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ABSTRACT: 
 
Mammoth pile of text has much in common, 

text matching will reduce the redundancy 

and the importance of the related text 

remains intact. Human collected data is 

mostly in Natural Language. Natural 

language pre-processing is widely used in 

artificial intelligence projects and in text 

mining for information retrieval systems. The 

need of text pre-processing made the 

similarity algorithm much faster using a 

systematic NLTK libraries. The matching 

approaches developed a new mathematical 

formulation such as dynamic programming, 

vector dot product, term frequency and their 

logarithmic corresponding in the areas of 

text similarity algorithms. Other than 

mathematical approach vector form of text 

can be processed by layered neural net. 
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I. INTRODUCTION 
 
Text matching is extensively used technique 

for solving semantic problems such as text 

 
 
mining, natural language processing. Text, 

considered as a sentence to a huge 

paragraph, consists of words such as 

alphanumeric character, special symbols 

which are considered as a natural language.  
Natural language processing is widely used 

in Artificial intelligence, speech recognition, 

A.I Bots, Information retrieval systems. 

Natural language processing is used to 

manipulate natural language (human 

understood) and gives machine the ability to 

read. Natural language processing (NLP) 

is powerful technique which can be done 

using Natural Language toolkit (NLTK) 

library of python.  
In the normal human language there are many 

word which might be irrelevant for machine 

comprehension, so the text undergoes many 

filtrations. NLTK features many functions for 

pre-processing such as tokenization, stop-

word elimination, stemming, lemmatization, 

reg-ex filter and more. 
 
A wide range of text matching algorithm were 

introduced from late 90’s from dynamic 

programming to machine learning. Text 

similarity has to determine how ‘close’ two 

pieces of text are both in surface closeness 

[lexical similarity] and meaning [semantic 

similarity]. These algorithms include 

Levenshtein distance, Cosine Similarity, 
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Fuzzy Logic, Jaccard Similarity, Euclidean 

distance etc. All of the mentioned above 

algorithms are used for measuring similarity 

between two given sentences. But do we 

have any winning strategy for which is the 

best algorithm to use? 
 

No, there are many ways to compute the 

features that capture the semantics or 

essence of documents and multiple 

algorithms to capture dependency structure 

of documents, so that the focus remains on 

meanings of documents. Talking about all 

the algorithms is beyond the scope of this 

research paper. We will talk about 

algorithms named as Levenshtein distance, 

Cosine Similarity, Word2Vec. Machine 

Learning algorithms and almost all Deep 

Learning Architectures are incapable of 

processing strings or plain text in their raw 

form, So Word Embedding is done i.e., the 

texts converted into numbers and there may 

be different numerical representations of the 

same text. Word Embedding can be done in 

two ways [1] Frequency based Embedding 

[2] Prediction based Embedding. As TF-IDF 

is example of frequency based embedding. 

Word2vec method were prediction based in 

the sense that they provided probabilities to 

the words and proved to be like word 

analogies and word similarities. Unlike most 

of the previously used neural network 

architectures for learning word vectors, 

models don’t involve dense matrix 

multiplications. This makes the training 

extremely efficient: an optimized single-

machine implementation can train on more 

than 100 billion words in one day. 

II. Literature Survey 
 

Every algorithm needs text, a preprocessed 

text, then how text preprocesses? Using nltk 

a much useful data can be generated. 
 

Tokenization 
 
Tokenization is a step which splits longer 
strings of text into smaller pieces, or tokens. 
Larger chunks of text can be tokenized into 
sentences; sentences can be tokenized into 
words. Tokenization is not like split function, 
but in tokenization tokens are created using 
different approach such as, sent_tokenize 
(tokenize sentences from paragraph), 
word_tokenize (tokenize words from 
sentences), RegexpTokenizer (tokenize the 
sentences to word using regular expression) 
which can be useful for sentences having 
special symbols, TreebankWordTokenizer 
(tokenize words on the basis of dictionary 
meaning) is very efficient over others. All the 
tokenizer belongs to nltk library of python. 
 

Normalization 
 

Normalization generally refers to a series of 
related tasks meant to put all text on same 
level that is text to be processed by stages of 
filtration such as Stemming, lemmatization 
and elimination of stop words. 
 

Stemming 
 
Stemming is the process of eliminating  
affixes (suffixed, prefixes, infixes, 
circumfixes) from a word in order to obtain 
a word stem. For example, obtaining 
“dance” from “dancing”.  
 
 
 
 

 

Figure 1: Stemming example 
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Lemmatization 
 
Lemmatization is related to stemming, 

differing in that lemmatization is able to 

capture canonical forms based on a word's 

lemma. For example, stemming the word 

"nice" would fail to return its citation form 

(another word for lemma) i.e., derives the 

synonyms of the word. 
 
 
 
 
 
 

Figure 2: Lemmatization example 
 

Elimination of Stop words 
 

Stop words are those words which 
contribute little to overall meaning the 
sentences, stop words are generally the most 
common words in a language. For example, 
a, the, for, and, of etc.  
 
 

 

Figure 3: Eliminate stop word 
 

Levenshtein Distance 
 
The Levenshtein distance between two 
strings a, b(of length |a| and |b| respectively) 
is given by  
 
 
 
 
 
 
 
 
 

 

Figure 4: Levenshtein distance formula 

where  is  the indicator  function equal  to  0 

when  and equal to 1 otherwise, 
 
and  is the distance between the first i 

characters of a and the first j characters of b, 

i and j are 1-based indices. Note that the first 

element in the minimum corresponds to 

 
deletion (from a to b), the second to insertion 

and the third to match or mismatch, depending 

on whether the respective symbols are the 

same. Levenshtein distance is said to be 

number of single edits that is required in a 

word to be like the other. For example, the 

Levenshtein distance between the word “give” 

and “take” is 3. Also the distance between the 

word “Danger” and “Dangerous” is 3. It can 

be observed that the meaning of “Danger” and 

“Dangerous” is far similar than “give” and 

“take” but their Levenshtein distance is same. 
 
