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Abstract - The forces are assumed to operate in the plane of 
the undeformed middle surface of the plate. The equation of 

motion yields the characteristic equations for natural 

frequencies, buckling loads, and their corresponding mode 

shapes. The buckling load parameter for various modes of the 

stiffened plate with square cutouts subjected to in-plane 

biaxial loads has been determined for various edge conditions. 

For a hole to plate size range of 0 to 0.8, numerical results are 

presented. The plate and stiffeners are treated as separate 

elements in structural modeling, with compatibility between 

the two types of elements maintained. A finite element 

method for the buckling loads on a longitudinally square 

stiffened plate with a square cutout is investigated under 

various combinations of biaxial loading at the plate boundary. 

 
 

Key Words:  vibration, cut out, buckling load parameter, in-

plane uniform loading. 

 

 

1.INTRODUCTION  

 
 Cutouts are unavoidable in aerospace, civil, mechanical, and 

marine structures, mainly for practical reasons. In addition, 

cutouts or openings in a structure that serve as doors and 

windows are often required by designers. Structures with 

cutouts, buckling and vibration analysis are a huge challenge 

that needs to be considered in the structural design. With the 

addition of stiffeners, the effects of instability are improved. 

Olson and Hazell [1] have used finite element method to 

perform a critical analysis on the clamped integrally stiffened 

plate. Using the real-time holographic method, the mode 

shapes and frequencies were determined experimentally. 

Mukherjee and Mukhopadhyay [2] proposed an eight-noded 

isoparametric stiffened plate-bending element for free 
vibration analysis of stiffened plates. Ali and Atwal [3], 

Shastry and Rao [4], and Reddy [5] have all reported 

numerical results obtained using the finite element method. 

Monahan et al. [6] carried out a finite element analysis as well 

as experiments on clamped thin plates of various cutout sizes. 

Mundkur et al. [7] used boundary characteristics orthogonal 

polynomials that satisfied the boundary conditions to 

investigate the vibration of square plates with square cutouts. 

The free vibration characteristics of unstiffened and 

longitudinally stiffened square panels with symmetrically 

square cutouts are investigated by Sivasubramonian et al. [8] 

using the finite element method. Lam and Hung [9] studied 

the vibrations of plates with stiffened openings using the 

orthogonal polynomials and partitioning method. Natural 

frequencies of simply supported and fully clamped plates with 

stiffened openings are presented. To obtain the natural 

frequencies of a square plate with stiffened square openings, 

Paramsivam and Sridhar Rao [10] modified the grid 

framework model. The contribution of the beam element is 

reflected in all nodes of the plate element that contains the 

stiffener. Despite the fact that the plate skin and stiffeners are 

modeled separately, their compatibility is maintained. The 
present paper investigates the effects of various parameters on 

the buckling and vibration characteristics of rectangular 

stiffened plates with cutouts, such as cutout size and location, 

plate and cutout aspect ratios, different boundary conditions, 

and stiffener parameters. The vibration and buckling 

behaviour of stiffened plates with cutouts subjected to in-

plane uniform biaxial edge loading at the plate boundary was 

investigated using finite element analysis. For the stiffened 

plates with cutouts, a nine-nodded isoparametric quadratic 

element with the ability to accommodate curved boundaries 

was selected.  The main elegance of formulation lies in the 

treatment of stiffeners, which allows the stiffener to be placed 

anywhere within the plate element, allowing for greater 

flexibility in mesh generation.  
 

2. FINITE ELEMENT FORMULATION 

In addition to bending deformations, the effect of in-plane 

deformations is taken into account. In this study, a nine-noded 

isoparametric quadratic element with five degrees of freedom 

(u, v, w, 
x , and y ) per node has been used. The 

contribution of the plate and that of the stiffener are included 

in the element matrices of the stiffened plate element. It shows 

that the contribution of beam element is reflected in all 9 

nodes of the plate element, which contains the stiffener.  The 

contribution of a stiffener to a particular node is determined 

by the proximity of stiffener to that node. With the known 

stresses, the geometric stiffness matrix is now constructed. 

