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ABSTRACT 

 

 

Traffic Sign Recognition (TSR) from 

video images is an integral part of the driver 

support functions needed to make intelligent 

vehicles a reality. TSR is composed of two 

components: detection and classification. The 

focus of the proposed research is detection of U.S 

traffic signs based on the LISA dataset, the largest 

publicly available U.S traffic sign dataset in the 

world, comprising over 9,000 images. 

Detection methods involving Integral Channel 

Features and Aggregate Channel features have 

achieved state-of-the art performance. Our 

proposed research consists of a comparative study 

of the performance of 

Integral Channel Features and Aggregate Channel 

features versus using Convolutional Neural 

Networks (CNN). Our aim is to explore the 

detection performance of the CNN by varying the 

convolutional layers, max-pooling layers, and the 

fully-connected layers. We will evaluate our 

detection performance by using the PASCAL 

measure, which is a standard metric for this 

application. 
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INTRODUCTION 

For the past several years there has been 

significant research interest in self-driving 

vehicles and Advanced Driver Assistance Systems 

(ADAS), most notably Google’s Self-Driving Car 

Project.  In order for these systems to become 

more and more autonomous, it is essential for the 

integration of Traffic Sign Recognition (TSR) 

technology.  TSR systems are composed of two 

main components, classification and detection. 

The classification component focuses strictly on 

classifying the type of traffic sign, after the sign 

has be detected. Whereas, the detection 

component focuses on locating the traffic sign in a 

sequence of video images. This work focuses 

exclusively on the detection task of TSR systems.  

Traffic sign detection has been heavily 

researched on European traffic signs, or more 

specifically traffic signs that follow the Vienna 

Convention of Road Signs and Signals (United 

Nations et al., 1978). This is largely due to the 

introduction of the German Traffic Sign Detection 

Benchmark (GTSDB) (Houben 2013) 

competition. This competition has shown 

promising results, however the performances of 

the top performing models of the GTSDB have 

not been able to translate as well when used for 

U.S traffic signs (Mogelmose 2015).  One of the 

main reasons that European models have not be 

able to translate as well is that, U.S signs and 

European signs, which have very similar 

meanings can look significantly different as 

shown in Figure 1.1 (Mogelmose 2015).  Figure 

1.1 (a)-(c) are example of Vienna Convention 

signs and (d)-(f) are examples of U.S traffic signs.  

Figure 1.1(a)(d) are both Keep Right signs, figure 

1.1(b)(e) are both Left Turn signs, and figure 1.1 

(c)(f) are both Speed Limit signs. From figure 1.1 

we can clearly see there are significant difference, 

in geometry and color, for the Vienna  
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                         (a)                       (b)                         (c)                                      (d)                   (e)                   (f) 

Figure 1.1: Examples of Vienna Convention signs and U.S signs  

 

 
2.BODY OF PAPER 

Convention and U.S traffic signs that have the 

 same meaning.  In order to close this gap in 

performance, the largest U.S traffic sign dataset in 

the world, the Laboratory for Intelligent and Safe 

Automobiles (LISA) dataset (Mogelmose 2012), 

was created. The LISA dataset contains 

approximately 10,000 images containing U.S 

traffic signs and approximately 11,000 images that 

have similar scenes but do not encompass any 

traffic signs in the images.  

 Two of the most promising methods used 

for traffic sign recognition include, Integral 

channel Features and Aggregate Channel 

Features. Integral Channel and Aggregate Channel 

features were originally applied to Pedestrian 

Detection (Dollar 2009, 2014) and later adopted 

for TSR.  Where they have shown to achieve 

state-of-the-art performance for both European 

and U.S traffic signs (Mogelmose 2015). 

Although these methods have demonstrated state-

of-the-art performance there is still room for 

improvement. To our knowledge, deep learning 

architectures, specifically Convolutional Neural 

Networks (CNN), have not been explored for 

TSR. CNNs have shown to be very powerful 

models for image recognition tasks, as was shown 

in the ImageNet Challenge (Krizhevsky 2012).  

