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Abstract - Sorting is perhaps the widely studied operation 

on data in computer science, both because of its intrinsic 

theoretical importance and its use in so many applications. In 

this paper a complete review and experimental study of the 

Quicksort algorithm is provided. The survey examines in 

detail the variants of Quicksort starting with the original 

version developed by Hoare in 1961[6]. The paper compares 

the performances of the various versions of Quicksort based 

on comparison of execution time used for sorting arrays of 

various sizes of integers with unsorted and already sorted 

values. 
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1. INTRODUCTION 

 
QuickSort was first introduced in 1961 by Hoare [6]. It is 

an in-place algorithm (uses a small auxiliary stack), and has an 

average sorting time of O (n log 2 n) to sort n items. It is 

considered to be the most efficient internal sorting algorithm 

and is the method of choice for many applications. The 

algorithm is simple to put into practice, works very well for 

different types of input data, and is known to use less resource 

than any other sorting algorithm [16]. All these factors have 

made it widely accepted sorting algorithm. Quicksort is a 

divide-and-conquer algorithm.  For sorting, it partitions the 

array into two parts, placing small elements on the left and 

large elements on the right, and then recursively sorts the two 

subarrays. Sedgewick studied Quicksort in his Ph.D. thesis 

[13] and it is extensively explained and studied in [8], [3], [4], 

[14] and [18].  

2. Enhancements in Basic Quicksort 

algorithm  
Since its development by Hoare, the Quicksort algorithm 

has gone through a series of amendments intended to improve 

its worst case behavior of O (n
2
). The enhancements can be 

divided into four major categories: enhancements based on the 

choice of pivot, enhancements based on use of another sorting 

algorithm by an algorithm, enhancements based on different 

ways of partitioning lists and sublists, and enhancements based 

on adaptive sorting that tries to improve on the O (n
2
) behavior 

of the Quicksort algorithm when used for sorting lists that are 

sorted or nearly sorted. This last category was proposed as a 

research area by [20]. 

I. Enhancement based on the choice of pivot: It includes 

Hoare’s original Quicksort algorithm based on random pivot 

[6], [7], Scowen’s Quickersort algorithm where middle 

element of the list to be sorted is considered as pivot [15], and 

Singleton’s algorithm where pivot selection is based on the 

median-of-three method [17].  

Sedgewick [17] suggests the Median-of-Three splitting 

technique of random pivot selection which reduces the 

probability of occurrence for the worst case scenario. It 

proposes selecting the median of the values stored in the first, 

last and ((first + last) /2) indexes as a pivot. This decreases the 

likelihood of the worst-case state and increases the probability 

of the average-case performance of the algorithm. However, 

there is no assurance of dividing the array into equal parts. 

Thus, it may cause the worst case performance of QuickSort. 

The performance of the algorithm is responsive to small 

alteration for the array contents. 

 

 Janez B. [27] provides the Median-of-Five with random 

index selection technique by adding the values stored in two 

randomly picked indexes to the values stored in the first, last 

and ((first + last) /2) indexes. This technique may provide a 

more equal splitting; but it can still suffer from the same 

slowdowns of the prior techniques. Mohammed [28] suggests 

modification which aims to reduce the overhead associated 

with the random number generation picks the median of the 

five values stored in fixed indexes as the pivot; namely, first, 

((first + last) /4), ((first + last) /2), (3 *(first + last) /4) and last . 

This technique reduces the overhead of the random number 

generation by using five fixed indexes, but it necessitates time 

to pick and choose the median of five elements at each 

recursive call. Mohammed [29] in 2007 mentioned Median-of-

Seven and Median-of-Nine either with or without random 

index selection. This method  of increasing in number of 

elements may provide a more unbiased split but the time 

needed to pick the pivot at each recursive call increases with 

the number of elements. The most important shortcoming of 

the earlier methods is that the selection of the pivot is based on 

a specific number of elements which does not necessarily 

reflect the nature of the array. The possibility of worst case 

behavior of the QuickSort algorithm is still there when using 

any of these pivot selection techniques. 