From the assembly of those element matrices, the overall 

elastic stiffness matrix, geometric stiffness matrix, and mass 

matrix are generated and stored in a single array using the 

variable bandwidth profile storage scheme. The simultaneous 

iteration technique proposed by Corr and Jennings is used to 

solve eigenvalues[11]. The elastic stiffness matrix [Kp], 

geometric stiffness matrix [KGp] and mass matrix [Mp] of the 

plate element may be expressed as follows. 
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A stiffener element placed anywhere inside a plate element 

and oriented in the direction of x has its elastic stiffness 

matrix [KS], geometric stiffness matrix [KGS] and mass matrix 

[MS] expressed in the same way as the plate element: 
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The equilibrium equation for a stiffened plate subjected to in-

plane loads is as follows: 

           0 qKPKqM Gb
    (9)                                               

Equation (9) can be reduced to the governing equations for 

buckling and vibration problems. 

 

3. RESULTS AND DISCUSSION 
 The problem considered here consists of a rectangular plate 

(a x b) with stiffeners having a rectangular cutout of size (g x 

d) at the center as shown in figure 1. The plate with stiffener 

subjected to in-plane uniform edge loading at the plate 

boundary and stiffener cross-section are shown in figure 2.  

 
Fig. 1. Stiffened plate with cutout under in plane 

uniform edge loading at plate boundary 

 

 

 
     Section A A 

Fig. 2. Stiffened plate cross section 

 

The non-dimensionalisation of different parameters like 

vibration, buckling for stability analysis is taken as given 

below.  

Frequency parameter ( ) = Dtb  2
 and Buckling 

parameter ( ) = DbN X

22   

Where D is the plate flexural rigidity, D = 

)21(123 tE ,   is the density of the plate material 

and t is the plate thickness. The stiffener parameter terms and 

are defined as, assuming a general case of several longitudinal 

ribs and denoting by EI
S

 the flexural rigidity of a stiffener at 

a distance (Dx) from the edge y = 0 as: 

tbAS  = Ratio of cross-sectional area of the stiffener to 

the plate, where 
SA  is the area of the stiffener. 

bDIE S  = Ratio of bending stiffness rigidity of 

stiffener to the plate, where 
SI is the moment of inertia of the 

stiffener cross-section about reference axis. g/a = Ratio of 

cutout to plate width. 

The presence of the cutout in the plate produces stress 

concentrations and high stress gradients in the neighborhood 

of the cutout, which calls for an extra fineness of the mesh in 

this zone in the finite element discretization.  

3.1 Buckling studies of stiffened plates with cutout 

Linear fundamental frequencies of a simply supported 

isotropic square plate with various sizes of rectangular cutout 

(g/a) are computed and compared to [7] in table 1 to validate 

the results. The predicted changes in frequencies for different 

cutout sizes agree well with results of Mundkur et al. [7] 

given in bracket.  

Table 1. Comparison of natural frequency parameter 

 

 

Natural frequency parameter ( ) 

 SSSS  CCCC 

g/a Mundkur 

et al. [7] 

Present  Mundkur 

et al. [7] 

Present 

0.167 

0.33 

0.5 

20.070 

20.9633 

24.2434 

19.87 

20.12 

24.24 

 37.425 

43.867 

65.715 

36.06 

43.02 

65.27 

 

