

 International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

 Research On Exception Handling

Author: Vaishnavi G. Shende

Vaishnavi G. Shende M.C.A. Tilak Mahavidhyalay Pune Maharastra

Ex prof.: Mrs.Shweta Nigam

---***---
Abstract - Most modern programming languages rely on
exceptions for dealing with abnormal situations. Although
exception handling was a significant improvement over other
mechanisms like checking return codes, it is far from perfect.
In fact, it can be argued that this mechanism is seriously
limited, if not, flawed. This paper aims to contribute to the
discussion by providing quantitative measures on how
programmers are currently using exception handling. We
examined 32 different applications, both for Java and .NET.
The major conclusion for this work is that exceptions are not
being correctly used as an error recovery mechanism.
Exception handlers are not specialized enough for allowing
recovery and, typically, programmers just do one of the
following actions: logging, user notification and application
termination. To our knowledge, this is the most comprehensive
study done on exception handling to date, providing a
quantitative measure useful for guiding the development of
new error handling mechanisms.

Keywords: Exception Handling Mechanisms, Programming
Languages.

1.INTRODUCTION

In order to develop robust software, a programming

language must provide the programmer with primitives

that make it easy and natural to deal with abnormal

situations and recover from them. Robust software must

be able to perceive and deal with the temporary

disconnection of network links, disks that are full,

authentication procedures that fail and so on. Most

modern programming languages like C#, Java or Python

rely on exceptions for dealing with such abnormal

events. Although exception handling was a significant

improvement over other mechanisms like checking

return codes, it is far from perfect. In fact, it can be

argued that the mechanism is seriously limited if not

even flawed as a programming construct. Problems

include: • Programmers throw generic exceptions which

make it almost impossible to properly handle errors and

recover for abnormal situations without shutting down

the application. • Programmers catch generic exceptions,

not proving proper error handling, making the programs

continue to execute with a corrupt state (especially

relevant in Java). On the other hand, in some platforms,

programmers do not catch enough exceptions making

applications crash even on minor error situations (especially

relevant in C#/.NET). • Programmers that try to provide proper

exception handling see their productivity seriously impaired. A

task as simple as providing exception handling for reading a

file from disk may imply catching an dealing with tens of

exceptions (e.g. FileNotFoundException, DiskFullException,

SecurityException, IOException, etc.). As productivity

decreases, cost escalates, programmer’s motivation diminishes

and, as a consequence, software quality suffers.

2. METHODOLOGY

The test applications were analyzed at source code level (C#
and Java sources) and at binary level (metadata and
bytecode/IL code) using different processes. To perform the
source code analysis two parsers were generated using antlr ,
for C#, and javacc for Java. These parsers were then modified
to extract all the exception handling code into one text file per
application. These files were then manually examined to build
reports about the content of exception handlers. The source
code of all application was examined with one exception. Due
to the huge size of Mono, only its “corlib” module was
processed. The parsers were also used to identify and collect
information about try blocks inside loops (i.e. detect try
statements inside while and do..while loops). This is so
because normally this type of operations corresponds to
retrying a block of code that has raised an exception in order to
recover from an abnormal situation. The main objective of this
article is to understand how programmers use the exception
handling mechanisms available in programming languages.
Nevertheless, the analysis of the applications source code is
not enough by itself when trying to distinguish between the
exceptions that the programmer wants to handle and the
exceptions that might occur at runtime. This is so because the
generated IL code/bytecode can produce more (and different)
exceptions than the ones that are declared in the applications
source code by means of throw and throws statements.

To perform the analysis of the .NET assemblies and of the
Java class files two different applications were developed: one
for .NET and another for Java. The first one used the RAIL
assembly instrumentation library to access assembly metadata
and IL code and extract all the information about possible
method exceptions, exception handlers and exception
protection blocks. The second application targeted the Java
platform and used the Javassist bytecode engineering library
to read class files and extract exception handler information.
All data was stored on a relational database for easy statistical
treatment..