Motived by these results, our proposed research 

consists of a comparative study of the 

performance of Integral Channel Features and 

Aggregate Channel features versus using 

Convolutional Neural Networks (CNN). Our aim 

is to explore the detection performance of the 

CNN by varying the convolutional layers, max-

pooling layers, and the fully-connected layers. We 

will evaluate our detection performance by using 

http://www.ijsrem.com/
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Figure 1.2: Block Diagram of a TSR System 

 

the PASCAL measure (Everingham 2010), which 

is a standard metric for this application. 

 This chapter will focus first on a simple 

overview of traffic sign recognition systems, 

followed by a discussion on the related work on 

both the German Traffic Sign Detection 

Benchmark (GTSDB) and on the LISA dataset. 

We will conclude this chapter with an overview of 

the entire thesis proposal.   

 

1.1 Traffic Sign Recognition Overview 

Although in this work we will be 

examining the detection aspect of Traffic Sign 

Recognition (TSR) systems, it will be useful to 

describe the whole system. Typically when we 

authors are referring to TSR systems they are 

referring to the detection of the traffic signs, the 

classification of that traffic sign, once it has been 

detected, and the tracking of the traffic sign. 

Figure 2 (Mogelmose 2012) shows a basic block 

diagram of the TSR system.  

 

 When given an image or video sequence 

as an input, the detection task is only concerned 

with discovering where at in the image the traffic 

sign is located.  Whereas, classification is only 

concerned with deciding what type of traffic sign 

the detected traffic sign is. The final component is 

tracking, which tracks the detected sign from 

frame to frame. Each component can be 

approached separately in different ways. However 

http://www.ijsrem.com/
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Figure 1.3: Basic Block Diagram of the Detection Task 

 

for a full TSR system to work each component 

will depend on each other.   

 Since our work is focused on the detection 

task we will only look at this task at a closer level. 

A simple model of the Detection task can be seen 

below in figure 3. Figure 3 is a very simplistic 

block diagram of the detection process, however 

most method will look like this in some form or 

another. They will typically have an image 

preprocessing stage, then a feature extraction 

stage, and then a detection stage. The image 

preprocessing stage is used to help clean the data 

or transform the image in order to prepare it for 

the feature extraction stage. In the feature 

extraction stage, 

features such as 

edges, Harr-like 

features, and color 

features are taken 

from the image 

and sent to the 

detector. The 

detector depends 

on the type of 

method that we 

use. Typically there are two methods used, one is 

a model-based approach and the other is a 

learning-based approach, both will be discussed in 

more detail in the next chapter. The purpose of the 

detector is to take the features as input and make a 

decision on where the traffic sign is located in the 

image. Although in this work the focus is on the 

detection step it is important to note that without 

the classification and tracking components, a TSR 

system is useless.  

 

1.2 Related Work 

Traffic sign detection has been researched 

http://www.ijsrem.com/
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for a little over a decade. Some of the earliest 

methods tried to take advantage of the fact that 

traffic signs were designed to stand out in the 

environment, often through shape and color. The 

early shape-based methods searched for specific 

geometrical shapes such as rectangular or circular 

objects. For example Loy (2004) used edge 

features with a radial symmetry model for a 

dataset of approximately 50 images. Early color-

based methods extracted colors from different 

color spaces of the input image, and used different 

thresholding techniques to extract the traffic sign. 

For example Vazquez-Reina (2005) converted the 

image into HIS color space and used thresholding 

in order to extract the traffic signs. While in 

theory, the color and shape of traffic signs can be 

very well defined, they can have some very 

practical issues, such as, illumination changes, 

damaged or worn signs, occlusions, and traffic 

signs blending in with background color. This 

lead to the implementation of learning-based 

methods that used more descriptive features such 

as Harr-like wavelet features, introduced by Viola 

and Jones (2001) for facial recognition, and HOG 

features, introduced by Dalal and Triggs (2005).  

