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Abstract- The single-player variant of Snake is a well-known 

and fashionable computer game that requires a player to 

navigate a line-based illustration of a snake through a two-

dimensional piece of a grid, while avoiding collisions with the 

walls of the playing area and the body of the snake itself. The 

game keeps on getting more challenging as the snake navigates 

its way to the treats. The score is also increased accordingly. 

We have used Deep Reinforced Learning (DRL) to achieve AI 

in game playing. Deep Q-Learning is a particular type of Deep 

Reinforcement Learning. “Q-Function” is learnt by the 

network, which takes as input the current state of the 

environment and outputs a vector containing rewards for each 

possible action. The agent will then decide the action that 

maximizes the Q function. Based on this action, the 

environment is updated to another state by the game and a 

reward is assigned. 

 
 
 
 
 

 
needs a large number of action state pairs, so we could 

introduce Neural Network to store Q-factor of each state.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Game Snake 

 

 

I. INTRODUCTION 
 
Since video games are challenging while easy to formalize, it has 

been a popular area of artificial intelligence research for a long 

time. For decades, game developers have attempted to create the 

agent with simulate intelligence, specifically, to build the AI 

player who can learn the game based on its gaming experience, 

rather than merely following one fixed strategy. The dynamic 

programming could solve the problem with relatively small 

number of states and simple underlying random structure, but not 

the complex one. One of the most fascinating technology of 

Machine Learning is Reinforcement Learning, which uses hit and 

trial to learn the most optimal action. Therefore, we chose the 

Snake game to explore the performance of reinforcement learning. 

The ambition behind this project is to develop the same game and 

embed a trained AI to maximise the performance. 
 
Q-Learning is a type of a reinforcement learning technique used to 

train an agent to incorporate an optimal strategy for solving a task. 

In this an agent tries to learn the optimal strategy from its history 

of interaction with the surrounding environment, and we call the 

agent’s knowledge base as “Q-Factor”. However, it is not feasible 

to store every Q-factor separately, when the game 

 
II. WORK REVIEW 

 
There are abundant works about the artificial intelligence research 

for game agent. In [1] it has been shown by Miikkulainen that 

technologies such as soft computational intelligence (CI) such as 

neural networks have proven to be excellent in fields where the 

standard hard work intensive scripting and authoring models failed. 

At the same time, recent research shows that trends have moved 

from games in a compact form which used symbolic 

representations such as boards and cards game to more complex 

and immersive video games. The most successful backgammon 

playing program which was developed in the 90s called TD-

gammon is a perfect example of reinforcement learning. In [2], a 

model-free reinforcement learning algorithm was used by TD-

gammon which was similar to Q-learning, whilst using a multi-

layer perceptron with one hidden layer gave the approximated 

value function. It was shown by Tsitsiklis and Van Roy [3] that 

combining model free reinforcement learning algorithms such as 

Q-learning with non-linear function approximators, or with off-

policy learning could cause the Q-network to diverge. Eventually, 

linear function approximators became the work of interest as they 

had better convergence guarantees. With the redeveloping interest 

in combining deep learning with reinforcement learning, Sallans 
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and Hinton [4] illustrated that deep neural networks could be 

used to estimate the environment, while restricted Boltzmann 

machines could benefit the estimation of the value function. 
 

 

III. TECHNICAL FOUNDATION 
 
A. Game Environment 
 
Snake Game is a classic 2-Dimension game, during which the 

player controls the snake to maximise the score by eating apples 

spawned arbitrarily at places on the board. An apple appears on the 

game screen at any time. The goal of the snake is to grow in length 

by eating apple after apple by avoiding collision, which is the key 

to its survival. In this project, we implemented the Snake Game in 

Python as the testbed of autonomous agents. We changed the 

settings of the Snake Game as recommended by [5] in their paper. 

Specifically, the size of the game map is set to 250×250 pixels and 

cut into 12×12 large grids. As recommended the starting length of 

the snake is 3, starting direction is set to the right, and the apples as 

well as the snake is randomly deployed whenever a game starts. 

