algorithm

Sedgewick [18] suggested a version of Quicksort,

SedgewickFast, minimizes the number of swaps by scanning

in from the left of the array then scanning in from the right of

the array then swapping the two numbers found to be out of

position. The algorithm makes O n (log 2 n) comparisons for

random data and data sorted in reverse while it is linear for

sorted data.

Fig -7: The SedgewickFastPartition Algorithm

Bentley [1] suggested an algorithm which the partition

function that rolls the largest keys in the array to the bottom of

the array using ‘for’ loop. For the pivot P (chosen at random),

Lastbeg is computed that rearrange the array A [Beg]…A
[End] such that all keys less than T are on one side of Lastbeg

and all other keys are on the other side. A simple for loop

scans the array from left to right, using the variables I and

Lastbeg as indices, maintain the following invariant in array

A. If A [I] >= P then the invariant is still valid. However, if A

[I] < P, the invariant is regained by incrementing LastLow by

1 and then swapping A [I] and A [Lastbeg]

.

Fig -8: The BentleyPartition Algorithm

Wainwright [19] suggested Bsort, a variation of Quicksort for

nearly sorted lists as well as lists that are nearly sorted in

reverse order. He combined the swapping technique used in

Bubble sort with the Quicksort algorithm. It chooses the

middle key as the pivot during each pass, and then it continues

to use the conventional Quicksort method. Each key that is

placed in the left subarray will be placed at the right end of the

subarray. If the key is not the first key in the subarray, it will

be compared with its left neighbor and it will be swapped with

its left neighbor if the new key does not preserve the order of

the subarray. Similarly, keys are placed in right subarray. It

ensures that the rightmost key in the left subarray will be the

largest value, and the leftmost key in the rightmost subarray

will be the smallest value.

Wainright in 1987 [20] gave Qsorte, an algorithm with an

early exit for sorted .arrays. It is original Quicksort algorithm

with a slight modification in the partition phase i.e. checking

by the left and right sublists for sorting. The middle key is

chosen as the pivot in the partitioning phase and the left and

right sublists are assumed to be sorted in the beginning. While

placing a new key in the left sublist, if the sublist is still sorted

and if the sublist is not empty, the new key will be match up

with its left neighbor. The sublist is marked as unsorted if the

two keys are not in sorted order and the keys are not swapped.

Similar processing will be done for right sublist. Any sublist

that is marked as sorted will not be partitioned in the end of

partitioning phase. When the chosen pivot is always the

smallest value in the sublist, Qsorte has a worst case time

complexity of O (n
2
)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 5

Fig -9: The Qsorte Algorithm

A variation on Hoare’s original partition algorithm ‘Rotate’
version was provided by McDaniel [9] where the pivot is

compared with the value in the bottom’th position. The

bottom index is decremented when the pivot is less than that

value otherwise a rotate left operation is performed using the

call Rotate_Left (bottom, pivot+1, pivot). After the index

bottom is decremented the following declaration are true:

beg pivot-1 pivot+1 bottom end

<= a[pivot] = a[pivot] ?? > a[pivot]

Fig -10: The McDanielPartition Algorithm

Benteley and Mcilroy [2] developed a fast qsort7 based on

the existing qsort function that comes with the C library. The

size of the array is the basis for selecting pivot. The pivot is

chosen as the middle key for small sized arrays, the pivot is

chosen using the median-of-three method for mid-sized arrays

and the pivot is chosen as the Pseudo median of 9 for large

sized arrays. Fat partitioning divides the input array into three

parts (Tripartite partitioning (< = >)). After partitioning, the

equal elements in the middle are ignored and the left and the

right sub arrays are recur. A better fat partition version is used

(= <? >) where after partitioning, the equal keys are brought to

the middle by swapping the outer ends of the two left

portions. The combination of split-end partitioning and an

adaptively sampled partitioning element is considered in this

algorithm. Here the partitioning has two loops, first inner loop

go up the index b, scans over lesser elements, exchange equal

elements to the element pointed to by a and bring to an end at

a greater element while the second inner loop go down the

index c, scans over greater elements, exchange equal elements

to the element pointed to by d and bring to an end at a lesser

element. The main loop then exchange ar [b] and ar [c],

increment b and decrement c, and continues until b and c

cross paths. Then the equal keys on the boundaries are

swapped back to the middle of the array. Median-of-three

method is used to select pivot.

Neubert [11] suggested Flashsort that consider classification

of elements [22], [21], [14] instead of comparisons.