 International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

3. MODELING AND ANALYSIS

In this section we identify the possible sources of Java language-

level exceptions, pro-pose a mechanism for transforming them to

UML state chart events and introduce a pattern (state chart design

convention) for handling the events in the state chart similar ly as

exceptions are handled in Java programs. We model event-driven

systems by using UML State harts. The State Machine package

of UML specifies a set of basic concepts (states and transitions)

and several advanced features (state hierarchy, orthogonal

decomposition, history states etc.) to be used for modeling

discrete behaviour through finite state-transition systems. The.

operational semantics is expressed informally by the standard in

terms of the operations of a hypothetical machine that

implements a state chart specification. The example discussed in

this article is the traffic supervisor system in the crossing of a

main road and a country road. The controller provides higher

precedence to the main road, i.e., it does not wait until the normal

time of switching from red to yellow-red if more than two cars

are waiting at the main road (the arrival of a car is indicated by a

sensor). Cars running illegally in the crossing during the red

signal are detected by a sensor and recorded by a camera. For

simplicity reasons only the statechart dia-gram of the light

control of the main road is investigated here (Fig. 1).

Fig 1. Amount of error handling code.

One important metric for understanding current error handling

practices is the percentage of source code that is used in that task.

For gathering this metric, we compared the number of lines of

code inside all catch and finally handlers to the total number of

lines of the program. The results are shown in Figure 1. It is

quite visible that in Java there is more code dedicated to error

handling than in .NET. This difference can be explained by the

fact that in Java it is compulsory to handle or declare all

exceptions a method may throw, thus increasing the total amount

of code used for error handling. Curiously, there is an exception

to this pattern. In the Server Application group, the difference is

almost non-existent. To explain this result we examined the

applications’ source code. For this class of applications, both in

Java and .NET, programmers wrote quite similar code. Meaning

connections loss, communication problems, missing data, etc.)

that they expect the same kind of errors (e.g. database and they

use the same kind of treatment (the most common handler action

in this type of applications is logging the error).
.

Fig 2. Exception Class Hierarchy

In Java, thanks to the checked exception mechanism, we
are able to discover and locate all the exceptions that an
application can throw by analyzing its bytecode and
metadata. To know what exceptions may be thrown by a
method it is necessary to know
:
 • All the exceptions that the bytecode instructions of a
method may raise accordingly to the Java specs
• All the exception classes declared in the throws
statement of the methods being called
• All the exceptions that are produced inside a protected
block and are caught by one of its handlers
 • All the exception classes in the method own throws
statement In .NET this is a more difficult task because
there are no checked exceptions. To discover what
exceptions a method may raise is necessary to know:
• All the exceptions that can be raised by each one of the
IL instructions accordingly to the ECMA specs of the CLR
• All the exceptions that the method being called may raise
• All the exception classes present in explicit throw
statements
 • All the exceptions that are produced inside a protected
block and are not caught by one of its handlers When we
started to work on which exceptions could occur in .NET
and Java, the results of the analysis were quite biased. This
happened because:
 • In most cases, the exceptions that each low-level
instruction could actually throw would not indeed occur
since some code in the same method would prevent it (e.g.
an explicit program termination if a database driver was
not found, thus making all ClassNotFoundException
exceptions for that class irrelevant). Since it is not possible
to detect this code automatically, although the results
could be correct, the analysis would not reflect the reality
of the running application or the programming patterns of
the developer. To obtain meaningfully results we decided
to perform a second analysis not using all the data from
the static analysis of bytecode and IL code instructions. In
particular, we filtered a group of exceptions that are not
normally related to the program logic, and that the
programmer should not normally handle, considering the
rest. The list of exceptions that were filtered (i.e. not
considered)

 International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

Being aware of the complete list of exceptions that an
application can raise and of the complete list of handlers
and protected blocks, it is possible to find out which are the
most commonly handled exception types. The results for
.NET applications are shown in Fig. the values represent
the average of results by application group where every
application had a different weigh in the overall result
according to the total number of results that they provided.
It is possible to observe that the results are very different
from application group to application group. For instance,
in the Libraries group, the most commonly handled
exceptions are ArgumentNullException and
ArgumentException, resulting from bad parameter use in
method invocations. In the remaining three groups the
number one exception type is Exception, this can be a
symptom of the existence of a larger and more
differentiated set of exceptions that can occur. If many
different exceptions can occur it is viable to assume that the
most generalized type (i.e. Exception, IOException, etc.)
becomes the most common one. Seeing exception types
like HttpException, MailException, SmtpException and
SocketException in this top ten list and observing a
distribution with such variations from application group to
application group, we are confident to say that the type of
exceptions that an application can raise and, in
consequence, handle is strictly related with the application
nature. There is a mismatch between the type of classes
used as arguments to catch instructions and the classes of
the exceptions that are handled, i.e. throw statements use
the exception classes that best fit the situation (exception)
but the handlers that will eventually “catch” these
exceptions use general exception classes like .Net’s and
Java’s Exception as their argumentsIn Java, as in .NET,
there is a large spectrum of exception types being handled.
The results for Java are illustrated in Figure 10. The huge
distinction helps to differentiate IOException as the most
“caught” exception type in all application groups. It is also
possible to observe that the exception types are tightly
related to the applications. For instance in Stand-alone
applications, three of the exception classes are from
Eclipse. Due to its size Eclipse carries a large weight in its

• Libraries: software libraries providing a specific
application-domain API.

