
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

Reinforcement Learning in Game Playing

Sahil Khunger
1
, Naman Tyagi

2
, Vipul Chaudhary

3
, Amit Pandey

4

1,2,3

 Student,
4
Assistant Professor

Department of Information Technology,

1,2,3,4

 Dr. Akhilesh Das Gupta Institute of Technology and Management, New Delhi

Abstract- The single-player variant of Snake is a well-known

and fashionable computer game that requires a player to

navigate a line-based illustration of a snake through a two-

dimensional piece of a grid, while avoiding collisions with the

walls of the playing area and the body of the snake itself. The

game keeps on getting more challenging as the snake navigates

its way to the treats. The score is also increased accordingly.

We have used Deep Reinforced Learning (DRL) to achieve AI

in game playing. Deep Q-Learning is a particular type of Deep

Reinforcement Learning. “Q-Function” is learnt by the

network, which takes as input the current state of the

environment and outputs a vector containing rewards for each

possible action. The agent will then decide the action that

maximizes the Q function. Based on this action, the

environment is updated to another state by the game and a

reward is assigned.

needs a large number of action state pairs, so we could

introduce Neural Network to store Q-factor of each state.

Fig 1. Game Snake

I. INTRODUCTION

Since video games are challenging while easy to formalize, it has

been a popular area of artificial intelligence research for a long

time. For decades, game developers have attempted to create the

agent with simulate intelligence, specifically, to build the AI

player who can learn the game based on its gaming experience,

rather than merely following one fixed strategy. The dynamic

programming could solve the problem with relatively small

number of states and simple underlying random structure, but not

the complex one. One of the most fascinating technology of

Machine Learning is Reinforcement Learning, which uses hit and

trial to learn the most optimal action. Therefore, we chose the

Snake game to explore the performance of reinforcement learning.

The ambition behind this project is to develop the same game and

embed a trained AI to maximise the performance.

Q-Learning is a type of a reinforcement learning technique used to

train an agent to incorporate an optimal strategy for solving a task.

In this an agent tries to learn the optimal strategy from its history

of interaction with the surrounding environment, and we call the

agent’s knowledge base as “Q-Factor”. However, it is not feasible

to store every Q-factor separately, when the game

II. WORK REVIEW

There are abundant works about the artificial intelligence research

for game agent. In [1] it has been shown by Miikkulainen that

technologies such as soft computational intelligence (CI) such as

neural networks have proven to be excellent in fields where the

standard hard work intensive scripting and authoring models failed.

At the same time, recent research shows that trends have moved

from games in a compact form which used symbolic

representations such as boards and cards game to more complex

and immersive video games. The most successful backgammon

playing program which was developed in the 90s called TD-

gammon is a perfect example of reinforcement learning. In [2], a

model-free reinforcement learning algorithm was used by TD-

gammon which was similar to Q-learning, whilst using a multi-

layer perceptron with one hidden layer gave the approximated

value function. It was shown by Tsitsiklis and Van Roy [3] that

combining model free reinforcement learning algorithms such as

Q-learning with non-linear function approximators, or with off-

policy learning could cause the Q-network to diverge. Eventually,

linear function approximators became the work of interest as they

had better convergence guarantees. With the redeveloping interest

in combining deep learning with reinforcement learning, Sallans

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

and Hinton [4] illustrated that deep neural networks could be

used to estimate the environment, while restricted Boltzmann

machines could benefit the estimation of the value function.

III. TECHNICAL FOUNDATION

A. Game Environment

Snake Game is a classic 2-Dimension game, during which the

player controls the snake to maximise the score by eating apples

spawned arbitrarily at places on the board. An apple appears on the

game screen at any time. The goal of the snake is to grow in length

by eating apple after apple by avoiding collision, which is the key

to its survival. In this project, we implemented the Snake Game in

Python as the testbed of autonomous agents. We changed the

settings of the Snake Game as recommended by [5] in their paper.

Specifically, the size of the game map is set to 250×250 pixels and

cut into 12×12 large grids. As recommended the starting length of

the snake is 3, starting direction is set to the right, and the apples as

well as the snake is randomly deployed whenever a game starts.

The game score is set to 0 in the start which increases one by one

as the snake reaches a target. Whenever, there is a collision of

snake with anything it will automatically lead to the end of the

game and the game score will be reset to 0 at the start of the new

game. Whenever an apple is eaten and a new apple appears on the

board, the target of the snake changes during the game trial upon

reaching the previously determined target. Therefore, being able to

localize new targets in an adaptive manner is crucial to the agents

playing the Snake Game. The number of operations or controls

available to the Snake in the Game is four, which are UP, DOWN,

LEFT and RIGHT. The Game has a very complex and challenging

reinforcement learning environment that has often been studied in

the past many times. In this paper, we propose a refined Deep Q-

learning Neural model with mainly three technical improvements

and apply it to enable an artificial agent to play the Snake Game.