Dobosiewicz [5] suggested that only O (n) time is required by

classification based sorting algorithms to sort n elements thus

accomplishing the absolute lowest time complexity, but they

require considerable auxiliary memory space. Flashsort is able

to reduce this factor as 0.1n auxiliary memory by using a

classification step for long-range ordering with in-place

permutation. Afterwards the algorithm uses a simple

comparison method for the final short-range ordering of each

class.

Chakraborty [23] suggested an algorithm which uses an

auxiliary array for holding array keys during sort.

Unfortunately author had not done any analysis or testing.

This algorithm is not an in-place algorithm as it is essentially

a Quicksort that uses an extra temporary array of the same

size as the original array.

Dynamic Pivot Selection Technique by Nisha [32] is the

modified algorithm which is based on splitting the array into

relatively equal halves so that for each recursive call there will

be reduction in number of recursive calls and the overall

execution time of QuickSort. In addition, if the array is

already sorted it will not be processed any further which

reduces the O (n2) complexity into the best case behavior of

the algorithm; i.e. O (n). Firstly, the rightmost element of the

array is chosen as pivot. Each element value is compared with

the pivot value. The two counters, CountLess and

CountLarger, made use to count the number of elements with

values smaller than the pivot and the number of elements with

values larger than the pivot. The variables SumLess and

SumLarger are used to store the sum of the values of the

elements smaller than the pivot and the sum of those larger

than the pivot. These variables are then used to calculate the

next pivots for the recursive calls. In the recursive call for the

left sub array, the integer average of the values smaller than

the pivot is passed as the pivot value. Similarly, in the

recursive call for the right sub array, the integer average of the

values larger than the pivot is passed as the pivot value. This

way to choose pivot helps in consecutively dividing the array

into nearly equal halves thus improves the competence of the

QuickSort algorithm. A Boolean variable is utilized by the

algorithm to recognize an already sorted array or sub array

which reduces the number of recursive calls.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 6

Fig -11: The Qsort Algorithm

Table -1: Assessment of time (in seconds) required to

execute unsorted arrays with varying sizes for the Hoare-

Partition Algorithm, the Random--Partition Algorithm,

the Median3way Algorithm, the Scowen-Partition

Algorithm, the Medianof3_ Partition Algorithm, The

SedgewickFast Partition Algorithm, The Bentley Partition

Algorithm and the Qsort Algorithm

Fig -11: The Comparison Chart of assessment time for

eight algorithms required to execute unsorted arrays with

various sizes

Table -2: Assessment of time (in seconds) required to

execute sorted arrays with varying sizes for the Hoare-

Partition Algorithm, Median of three Method, Bentley

Partition Algorithm, Median3way Algorithm,

SedgewickFast Algorithm The Random--Partition

Algorithm and the Qsort Algorithm

Fig -12: The Comparison Chart of assessment time for

seven algorithms required to execute sorted arrays with

various sizes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 7

3. CONCLUSIONS

In this paper a broad review and experiential study of the

Quicksort algorithm is presented. The survey studies in detail

the variations of Quicksort from the original version

developed by Hoare in 1961 to few of the latest approaches

for Quicksort. The paper also investigates the concept behind

selecting pivot and evaluates their performances to the variety

of versions of Quicksort. The study compared each algorithm

in terms of the running times that execute unsorted and sorted

arrays with various sizes.

REFERENCES

1. J. Bentley, “Programming Pearl: How to sort”, Com ACM,

Vol. 27 Issue 4, April 1984.

2. J. L. Bentley, M. D. Mcilroy, “Engineering a Sort

Function”, SOFTWARE—PRACTICE AND EXPERIENCE,

Vol. 23(11), Nov. 1993, pp 249 – 1265.

3. J. L. Bentley and R. Sedgewick, “Fast algorithms for

sorting and searching strings”, In Proc. 8th annual ACM-

SIAM symposium on Discrete algorithms, New Orleans,

Louisiana, USA, 1997, pp 360 - 369 .

4. R. Chaudhuri and A. C. Dempster, “A note on slowing

Quicksort”, SIGCSE Vol . 25, No . 2, Jan 1993.

5. W. Dobosiewicz, “Sorting by distributive partitioning,”

Information Processing Letters 7, 1 – 5, 1978.

6. C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4,

7, 321, July 1961.

7. C. A. R. Hoare, “Quicksort,” Computer Journal, 5, pp 10 –

15, 1962.