 • Applications running on servers (Server-Apps): Servlets,
JSPs, ASPs and related classes. • Servers: server programs

. Another category of actions with some weight in the
global distribution is the Throw action. This is mainly due
to the layered and component based development of
software. Layers and components usually have a well
defined interface between them. It is a fairly popular
technique to encapsulate all types of exceptions into only
one type when passing an exception object between layers
or software components. This is typically done with a new
throw. Empty, Log, Alternative Configuration, Throw and
Return are the actions most frequently found in the catch
handlers of .NET applications. By opposition, Continue,
Rollback, Close, Assert, Delegate and Others actions are
rarely used in .NET. Figure 3 shows the results for catch
handlers in Java programs. Only in the Stand-alone and

Server-Apps groups we found some similarity with .NET.
Despite this fact, it is possible to see the same type of
clustering found in .NET. The cluster of categories that
concentrate the highest distribution of values is composed
by Empty, Log, Alternative Configuration, Throw and
Continue actions.

The distribution values on the Empty category surprised us
once again. This value is lower than the ones found in
.NET. This suggests that the checked exception mechanism
has little or no weight on the decision of the programmer to
leave an exception handler empty: another reason must
exist to justify the existence of empty handlers besides
silencing exceptions. In .NET this happen quite frequently
for building alternative execution blocks. We risk saying
that in Java exception mechanisms are no longer being used
only to handle “exceptional situations” but also as
control/execution flow construct of the language. (Note that
even the Java API sometimes forces this. For instance, the
detection of an end-of-file can only be done by being
thrown an exception.) The Log actions category takes the
first place for Server-apps, Server and Stand-alone
application groups and the second place in Libraries group.
In this last group, Log is only surpassed by Throw, another
popular action in the Server-Apps and Server groups. In
Java, the Log and Throw actions are highly correlated. We
observed that in the majority of cases, when an object is
thrown the reason why it happens is also logged. Return is
also a common action in all the application groups.
Between 7% and 15% of all handlers terminate the method
being executed, returning or not a value.

Fig 3. Finally handlers’ actions for Java programs

 illustrates the results for finally handlers in .NET. The
distribution of the several actions is different from the one
found in catch handlers. Nevertheless, is visible that the
most common handler action category in .NET, for all

 International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

application groups, is Close. I.e. finally handlers, in our test
suite, are mainly used to close connections and release
resources. Alternative configuration is the second mostly
used handler action in all application groups with the
exception of Libraries. A typical block of code usually
found in finally handlers is composed by some type of
conditional test that enables (or not) the execution of some
predetermined configuration. In some cases, these
alternative configuration is done while resetting some state.
In those cases, they were classified as Rollback and not
Alternative. Another common category present in finally
handlers of .NET applications is Others. These actions
include file deletion, event firing, stream flushing, and
thread termination, among other less frequent actions. In
Server applications it is also common to reset object’s state
or rollback previously done actions. Finally, on Stand-alone
applications there are some empty finally blocks that we
can not justify since they perform no easily understandable
function. In Java applications (Fig3.) the scenario is very
similar to the one found in .NET. Close is the most
significant category in all application groups. There are
also some actions classified as Others, which are similar to
the ones of .NET. In Java they have more weight in the
distribution, indicating a higher programming
heterogeneity in exception handling. Rollback and