 

An intelligent QuickSort algorithm based on a dynamic 

pivot selection technique was proposed by Dalhoum [30].  He 

enhanced the average case and eliminates the worst case 

behaviors of the algorithm. This technique is data-dependent to 

increase the chances of splitting the array or list into relatively 

equal sizes in order to reduce the number of recursive calls 

made for the Quicksort algorithm. In addition; the modified 

algorithm converts the worst case state into a best case state 

with Θ (n) execution time. The algorithm is sufficiently 
intelligent to distinguish a sorted array or sub-array so doesn’t 
require further processing.  

 

Another useful modification is the use of median-of-

medians or Blum-Floyd-Pratt-Rivest-Tarjan (BFPRT) 
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algorithm [31], the pivot selection algorithm in the linear 

median finding algorithm. 

 

II. Enhancements based on use of another sorting 

algorithm by an algorithm: It includes all algorithms that use 

another sorting algorithm for sorting small sublists, usually 

Insertion sort [16]. The concept was first suggested for 

improving the performance of Quicksort by Hoare ,. A more 

feasible technique for small sublists was proposed by 

Sedgewick [18], whereby sublists of sizes < M, where M is 

between 6 and 15, should be ignored and not partitioned. After 

the algorithm come to an end, the list will be almost sorted, 

and the whole list is sorted using Insertion sort.  

 

III. Enhancement based on different ways of 

partitioning lists and sublists: It is accomplished by 

considering different partitioning schemes. A scheme was 

suggested by Sedgewick [18] that uses two approaching 

indices. Another scheme was proposed by Bentley [1] where 

two indices start at the left end of the list/sublist and move 

towards the right end. For handling duplicate keys in sublists, a 

method to use three-way partitioning instead of two-way 

partitioning was suggested by Sedgewick [16]. Martinez [24] 

in 2004 suggested to sorts an array of numbers by finding a 

pivot and then recursively apply a “partial Quicksort” 

technique to the sub-arrays. In case of smaller value of pivot as 

compared to M, the partial Quicksort is applied to the right 

sub-array as the left sub-array is sorted. In case pivot is greater 

than M, the partial Quicksort is applied to the left sub-array. 

 

IV. Enhancements based on adaptive sorting: It tries to 

improve on the worst case behavior, O (n
2
), of the Quicksort 

algorithm when used for sorting lists that are sorted or nearly 

sorted. Adaptive sorting algorithms, like Insertion sort, 

considered the already existing order in the input list [10].  

An adaptive sorting algorithm, called Bsort, was 

developed by Wainwright [19] to improve the average 

behavior of Quicksort and eliminate the worst case behavior 

for sorted or nearly sorted lists. Wainright [20] developed 

another adaptive sorting algorithm, Qsorte, which performs for 

lists of random values and breaks the worst case behavior of 

Quicksort by performing O(n) comparisons for sorted or nearly 

sorted lists. 

 

This paper is organized as follows. Section 3 presents 

detailed description of few of the enhanced QuickSort 

algorithms. Sections 4 and 5 discuss behavioral analysis of few 

of the QuickSort algorithms. This paper concludes with section 

6.  

3. Sorting Algorithms 

 
The original Quicksort algorithm was developed by Hoare in 

1961 [6]. It is considered to be the most efficient internal 

sorting algorithm. The major drawback of original Quicksort 

is that worst case time complexity of naïve implementation of 

Quicksort is O (n
2
) with input size n. The algorithm has been 

analyzed and studied extensively in [8], [3], [4], [14], [18], 

and [13] research work. 