The game score is set to 0 in the start which increases one by one 

as the snake reaches a target. Whenever, there is a collision of 

snake with anything it will automatically lead to the end of the 

game and the game score will be reset to 0 at the start of the new 

game. Whenever an apple is eaten and a new apple appears on the 

board, the target of the snake changes during the game trial upon 

reaching the previously determined target. Therefore, being able to 

localize new targets in an adaptive manner is crucial to the agents 

playing the Snake Game. The number of operations or controls 

available to the Snake in the Game is four, which are UP, DOWN, 

LEFT and RIGHT. The Game has a very complex and challenging 

reinforcement learning environment that has often been studied in 

the past many times. In this paper, we propose a refined Deep Q-

learning Neural model with mainly three technical improvements 

and apply it to enable an artificial agent to play the Snake Game. 

 
 

 
B. Technical Foundation 
 
Deep Q-Network (DQN) was first presented by Mnih et al. [6] to 

play Atari 2600 video games in the Arcade Learning Environment 

(ALE) [7]. Deep Q-Network shows the ability to successfully learn 

challenging control policies directly from crude pixel inputs. 

Actually, Deep Q-Network is a convolutional neural network 

trained by a variation of the classical Q-learning algorithm [8], 

using the stochastic gradient descent method to change the 

weights. Deep Q-Network improves over traditional reinforcement 

learning methods as it uses Convolutional Neural Networks to 

approximate the Q-function, which provides a great way to 

estimate Q-values of possible actions directly from the most 

recently observed states (pixels). 

 
In Q-learning, an agent tries to learn the best policy by 

remembering its history of interactions with the environment. 

By history we mean a sequence of state-action-rewards: 

< s0, a0, r1, s1, a1 · · · > … (1) 
 
Here s0 is the state of the observed environment, a0 is the 

action that the agent performs in state s0. After agent executes 

an action a0 in state s0, it receives the reward r0 from the 

environment and goes into the next state s1 or s′. After every 

game ends, the agent remembers and stores the experience in 

memory for subsequent sampling and training of Convolutional 

Neural Network. This is known as experience replay [9]. In 

addition, Deep Q-Network uses former network parameters to 

calculate the Q-values of the next state, which provides a 

optimal training target for Convolutional Neural Network.[10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. Dynamics of Markov Process with a reward  

 
Actually, the process in the Snake game is indeed a Markov 

Decision Process, and the agent only needs to remember the last 

state information in which it was present. So we define the 

memory or the experience as a tuple of < s, a, r, snext >. These 

memories or the experiences will be the data from which the 

agent will learn what to do. As the aim for the agent is to 

maximize the value of the total payoff Q(s, a) in decision-

theoretic planning, which in our case is the discounted reward. 

In Q-learning, which is off-policy, we use the Bellman equation 

as an alternative update 
 

Qi+1(s, a) = Es′~€{r + γ max Qi(s′, a′ | s, a)} … (2) 
 
In the above equation, s, s′ are the current and next state, r is the 

reward, γ is the discount factor and is the environment. And it 

can be shown that the Bellman equation will converge to the 

optimal Q-function. Since the distribution and transition 

probability is unknown to the agent, in our approach we use a 

neural network to approximate the value of the Q-function. This 

can be achieved by using the temporal difference formula to 

update each iteration’s as 
 

Q(s, a) ← Q(s, a) + α(r + max Q(s′ , a′ ) − Q(s, a)) … (3) 
 
An € greedy approach is used here. The exploration probability 

is €, it is changed from 0.75 to 0.9 with a constant density 0.03 

during iterations. When it reaches 0.03, it remains constant. So 

it prompts the agent to explore a lot of possibilities in the 

starting of the game when it doesn’t know how to play the 

game. This leads to a huge number of random actions which 

enables the agent to narrow down the optimal actions. 
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To understand however, how the agent takes choices, first it’s 

necessary to understand what a Q-Table is. A Q-table is simply 

a table that matches the state of the agent with the potential 

actions that the agent can adopt. The values in the table are the 

action’s probability of success, the highest value action is 

selected and that action is performed. 
 

 

State Right Left Up Down 

1 0 0.31 0.12 0.87 

2 0.98 -0.12 0.01 0.14 

3 1 0.10 0.12 0.31 

4 0.19 0.14 0.87 -0.12 

  Table 1.   
 