Alternative configuration actions are also used as handler
actions in Java finally handlers. It is possible to observe
that there is some common ground between application
groups in Java and .NET in what concerns exception
handling. For the most part, Empty and Log the most
common actions in all catch handlers and Close is the most
used action in finally handlers.After identifying the list of
actions performed by handlers, we concentrated on finding
out if there is some relation between catch handlers for the
same type of exception classes. For this, we developed two
programs: one to process .NET’s IL code and another to
process Java bytecode. These IL code/bytecode analyzers
were used to discover what exceptions classes were most
frequently used as catch statement arguments. We opted by
performing this analysis at this level and not at source code
level because it is simpler to obtain this information from
assemblies or class files metadata than from C# or Java
code. Figure 6 shows the most common classes used as
argument of catch instructions in .NET applications. The
results are grouped by application type and the values
represent the weighted average of the distribution among
applications of the same group. Thus, programs with the
largest number of handlers have more weight in the final
result

The target platforms of this study were the .NET and Java
environments, as well as the C# and Java programming
languages. Selecting a set of applications for the study was
quite important. The code present in the applications had
to be representative of common programming practices on
the target platforms. Also, care had to be taken so that
these would be “real world” applications developed for
production use (i.e. not simply prototypes or beta
versions). This was so in order not to bias the results
towards immature applications where much less care with
error handling exists. Finally, in order to be possible to
perform different types of analyses, both the source code
and the binaries of the applications had to be available.
Globally, we analyzed 32 applications divided into two sub-
sets of 16 .NET programs and 16 Java programs. Each one
of these sub-sets was organized in four categories
accordingly to their nature:application group results and, as
we are able to observe, its “private” exceptions are present in
this top ten.c

On the last section, we reported the exceptions that are used
in catch statements. Nevertheless, a catch statement can
catch the specific exception that was listed ormore specific
ones (i.e. derived classes). We will now discuss exception
handling code from the point of view of possible handled
exceptions. As described in section 4 we used IL
code/bytecode analyzers to collect all the exceptions that the
applications could throw because this information is not
completely available at source code level. I.e. the set of
exceptions that an application can throw at runtime is not
completely defined by the applications source code throw
and throws statements. Therefore, a profound analysis of the
compiled applications was required for gathering this
information.

 CONCLUSIONS

This article aimed to show how programmers use the exception

handling mechanisms available in two modern programming

languages, like C# and Java. And, although we have detailed

the results individually for both platforms and found some

differences, in the essential results are quite similar. To our

knowledge, this is the most extensive study done on exception

handling by programmers in both platforms. We discovered

that the amount of code used in error handling is much less

than what would be expected, even in Java where programmers

are forced to declare or handle checked exceptions. More

important is the acknowledgment that most of the exception

classes used as catch arguments are quite general and do not

represent specific treatment of errors, as one would expect. We

have also seen that these handlers most of the times are empty

or are exclusively dedicated to log, re-throw of exceptions or

return, exit the method, or program. On the other hand, the

exception objects “caught” by these handlers are from very

specific types and closely tied to application logic. This

demonstrates that, although programmers are very concerned in

throwing the exception objects that best fit a particular

exceptional situation, they are not so keen in implementing

handling code with the same degree of specialization

ACKNOWLEDGEMENT:

 I would like to express my sincere gratitude to my advisor
Prof & H.O.D. of M.C.A. Department Mrs. Shweta Nigam

 International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 5

for the continuous support of my MCA study & research
for her patience, motivation , enthusiasm , and immense
knowledge .Her guidance helped me in all the time of
research and writing of this paper. I could not have
imagined having a better advisor and mentor for my MCA
study.

REFERENCES

1. E. Gunnerson. C# and exception specifications.

Microsoft, 2000. Available online at:

http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L

=DOTNET&P=R32820

 2. J. B. Goodenough. Exception handling: issues and a

proposed notation. In Communications of the ACM, 18, 12

(December 1975), ACM Press.

 3. F. Cristian. Exception Handling and Software Fault

Tolerance. In Proceedings of FTCS-25,

3, IEEE, 1996 (reprinted from FTCS-IO 1980, 97-103).

 4. A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A

Comparative Study of Exception Handling Mechanisms for

Building Dependable Object-Oriented Software. In Journal of

Systems and Software, 2, November 2001, 197-222.

 5. S. Sinha, and M. Harrold. Analysis and Testing of

Programs with Exception-Handling Constructs. In IEEE

Transactions on Software Engineering, 26, 9 (SEPTEMBER

2000), IEEE.

 6. R. Miller and A. Tripathi. Issues with exception handling

in object-oriented systems. In Proceedings of ECOOP’97,

LNCS 1241, Springer-Verlag, June 1997, 85–103.

http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOTNET&P=R32820
http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOTNET&P=R32820