B. Technical Foundation

Deep Q-Network (DQN) was first presented by Mnih et al. [6] to

play Atari 2600 video games in the Arcade Learning Environment

(ALE) [7]. Deep Q-Network shows the ability to successfully learn

challenging control policies directly from crude pixel inputs.

Actually, Deep Q-Network is a convolutional neural network

trained by a variation of the classical Q-learning algorithm [8],

using the stochastic gradient descent method to change the

weights. Deep Q-Network improves over traditional reinforcement

learning methods as it uses Convolutional Neural Networks to

approximate the Q-function, which provides a great way to

estimate Q-values of possible actions directly from the most

recently observed states (pixels).

In Q-learning, an agent tries to learn the best policy by

remembering its history of interactions with the environment.

By history we mean a sequence of state-action-rewards:

< s0, a0, r1, s1, a1 · · · > … (1)

Here s0 is the state of the observed environment, a0 is the

action that the agent performs in state s0. After agent executes

an action a0 in state s0, it receives the reward r0 from the

environment and goes into the next state s1 or s′. After every

game ends, the agent remembers and stores the experience in

memory for subsequent sampling and training of Convolutional

Neural Network. This is known as experience replay [9]. In

addition, Deep Q-Network uses former network parameters to

calculate the Q-values of the next state, which provides a

optimal training target for Convolutional Neural Network.[10].

Fig 2. Dynamics of Markov Process with a reward

Actually, the process in the Snake game is indeed a Markov

Decision Process, and the agent only needs to remember the last

state information in which it was present. So we define the

memory or the experience as a tuple of < s, a, r, snext >. These

memories or the experiences will be the data from which the

agent will learn what to do. As the aim for the agent is to

maximize the value of the total payoff Q(s, a) in decision-

theoretic planning, which in our case is the discounted reward.

In Q-learning, which is off-policy, we use the Bellman equation

as an alternative update

Qi+1(s, a) = Es′~€{r + γ max Qi(s′, a′ | s, a)} … (2)

In the above equation, s, s′ are the current and next state, r is the

reward, γ is the discount factor and is the environment. And it

can be shown that the Bellman equation will converge to the

optimal Q-function. Since the distribution and transition

probability is unknown to the agent, in our approach we use a

neural network to approximate the value of the Q-function. This

can be achieved by using the temporal difference formula to

update each iteration’s as

Q(s, a) ← Q(s, a) + α(r + max Q(s′ , a′) − Q(s, a)) … (3)

An € greedy approach is used here. The exploration probability

is €, it is changed from 0.75 to 0.9 with a constant density 0.03

during iterations. When it reaches 0.03, it remains constant. So

it prompts the agent to explore a lot of possibilities in the

starting of the game when it doesn’t know how to play the

game. This leads to a huge number of random actions which

enables the agent to narrow down the optimal actions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

To understand however, how the agent takes choices, first it’s

necessary to understand what a Q-Table is. A Q-table is simply

a table that matches the state of the agent with the potential

actions that the agent can adopt. The values in the table are the

action’s probability of success, the highest value action is

selected and that action is performed.

State Right Left Up Down

1 0 0.31 0.12 0.87

2 0.98 -0.12 0.01 0.14

3 1 0.10 0.12 0.31

4 0.19 0.14 0.87 -0.12

 Table 1.

As we can see in the example table 1, first we will want to move

DOWN and then move RIGHT when we are in State 2, and then

we would want to go DOWN if we are in State 3 and so on. So,

like this we can move through the environment increasing the

reward. This table is the cheat sheet or the map for the agent: it

determines what actions should be performed in every state in

order to optimize the equation and maximize the expected reward.

But there is more to that, the policy is a table, hence it can only

handle a limited state space, In other words what would happen if

we would have 10000 states, 10000 actions at each state, this

number can be even more huge. So, this is only optimal for a

smaller number of states and actions.

So, Deep Q-Learning increases the muscle power of Q-Learning,

as the policy is not a matrix or a table but a DNN and the Q-values

are only updated according to the Bellman equation.

Fig 3. Deep Neural Network

Fig 4. The snake at a score of 36 points. In this situation it is vital for the

agent to understand that turning upwards is the move to make—if it turns

downwards, it will have no way of surviving to eat another apple.

IV. RESULTS

A. Tuning Parameters

γ, which is the discount factor was set to be 0.95, relatively

decreasing learning rate starting from α = 0.1 and the rewards

were set as shown in Table 2. We want the agent to control the

snake to go to the food quickly, and the last column in table 2 is

a punishment for taking for one movement, which encourages

the agent to traverse shorter walk to the food. This negative

reward acts as similar function as the discount factor γ. We

performed trial and error on different combinations of reward

for different cases to get current combination of reward values

as one optimal combination among all the trials.