8. R. Loeser, “Some performance tests of : quicksort: and

descendants,” Comm. ACM 17, 3 , pp 143 – 152, Mar.

1974.

9. B. McDaniel, “Variations on Put First,” Conference on

Applied Mathematics, University of Central Oklahoma,

spring 1991

10. K. Mehlhorn, Data Structures and Algorithms, Vol. 1,

Sortzng and Searchzng, 1984 EATCS Monographs on

Theoretical Computer Science, Berlin/Heidelberg

Springer-Verlag.

11. K.D. Neubert, “The FlashSort algorithm,” In Proc. of the

euroFORTH'97 –Conf., Oxford, England, Sept. pp 26 – 28,

1997.

12. R.S. Scowen, “Algorithm 271: Quickersort,” Comm. ACM

8, 11, pp 669-670, Nov. 1965.

13. R. Sedgewick, “Quicksort,” PhD dissertation, Stanford

University, Stanford, CA, May 1975. Stanford Computer

Science Report STAN-CS-75-492.

14. R. Sedgewick, “The Analysis of Quicksort Programs,”

Acta Informatica 7, pp 327 – 355,, 1977.

15. R. S. Scowen, “Algorithm 271: quickersort,” Comm. of the

ACM, 8, pp 669 – 670, 1965.

16. R. Sedgewick, Algorithms in C++, 3rd edition, Addison

Wesley, 1998.

17. R. C. Singleton, “Algorithm 347: An efficient algorithm

for sorting with minimal storage,” Comm. ACM 12, 3, pp

186-187, Mar. 1969.

18. R. Sedgewick, “Implementing Quicksort programs,”

Comm. of ACM, 21(10), pp 847 – 857, Oct. 1978.

19. R. L. Wainwright, “A class of sorting algorithms based on

Quicksort,” Comm. ACM, Vol. 28 Number 4, April 1985.

20. R. L Wainright, “Quicksort algorithms with an early exit

for sorted subfiles,” Comm. ACM, 1987.

21. N. Wirth, Algorithm und Datenstrukturen, B. G. Teubner,

1983

22. D. E. Knuth, The Art of Computer Programming, Vol. 3:

Sorting and Searching, Addison Wesley Publ. Co., 1973.

23. K. K. Sundararajan, and S. Chakraborty, “ A new sorting

algorithm”, InterStat, Statistics on the Internet, 2006.

24. C. Martinez, Partial quicksort. In Proceedings of the First

ACM-SIAM, Workshop on Analytic Algorithmics and

Combinatorics (ANALCO), 2004.

25. Dean C. (2006). "A Simple Expected Running Time

Analysis for Randomized Divide and Conquer

Algorithms". Computer Journal of Discrete Applied

Mathematics, 154(1), 1-5

26. Ledley R. (1962). "Programming and Utilizing Digital

Computers." McGraw Hill. Bell D. (1958). The Principles

of Sorting. The Computer Journal, 1(2), 71-77

27. Janez B., Aleksander V. and Viljem Z. (2000). "A sorting

algorithm on a pc cluster", ACM Symposium on. Applied

Computing, 2-19

28. Mohammed, A. and Othman M. (2004). "A new pivot

selection scheme for Quicksort algorithm". Suranaree. J.

Sci. Technol., 11, 211-215

29. Mohammed, A. and Othman M. (2007). "Comparative

analysis of some pivot selection schemes for Quicksort

algorithm". Inform. Technol. J., 6, 424-427

30. Abdel Latif Abu Dalhoum1* (Corresponding author),

Thaeer Kobbaey1, Azzam Sleit1*,Manuel

Alfonseca2,Alfonso Ortega2. “Enhancing QuickSort

Algorithm using a Dynamic Pivot Selection Technique”,

Wulfenia Jounal, Klagenflert, Austria, ISSN: 1561-882X,

Vol 19, No. 10;Oct 2012

31. M. Blum, R.W. Floyd, V. Pratt, R. L. Rivest, and R. E.

Tarjan, “Time bounds for selection”, J. Comput. Syst. Sci.

7, 448–461 (1973).

32. Mrs. Nisha Rathi, “QSort – Dynamic Pivot in Original

Quick Sort”, International Journal of Advance Research

and Development, July 2018, Vol 3, Issue 7, Page 125-128

http://www.ijsrem.com/

	2. Enhancements in Basic Quicksort algorithm
	3. Sorting Algorithms