 

As we can see in the example table 1, first we will want to move 

DOWN and then move RIGHT when we are in State 2, and then 

we would want to go DOWN if we are in State 3 and so on. So, 

like this we can move through the environment increasing the 

reward. This table is the cheat sheet or the map for the agent: it 

determines what actions should be performed in every state in 

order to optimize the equation and maximize the expected reward. 

But there is more to that, the policy is a table, hence it can only 

handle a limited state space, In other words what would happen if 

we would have 10000 states, 10000 actions at each state, this 

number can be even more huge. So, this is only optimal for a 

smaller number of states and actions. 

 

 

So, Deep Q-Learning increases the muscle power of Q-Learning, 

as the policy is not a matrix or a table but a DNN and the Q-values 

are only updated according to the Bellman equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3. Deep Neural Network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 4. The snake at a score of 36 points. In this situation it is vital for the 

agent to understand that turning upwards is the move to make—if it turns 

downwards, it will have no way of surviving to eat another apple. 
 
 

 

IV. RESULTS 
 
A. Tuning Parameters 
 
γ, which is the discount factor was set to be 0.95, relatively 

decreasing learning rate starting from α = 0.1 and the rewards 

were set as shown in Table 2. We want the agent to control the 

snake to go to the food quickly, and the last column in table 2 is 

a punishment for taking for one movement, which encourages 

the agent to traverse shorter walk to the food. This negative 

reward acts as similar function as the discount factor γ. We 

performed trial and error on different combinations of reward 

for different cases to get current combination of reward values 

as one optimal combination among all the trials. 

 
 
 

Case Eat Food Hit Wall Hit Snake Else 

Reward +500 -100 -100 -10 
  Table 2.   
 

 

At the end of the execution, our AI scores 50 points on average in a 

25*25 game board (each treat eaten rewards one point). The  
record is 86 points. To visualize the learning process and how 

effective the approach of Deep Reinforcement Learning is, a 

graph has been plotted below with scores vs. number of games 

played. It is evident from the plot below that during the first 50 

games the AI scores imperfectly: less than 11 points on an 

average. This was anticipated as during this phase, random 

actions are being undertaken by the agent in order to traverse 

the board and the different states, actions and rewards are being 

stores in its memory. It is in the last 50 games that our agent is 

making educated decisions based on the weights of our neural 

network. 
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Fig 5: Plots between score and number of games. 

 

 

V. FUTURE WORK 
 
A. While exploring the Q-learning algorithm and its stability, it 

encountered that in a few training cases the performance of Q-

learning algorithm was not very stable even with a reducing 

exploration probability. So, exploring other principles and 

methods will come handy to further improve the stability of the 

algorithm. A simple approach to solve this problem might be to 

add various tuning parameters to better the probability of 

convergence. 
 
B. Study the other state space approximation methods. Other 

approximation of the state space could be explored for better 

performance. Currently, we use a quadrant view state mapping 

technique. By using this method, the agent will tend to hit itself 

repeatedly. Hence, a more rigorous state mapping technique 

should be developed. Such reduction mapping must not only 

approximate the relative position of the head and the food, but 

also obtain a precise idea of the position of the body. The size 

of the state space must be kept in mind to avoid increasing it 

dramatically. 
 
C. SARSA Model 
 
In order to further improve the learning rate of the Snake agent, 

Expected SARSA could be used to provide a theoretical and 

 
empirical analysis of Expected SARSA, and found it to have 

significant advantages over more commonly used methods like 

SARSA and Q-learning. 
 
 
 

VI. CONCLUSIONS 
 
In this paper, we portray how to refine a widely adapted DQN 

model and apply it to enable an autonomous agent to learn how 

to play Snake Game from scratch. Specifically, we propose a 

carefully designed reward mechanism to solve the sparse and 

delayed reward issue, employ the training gap strategy to 

exclude improper training experiences, and a dual experience 

replay method is executed to further improve the training 

efficacy. Experimental values show that our refined DQN 

model outperforms the baseline model. It is more encouraging 

to find out the performance of our agent surpasses human-level 

performance. 
 
Going forwards, we shall harvest more computing resources to 

find out the convergence requirement in this Snake Game and 

conduct more benchmarking experiments. Additionally, we 

shall apply our refined DQN model to other continuous 

reallocated targets (such as the re-spawned treats) along with 

their applications and gradually increasing restrictions (such as 

the increasing length of the snake). 
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