 

QuickSort follows the technique of divide and conquer by 

recursively splitting each array into two sub arrays, which 

makes it easier to solve smaller problems than a single larger 

one [25], [26]. In QuickSort, a pivot is selected from the 

unsorted array and used to split the array into two sub arrays 

for which the same algorithm is called recursively until the 

sub arrays have size one or zero. The QuickSort algorithm has 

an average runtime complexity of Θ (n log n) for an input size 
n, and a worst case complexity of Θ (n2

) . The worst case 

arises when the input is an already sorted list, thus, the 

selected pivot is always a largest element. 

The QuickSort algorithm’s runtime depends on the splitting of 

the array and the consecutive sub arrays. If splitting constantly 

results in a small reduction in the size of the array or sub 

array, the resultant runtime will be:   

        

T(n) = n + T(n-c), where c is a constant. This recurrence 

relation results to 

 

T(n) = Θ(n2
)                                              (1) 

 

If splitting of array results almost equal size sub-arrays, the 

runtime complexity of QuickSort will be reduced to:  

 

 T(n) = n + T(n/2). 

 

Thereby results to logarithmic time complexity: 

 

T(n) = n + T(n/2). 

 

T(n) = Θ(n log n)                                      (2) 

 

 
Fig -1: The Hoare-Partition Algorithm 

 

The best performance of the QuickSort algorithm came by 

splitting the array into almost equal size subarrays. These 

almost equal halves reduce the number of recursive calls and 

eventually reduce the execution time. The efficiency of 

Quicksort ultimately depends on the choice of the pivot [16]. 

The perfect selection for the pivot would be the one that 

divides the list elements nearly to the half. Different variations 

of the Quicksort algorithm have aroused from diverse choices 

for the pivot. In Hoare’s [6] original algorithm the pivot was 

chosen at random, and Hoare proved that choosing the pivot at 

random will result in 1.386nlgn expected comparisons [7].  
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Fig -2: The Random--Partition Algorithm 

 

Another variation of Quicksort is one in which the pivot is 

chosen as the first or last key in the list. The following is a 

C++ implementation of the partition function, where the pivot 

is chosen as the last element in the array:

 
 

Fig -3: The PivotasLastPartition Algorithm 

 

In 1965 Scowen [12] proposed Quickersort in which the pivot 

is selected as the middle key. If the array is already sorted or 

nearly sorted, then the middle key will be a brilliant choice 

since it will divide the array into two subarrays of equal size. 

As the array and subarrays will always be partitioned evenly 

on opting the pivot as the middle element, the running time on 

sorted arrays becomes O (n log2 n.) 

 
Fig -4: The ScowenPartition Algorithm 

 

Another improvement to Quicksort was introduced by 

Singleton in 1969 [17], in which he suggested the Median-of-

Three Rule for choosing the pivot that improves Quicksort. 

The worst case is now more unlikely to take place; the 

Median-of-Three Rule is served by one of the three elements 

that are observed prior to partitioning so this new approach 

removes the need for a key to partition the array and it 

decrease the average running time by about 5%. This method 

selects the three elements from the left, middle and right of 

the array. The three elements are then sorted and positioned 

back into the same location in the array. The pivot is the 

median of these three elements. 

 

 
Fig -5: The Medianof3_Partition Algorithm 

 

Sedgewick [16] suggested three-way partitioning as the 

method for handling arrays with duplicate keys. The array is 

partitioned into three parts: one containing keys smaller than 

the pivot, the other containing keys equal to the pivot, and the 

last part containing all keys that are larger than the pivot. The 

sort is completed after two recursive calls in the three-way 

partitioning, 
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Fig -6: The Median3way Algorithm 

 

Sedgewick [18] suggested a version of Quicksort, 

SedgewickFast, minimizes the number of swaps by scanning 

in from the left of the array then scanning in from the right of 

the array then swapping the two numbers found to be out of 

position. The algorithm makes O n (log 2 n) comparisons for 

random data and data sorted in reverse while it is linear for 

sorted data.  