Mogelmose (2012) surveyed the traffic sign 

detection field which illustrates both the early 

model-based methods and learning-based 

methods. A summary of the different techniques 

surveyed can be seen below in table 1 

(Mogelmose 2012). For more specific details of 

each method please refer to Mogelmose (2012). 

However trying to compare the performances of 

each surveyed methods becomes very problematic 

due to the inconsistencies in types of traffic signs 

and the number of traffic signs used in each 

method.  

http://www.ijsrem.com/
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Table 1.1: Summary of Surveyed TSD Techniques Until 2012 

  The creation of the German Traffic Sign 

Detection Benchmark (GTSDB) competition 

(Houben 2013) has made the comparison of 

different TSD methods much easier and has 

significantly pushed state-of-the-art performances 

on European signs.   Typically TSR research was 

split into two different methodologies, model-

based and learning-based approaches. However 

more recently learning-based methods have 

continued to outperform model-based methods 

and are the preferred choice over model-based 

approaches. This was also observed in the 

GTSDB competition, where all of the frontrunners 

used learning-based approaches. The top three 

teams of the GTSDB competition where: Team 

VISICS (Houben 2013), Team Litsi (Liang 2013), 

and Team wgy@HIT501 (Wang 2013). Team 

VISICS proposed a method that uses Integral 

http://www.ijsrem.com/
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Channel Features (ICF), which was originally 

proposed by Dollar et al. (2009) for pedestrian 

detection. Team VISICS trained these features 

using a boosted decision forest. Team Litsi 

proposed a method that first segmented the image 

into regions of interest, through shape matching 

and color classification. They then used HOG 

features and color histograms to train a SVM.  

Team wgy@HIT501 also used HOG features, 

however found the best candidates with LDA. The 

best HOG feature candidates were trained using 

an IK-SVM.  The GTSDB was one of the major 

catalysts that pushed the traffic sign detection 

performance to near perfection for European 

traffic signs.  

 However, the research activity in U.S 

traffic signs was significantly less than that of the 

European traffic signs. Staudenmaier (2012) 

proposed a method for U.S speed limit signs, 

which used a Bayesian Classifier Cascade with 

intensity features and tensor features. The worked 

showed to have a good detection rate above 90% 

but at the cost of multiple false positives per 

image, which in comparison to the European 

state-of-the-art methods was much worse. Liu 

(2012) also ran into a similar issue of multiple 

false positives with a good detection rate, but only 

for speed limit signs. One of the main problems 

for U.S traffic signs, was the fact that there wasn’t 

a large dataset that can be used as a benchmark. It 

wasn’t until Mogelmose (2012) that the LISA 

dataset became available. This dataset became the 

largest collection of U.S traffic signs in the world. 

With it, Mogelmose (2015) was able to achieve 

state-of-the-art performance by using Integral 

Channel features and Aggregate Channel features 

with a boosted decision tree forest. There was still 

a performance gap between their performance and 

the state-of-the-art performance of the European 

dataset, however this gap was significantly less 

than that of the methods used for U.S traffic signs.  

Lim (2014) also presented work on the LISA 

dataset with somewhat worse detection 

performance that Mogelmose (2015), but tries to 

address the issue of adverse weather conditions.    

 

1.3 Thesis Overview 

The remainder of this thesis will be divided 

into the following sections. In Chapter 2 we will 

discuss all of the necessary background 

http://www.ijsrem.com/
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information. Including model-based approaches 

vs. learning-based approaches, the current state-

of-the-art methods for the GTSDB and LISA 

datasets, and deep learning architectures. Chapter 

3 will explain the proposed method and the data 

that we will be using in this work. Chapter 4 will 

include the preliminary experiments and the 

results of the experiments. Chapter 5 will discuss 

the expected outcomes and a timeline for the 

remaining tasks.   

 

CHAPTER 2 

BACKGROUND 

In this chapter we will describe all of the 

necessary background information for this work. 

We will first describe the sliding window 

detection method, which is implemented in most 

object detection/recognition systems. We will then 

transition into a detailed description of the current 

state-of-the-art method for traffic sign detection. 