Case Eat Food Hit Wall Hit Snake Else

Reward +500 -100 -100 -10
 Table 2.

At the end of the execution, our AI scores 50 points on average in a

25*25 game board (each treat eaten rewards one point). The
record is 86 points. To visualize the learning process and how

effective the approach of Deep Reinforcement Learning is, a

graph has been plotted below with scores vs. number of games

played. It is evident from the plot below that during the first 50

games the AI scores imperfectly: less than 11 points on an

average. This was anticipated as during this phase, random

actions are being undertaken by the agent in order to traverse

the board and the different states, actions and rewards are being

stores in its memory. It is in the last 50 games that our agent is

making educated decisions based on the weights of our neural

network.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

.

Fig 5: Plots between score and number of games.

V. FUTURE WORK

A. While exploring the Q-learning algorithm and its stability, it

encountered that in a few training cases the performance of Q-

learning algorithm was not very stable even with a reducing

exploration probability. So, exploring other principles and

methods will come handy to further improve the stability of the

algorithm. A simple approach to solve this problem might be to

add various tuning parameters to better the probability of

convergence.

B. Study the other state space approximation methods. Other

approximation of the state space could be explored for better

performance. Currently, we use a quadrant view state mapping

technique. By using this method, the agent will tend to hit itself

repeatedly. Hence, a more rigorous state mapping technique

should be developed. Such reduction mapping must not only

approximate the relative position of the head and the food, but

also obtain a precise idea of the position of the body. The size

of the state space must be kept in mind to avoid increasing it

dramatically.

C. SARSA Model

In order to further improve the learning rate of the Snake agent,

Expected SARSA could be used to provide a theoretical and

empirical analysis of Expected SARSA, and found it to have

significant advantages over more commonly used methods like

SARSA and Q-learning.

VI. CONCLUSIONS

In this paper, we portray how to refine a widely adapted DQN

model and apply it to enable an autonomous agent to learn how

to play Snake Game from scratch. Specifically, we propose a

carefully designed reward mechanism to solve the sparse and

delayed reward issue, employ the training gap strategy to

exclude improper training experiences, and a dual experience

replay method is executed to further improve the training

efficacy. Experimental values show that our refined DQN

model outperforms the baseline model. It is more encouraging

to find out the performance of our agent surpasses human-level

performance.

Going forwards, we shall harvest more computing resources to

find out the convergence requirement in this Snake Game and

conduct more benchmarking experiments. Additionally, we

shall apply our refined DQN model to other continuous

reallocated targets (such as the re-spawned treats) along with

their applications and gradually increasing restrictions (such as

the increasing length of the snake).

REFERENCES

[1]. Risto Miikkulainen, Bobby Bryant, Ryan Cornelius, Igor Karpov,

Kenneth Stanley, and Chern Han Yong. Computational

Intelligence in Games.
URL:
ftp://ftp.cs.utexas.edu/pub/neuralnets/papers/miikkulainen.wcci06
.pdf

[2]. Gerald Tesauro. Temporal difference learning and td-gammon.

Communications of the ACM, 38(3):5868, 1995.

[3]. John N Tsitsiklis and Benjamin Van Roy. analysis of temporal

difference learning with function approximation. Automatic

Control, IEEE Transactions on, 42(5):674690, 1997.
[4]. Brian Sallans and Geoffrey E. Hinton. Reinforcement learning

with factored states and actions. Journal of Machine Learning

Research, 5:10631088, 2004.
[5]. A. Punyawee, C. Panumate, and H. Iida, “Finding comfortable

settings of Snake Game using game refinement measurement,”

Advances in Computer Science and Ubiquitous Computing, pp.

66–73, 2017.
[6]. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,I. Antonoglou, D.

Wierstra, and M. Riedmiller, “Playing atari with deep

reinforcement learning,” ArXiv e-prints,2013.
[7]. M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,“The

arcade learning environment: An evaluation plat-form for general

agents,” Journal of Artificial IntelligenceResearch, vol. 47, pp.
253–279, 2013

[8]. P. D. Christopher J. C. H. Watkins, “Q-learning,” Ma-chine

Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management

(IJSREM)

 Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 5

[9]. L.-J. Lin, “Reinforcement learning for robots using neural

networks,” Ph.D. dissertation, Pittsburgh, PA, USA,1992, UMI
Order No. GAX93-22750.

[10]. Van Seijen, H., van Hasselt, H., Whiteson, S. and Wiering, M.

(2009). A theoretical and empirical analysis of Expected Sarsa,

2009 IEEE Symposium on Adaptive Dynamic Programming and

Reinforcement Learning pp. 177184.
URL: http://goo.gl/Oo1lu

http://www.ijsrem.com/