 
Fig -7: The SedgewickFastPartition Algorithm 

 

Bentley [1] suggested an algorithm which the partition 

function that rolls the largest keys in the array to the bottom of 

the array using ‘for’ loop. For the pivot P (chosen at random), 

Lastbeg is computed that rearrange the array A [Beg]…A 
[End] such that all keys less than T are on one side of Lastbeg 

and all other keys are on the other side. A simple for loop 

scans the array from left to right, using the variables I and 

Lastbeg as indices, maintain the following invariant in array 

A. If A [I] >= P then the invariant is still valid. However, if A 

[I] < P, the invariant is regained by incrementing LastLow by 

1 and then swapping A [I] and A [Lastbeg] 

 

 

.  

Fig -8: The BentleyPartition Algorithm 

 

Wainwright [19] suggested Bsort, a variation of Quicksort for 

nearly sorted lists as well as lists that are nearly sorted in 

reverse order. He combined the swapping technique used in 

Bubble sort with the Quicksort algorithm. It chooses the 

middle key as the pivot during each pass, and then it continues 

to use the conventional Quicksort method. Each key that is 

placed in the left subarray will be placed at the right end of the 

subarray. If the key is not the first key in the subarray, it will 

be compared with its left neighbor and it will be swapped with 

its left neighbor if the new key does not preserve the order of 

the subarray. Similarly, keys are placed in right subarray. It 

ensures that the rightmost key in the left subarray will be the 

largest value, and the leftmost key in the rightmost subarray 

will be the smallest value. 

 

Wainright in 1987 [20] gave Qsorte, an algorithm with an 

early exit for sorted .arrays. It is original Quicksort algorithm 

with a slight modification in the partition phase i.e. checking 

by the left and right sublists for sorting. The middle key is 

chosen as the pivot in the partitioning phase and the left and 

right sublists are assumed to be sorted in the beginning. While 

placing a new key in the left sublist, if the sublist is still sorted 

and if the sublist is not empty, the new key will be match up 

with its left neighbor. The sublist is marked as unsorted if the 

two keys are not in sorted order and the keys are not swapped. 

Similar processing will be done for right sublist. Any sublist 

that is marked as sorted will not be partitioned in the end of 

partitioning phase. When the chosen pivot is always the 

smallest value in the sublist, Qsorte has a worst case time 

complexity of O (n
2
) 
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Fig -9: The Qsorte Algorithm 

 

A variation on Hoare’s original partition algorithm ‘Rotate’ 
version was provided by McDaniel [9] where the pivot is 

compared with the value in the bottom’th position. The 

bottom index is decremented when the pivot is less than that 

value otherwise a rotate left operation is performed using the 

call Rotate_Left (bottom, pivot+1, pivot). After the index 

bottom is decremented the following declaration are true: 

 

beg                 pivot-1              pivot+1     bottom              end                                           

<= a[pivot] = a[pivot] ?? > a[pivot] 

 

 

 
 

Fig -10: The McDanielPartition Algorithm 

 

Benteley and Mcilroy [2] developed a fast qsort7 based on 

the existing qsort function that comes with the C library. The 

size of the array is the basis for selecting pivot.  The pivot is 

chosen as the middle key for small sized arrays, the pivot is 

chosen using the median-of-three method for mid-sized arrays 

and the pivot is chosen as the Pseudo median of 9 for large 

sized arrays. Fat partitioning divides the input array into three 

parts (Tripartite partitioning (< = >)). After partitioning, the 

equal elements in the middle are ignored and the left and the 

right sub arrays are recur. A better fat partition version is used 

(= <? >) where after partitioning, the equal keys are brought to 

the middle by swapping the outer ends of the two left 

portions. The combination of  split-end partitioning and an 

adaptively sampled partitioning element is considered in this 

algorithm. Here the partitioning has two loops, first inner loop 

go up the index b, scans over lesser elements, exchange equal 

elements to the element pointed to by a and bring to an end at 

a greater element while the second inner loop go down the 

index c, scans over greater elements, exchange equal elements 

to the element pointed to by d and bring to an end at a lesser 

element. The main loop then exchange ar [ b] and ar [c], 

increment b and decrement c, and continues until b and c 

cross paths. Then the equal keys on the boundaries are 

swapped back to the middle of the array. Median-of-three 

method is used to select pivot.  