Then the final section will discuss the basics of 

deep learning and conclude with a detailed 

description of Convolutional Neural Network 

(CNN) architectures, which will be our proposed 

method for traffic sign detection.  

 

2.1 Sliding Window Detection 

Most object detection/recognition systems will 

typically implement a sliding window method. 

The first step of any learning-based object 

detection system, which implements a sliding 

window, is to train a classifier from a dataset of 

labeled images of size 𝑛 × 𝑚. The dataset should 

contain positive and negative image samples. 

Where the positive samples are large centered 

instances of the object we are looking for, of size 𝑛 × 𝑚 . The negatives images in the dataset 

should contain images with scenery similar to that 

of the positive images however, they cannot 

contain the object in them. To obtain the negative 

samples, image patches of size 𝑛 × 𝑚  are 

randomly extracted at different scales of the 

negative images. Once the dataset is organized a 

binary classifier needs to be trained on the 

positive and negative samples. Instead of training 

on the image patches themselves we train on 

features that are extracted from the image patches. 

http://www.ijsrem.com/
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Figure 2.1: Sliding Window Process  

 
Once the classifier is trained, we will test on test 

images by extracting an image patch, extract the 

features from the image patch, then pass the 

features into the binary classifier, which will 

determine whether it is or is not the object we are 

looking for. Figure 2.1 illustrates this process for a 

car detection system (Zimmerman 2012). 

There are two subtleties that need to be examined 

closer when applying the sliding window detector. 

The first being that not all of the objects in the 

image will be the same size as the 𝑛 × 𝑚 image 

patches that the classifier was trained on. To 

remedy this issue, we can slide the windows 

across different scales of the same image (Forsyth 

2012). The second subtlety deals with the 

response of the classifier, if the classifier response 

is above a specified threshold it will classify that 

window as a detected object. However depending 

on the distance between each window, we can 

have multiple windows that detect the same 

object, this can be visualized in figure 2.2.  In 

order to handle this issue we would apply a 

method called Non-Maximum Suppression 

(Forsyth 2012). Non-Maximum Suppression is a 

method that looks at local responses of windows 

classified as a detected object. If we have multiple 

windows that are overlapping, where the 

overlapping area is above a certain threshold, we 

will only retain the window with the highest 

response. To summarize, figure 2.3 shows the 

sliding window detection algorithm (Forsyth 

2012). 

http://www.ijsrem.com/
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Figure 2.2: Example of Non-Maximum Suppression 

 

 

Figure 2.3: Sliding Window Detection Algorithm 
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2.1 CurrentState-of-the-Art Performance 

Mogelmose (2015) has shown that Integral 

Channel Features (ICF) and Aggregate Channel 

Features (ACF) have achieved state-of-the-art 

performance for U.S traffic signs on the LISA 

dataset. In this section we will provide a detailed 

description of Mogelmose’s (2015) methodology, 

which we will use as the baseline measurements 

of this work. The main focus of Mogelmose’s 

(2015) methodology is in the feature extraction 

stage. The features used were Integral Channel 

features, which were first introduced by dollar 

(2009) for pedestrian detection. Dollar later 

introduced an extension of the Integral Channel 

features, which were the Aggregate Channel 

Features (Dollar 2014). The features were trained 

using an AdaBoost Classifier. This section will 

provide all of the necessary background 

information for these topics.  