 

 

Cosine Similarity 
 

This approach is used to find the similarity 

between two sentences irrespective of their 

sizes. Generally, in text matching approaches 

is based on matching the maximum number of 

common words between the documents, but 

this approach inherits flaws, i.e. as the size of 

document increases the number of common 

words increases, the matching deviates from 

actual topic. So cosine similarity helps in 

overcoming the flaw. Mathematically, it 

measures the cosine of the angle between two 

vectors projected in a multi-dimensional 

space. 
 

Cosine similarity derives as:  
 
 
 
 
 
 
 
 

Figure 5: Cosine similarity formula 
 

The cosine of 0° is 1, and it is less than 1 for 

any angle in the interval (0, π] radians, it is 
thus a judgment of orientation(angle). 

 
When plotted on a multi-dimensional space, 

where each dimension corresponds 
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to a word in the document, the cosine 

similarity captures the angle of the 

documents and not the magnitude as 

computed in Euclidean distance. 
 

 
the weight of rare words across all 

documents in the corpus. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Graphical Representation  
The above figure elucidates that the dist (A, 

 
B) is the magnitude which is the result of 

euclidean distance while the angle(θ) 

between the “A” and “B” is representing 

cosine angle i.e. cosθ. 

 
 
 

Figure 8: Inverse Document Frequency formula 
 

III. Research Methodology 
 

Now consider an example, given below are 

four general statements: 
 

d1: the best American restaurant enjoys the 

best pizza 
 

d2: Indian restaurant enjoys the best 

khichadi. 
 

d3: japan restaurant enjoys the best sushi. 
 

d4: the best the best Indian restaurant. 
 

Observing the occurrence in the following 

table. 
 

 

Term Frequency (TF) 
 

The number of times a word appears in a 

document divided by the total number of 

words in the document. Every document 

has its own term frequency. 
 
 
 
 
 
 
 
 

Figure 7: Term Frequency formula 
 

Inverse Document Frequency (IDF) 
 

The log of the number of documents divided 

by the number of documents that contain the 

word w. Inverse data frequency determines 
 
 

 

 

 
 
 
 
 
 
 

 

Figure 9: Occurrence of words 
 

Frequencies are: 
 

D1: [1,1,1,2,2,1,0,0,0,0] 
 

D2: [0,1,1,1,1,0,1,1,0,0] 
 

D3: [0,1,1,1,1,0,0,0,1,1] 
 

D4: [0,1,0,2,2,0,1,0,0,0] 
 

From Cosine formula: 
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Similarity=  
 
 
 
 
 
 
 

Cosine similarity of d1: d4 =9/11=0.82. 

After calculating for each document, the 

observed results are shown in figure 8. 
 
 
 
 
 
 
 
 
 
 

Figure 10: Cosine Similarity with d4 
 

The similarity of document d2 and d4 

should be much similar but the document d1 

and d4 are more similar, this is because the 

common word matching from d1 to d4 is 

more as compared to d2 (as shown in Figure 

11 and Figure 12). 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Representing d1 and d4  
 
 
 
 
 
 
 
 

Figure 12: Representing d2 and d4 
 

The above figure illustrates that the most 

desirable matching is becoming the least 

desirable due to occurrence of stop words. 

 
To overcome this limitation and to reduce 

the importance of stop words TF-IDF (Term 

Frequency-Inverse Document Frequency) 

can be used. 
 

Integrating cosine similarity with TF-IDF, 

the observation are in the following table: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: Integration of TF-IDF 
 
The final output is as
 follows:  
 
 
 
 
 
 
 

Figure 14: Final Output 
 
After integrating TF-IDF the final results 

match the desired results. i.e. d2 is more 

similar to d4. 
 

IV. Result 
 

Text pre-processing helps in removing 

unwanted noise, such as punctuation marks 

and stop words and make the raw text into 

refine text which can further useful for 

similarity algorithm. 
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Figure 15: Text pre-processing 
 
Cosine similarity is one of the algorithm to 

find the similarity between the documents but 

the similarity score suffers by only applying 

term frequency vector (CountVectorizer). By 

combining TF-IDF(TfidfVectorizer) the 

similarity score drastically improves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16: Intermediate process 
 

The final output after calculating TF-IDF 

will generate the similarity score for d2 and 

d4 is 75.3% which is true. 
 

 
 
 
 
 
 
 
 
 

 

Figure 17: Final Output  
 

V. Conclusion and Future   

Enhancement 
 

Text data is usually the most generated data 

from past till now be it in any form. Text 

matching and Text Similarity is covering a 

broad spectrum, as artificial intelligence is 

improving it is attracting new technologies 

such as chatbot, information retrieval 

systems, context gathering in which pattern 

matching is widely used. Chatbot recognizes 

the received text and then matches the intent 

with the received text and responds 

accordingly. But it is easily observable that 

no single algorithm is fully accurate. 

Highest accuracy can be achieved only with 

combinations among this algorithm. For 

example, [1] Cosine Similarity with TF-IDF 
 
[2] Cosine Similarity with Word2Vec [3] 

Cosine Similarity with BERT Embedding 

and many more. This algorithm is suitable 

with subjective text check which can be 

used in online platforms in recruitment 

processes. Since mass recruitment process 

becomes tedious, subjective test could be 

taken without involvement of humans and 

result can be generated using text similarity, 

this would be cost effective and would avoid 

biasness during recruitment. 
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