 

Neubert [11] suggested Flashsort that consider classification 

of elements [22], [21], [14] instead of comparisons. 

Dobosiewicz [5] suggested that only O (n) time is required by 

classification based sorting algorithms to sort n elements thus 

accomplishing the absolute lowest time complexity, but they 

require considerable auxiliary memory space. Flashsort is able 

to reduce this factor as 0.1n auxiliary memory by using a 

classification step for long-range ordering with in-place 

permutation. Afterwards the algorithm uses a simple 

comparison method for the final short-range ordering of each 

class. 

 

Chakraborty [23] suggested an algorithm which uses an 

auxiliary array for holding array keys during sort. 

Unfortunately author had not done any analysis or testing. 

This algorithm is not an in-place algorithm as it is essentially 

a Quicksort that uses an extra temporary array of the same 

size as the original array.  

 

Dynamic Pivot Selection Technique by Nisha [32] is the 

modified algorithm which is based on splitting the array into 

relatively equal halves so that for each recursive call there will 

be reduction in number of recursive calls and the overall 

execution time of QuickSort. In addition, if the array is 

already sorted it will not be processed any further which 

reduces the O (n2) complexity into the best case behavior of 

the algorithm; i.e. O (n). Firstly,  the rightmost element of the 

array is chosen as pivot. Each element value is compared with 

the pivot value. The two counters, CountLess and 

CountLarger, made use to count the number of elements with 

values smaller than the pivot and the number of elements with 

values larger than the pivot. The variables SumLess and 

SumLarger  are used to store the sum of the values of the 

elements smaller than the pivot and the sum of those larger 

than the pivot. These variables are then used to calculate the 

next pivots for the recursive calls. In the recursive call for the 

left sub array, the integer average of the values smaller than 

the pivot is passed as the pivot value. Similarly, in the 

recursive call for the right sub array, the integer average of the 

values larger than the pivot is passed as the pivot value. This 

way to choose pivot helps in consecutively dividing the array 

into nearly equal halves thus improves the competence of the 

QuickSort algorithm. A Boolean variable is utilized by the 

algorithm to recognize an already sorted array or sub array 

which reduces the number of recursive calls.  
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Fig -11: The Qsort Algorithm 

 

Table -1: Assessment of time (in seconds) required to 

execute unsorted arrays with varying sizes for the Hoare-

Partition Algorithm, the Random--Partition Algorithm, 

the Median3way Algorithm, the Scowen-Partition 

Algorithm, the Medianof3_ Partition Algorithm, The 

SedgewickFast Partition Algorithm, The Bentley Partition 

Algorithm and the Qsort Algorithm 

 

 
  

 

 
 

Fig -11: The Comparison Chart of assessment time for 

eight algorithms required to execute unsorted arrays with 

various sizes 

 

 

Table -2: Assessment of time (in seconds) required to 

execute sorted arrays with varying sizes for the Hoare-

Partition Algorithm, Median of three Method, Bentley 

Partition Algorithm, Median3way Algorithm, 

SedgewickFast Algorithm   The Random--Partition 

Algorithm and the Qsort Algorithm 

 
 

 
 

Fig -12: The Comparison Chart of assessment time for 

seven algorithms required to execute sorted arrays with 

various sizes 
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3. CONCLUSIONS 

 
In this paper a broad review and experiential study of the 

Quicksort algorithm is presented. The survey studies in detail 

the variations of Quicksort from the original version 

developed by Hoare in 1961 to few of the latest approaches 

for Quicksort. The paper also investigates the concept behind 

selecting pivot and evaluates their performances to the variety 

of versions of Quicksort. The study compared each algorithm 

in terms of the running times that execute unsorted and sorted 

arrays with various sizes. 
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