The stiffened plates are subjected to uniaxial compressive 

force N X  for the first case, and biaxial loading with N X = Ny 

for the second case study. The corresponding values of N X

and Ny are the buckling loads for the mode shape under 

consideration. 
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The stiffened plate with central square cutout is studied by 

taking different cutout size ratio g/a. The plate is simply 

supported at its four edges and the data used for its geometry 

are a = 100mm, b = 100mm, t = 1mm. The stiffener 

parameters to be used are as follows:  = 0.1 and  = 10. The 

other data uses are as:  = 0.30, E = 3.0 x 10
7

N/mm
2

, 

=7.8 x 10
6

Kg/mm
3

.  
Numerical results for buckling load parameter for stiffened 

square plate having one central stiffener with square central 

cutout of different sizes subjected to uniaxial compressive 

force for various boundary conditions in various modes are 

presented in figures 3. Figure 3 shows the variation of 

buckling load parameter ( ) for stiffened plate with one 

central stiffener subjected to uniaxial load for various 

boundary conditions, (SSSS, CCCC, CCSS, SSCC). It is 

observed from figure 3 that buckling load decreases with the 

increase of cutout sizes for edge conditions SSSS and SSCC. 

On the other hand, for edge conditions CCCC and CCSS, it 

tends to increase for g/a > 0.4. 

The effect of bi-axial force on buckling load parameter for 

stiffened square plates for the same dimensions as described 
above with various cutout sizes for various boundary 

conditions in different modes are analyzed in figures 4-5 for 

stiffened plates.   

Figure 4 shows the variation of buckling load parameter (  ) 

for stiffened plate with one central stiffener subjected to 

biaxial load for various boundary conditions, (SSSS, CCCC, 

CCSS, SSCC). This variation of buckling load parameter (  ) 

with cutout size for various boundary conditions, (SSSS, 

CCCC, CCSS, SSCC) in various modes are shown in figures 

5. 

It is observed from fig 4-5 here that buckling load decreases 

with the increase of cutout sizes for SSSS, SSCC and CCSS, 

but for edge condition CCCC, it increases for cutout size g/a 
greater than 0.4. 
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Fig. 3.Buckling load parameter (  ) vs hole/plate ratio (g/a) 

for uniaxially loaded stiffened plate with one central stiffener 

( = 0.1 and  = 10) 
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Fig.4.Buckling load parameter (  ) vs. hole/plate ratio (g/a) 

for biaxial loaded stiffened plate with one central stiffener (
= 0.1 and  = 10). 
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Fig.5.Buckling load parameter (  ) vs. hole/plate ratio (g/a) 

for biaxial loaded simply supported stiffened plate with one 

central stiffener ( = 0.1 and  = 10) in various modes.  

4. CONCLUSIONS 
The vibration frequencies increase for higher modes due to 

increased complexity in the mode shapes. The variation of the 

fundamental frequencies with increased in-plane forces is the 

same as that of uniaxial force in various modes. The curves 
for the uniaxial and biaxial loadings are identical for 

normalized compressive forces. 

For SSSS, SSCC, and CCSS, the buckling load decreases 

when the cutout size increases, Shear deformation has a 

greater effect on clamped plates than on plates that are simply 

supported. Vibration frequencies increase as the restraint at 

the edges increases. 
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NOTATIONS 

 

a Plate dimension in longitudinal direction 

b Plate dimension in the transverse direction 

t Plate thickness 

E, G Young’s and shear moduli for the plate material 

  Poisson’s ratio 

b
s
,  d

s
 web thickness and depth of a x-stiffener 

 ,   Non –dimensional element coordinate 

A
S

 Cross sectional area of the stiffener 

SI  Moment of inertia of the stiffener cross-section about  

              reference axis 

{q} r  Vector of nodal displacement a rth node 

 [D P ] Rigidity matrix of plate 

[D
S

] Rigidity matrix of stiffener 

 [K
e
] Elastic stiffness matrix of plate 

[K
S

]        Elastic stiffness matrix of stiffener 

   Sp MM , Consistent mass matrix of plate, stiffener 

[K
G

]  Geometric stiffness matrix 

[N]
r
  Matrix of a shape function of a node r 

P
cr

  Critical buckling load 

g   Cutout length 

d          Cutout width 

g/d                       Cutout width ratio  
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