2.1.1 Integral Images 

In order to understand the specific 

features used by Mogelmose (2015), we must give 

some background information on integral images, 

which were first introduced by Viola and Jones 

(2001). An integral image is a quick way of 

calculating rectangular features by summing the 

pixel values in a given rectangular region of an 

image. An integral image is defined at each pixel 

by the following equation (Viola and Jones 2001): 

 𝒊𝒊(𝒙,𝒚) =  ∑ 𝒊(𝒙′ ,𝒚′)𝒙′≤𝒙,𝒚′≤𝒚  (1) 

Where ii(x,y) is the integral image and i(x,y) is the 

original image. Equation 1 tells us that the integral 

image at pixel location x and y is the sum of the 

all of the pixel values above and to the left of the 

original image. We can calculate the entire 

integral image in one pass over of the original 

image by using the following two equations: 

 𝒔(𝒙,𝒚) =  𝒔(𝒙, 𝒚 − 𝟏) + 𝒊(𝒙, 𝒚) (2) 

 𝒊𝒊(𝒙,𝒚) =  𝒊𝒊(𝒙 − 𝟏, 𝒚) + 𝒔(𝒙,𝒚) (3) 

http://www.ijsrem.com/
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Figure 2.4: Integral Image Example  

 

Where s(x,y) is the cumulative row sum of the 

original image. Using an integral image we can 

compute and sum or difference of any rectangular 

area, this is illustrated in figure 2.4 (Viola and 

Jones 2001).  

If we want to find the sum of the pixels in the 

rectangle D, in figure 2.4, we only need to use the 

four reference points: 1, 2, 3, and 4. Where the 

value at reference point 1 is the sum of the pixels 

in rectangle A. The value at reference point 2 is 

the sum of rectangles A and B. At reference point 

3 the value is A+C. We can then compute the sum 

within D as 4 + 1 − (2 + 3). This gives us the 

ability to calculate the sum in constant time, O(1). 

With the knowledge of integral images we can 

now examine, in more detail, the Integral Channel 

Features used in Mogelmose (2015).  

2.1.2 Integral Channel Features 

The idea behind ICF is to create multiple 

image channels by making linear and non-linear 

transformations of the original input image. The 

channels are then transformed into integral image. 

This allows for more efficient feature extraction 

through the integral images. For a given input 

image I, a channel can be viewed as a new image 

where the original input pixels are mapped to the 

new image channel, C. These mappings can be 

either linear or non-linear transformations and can 

be represented by the channel generating function 

Ω. The transformation can be written: 

http://www.ijsrem.com/
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Figure 2.5: Example of Image Channels  

 

 𝑪 =  𝛀(𝑰) (4) 

There are multiple channel features that can be 

extracted from a transformed image channel, some 

that are more complex and longer to compute than 

others. One of the fastest to compute is a first-

order channel feature, which is the sum of pixels 

in a fixed rectangular region. We have shown in 

the previous section that if the integral image is 

generated we can calculate the sum of a 

rectangular region in constant time, O(1), as it 

only requires operations on 4 reference values. A 

higher-order channel feature, is defined as a 

feature that is computed using multiple first-order 

features. An example of a higher-order feature is a 

Haar feature (Viola Jones 2001), which involves a 

sum of 2-4 rectangles arranged in patters that 

compute first and second order image derivatives 

at multiple scales.  

 Before we extract the first-order or 

higher-order channel features, we must first 

transform out image into channels. Figure 2.5 

shows an example of different types of channels 

that were transformed from the original input 

image. Each channel contains different pieces of 

information from the input image. For example 

the Gabor channels, in figure 2.5, are a 

convolution of 4 oriented Gabor filters with the 

input image. There are many different types of 

transformations that can performed on the input 

image. One such transform is a linear filter where 

we convolve a linear filter, such as the Gabor 

filter, with the input image. We also have non-

linear transformations, such as gradient 

magnitudes, which looks at specific edge strengths 

http://www.ijsrem.com/
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Figure 2.6: Aggregate Channel Framework  

 

 

 

in the image, see figure 2.5(e). There are also 

gradient histogram channels, which is a weighted 

histogram where the gradient angle is the index of 

the bin and the gradient magnitude at that angle is 

the magnitude of the bin. We can express the 

channels mathematically as:  

 𝑸𝜽(𝒙,𝒚) =  𝐆(𝐱,𝐲) ∗ 𝟏[𝚯(𝐱, 𝐲) =  𝜽] (5) 𝑸𝜽(𝒙,𝒚)  is the gradient histogram channel for 

angle 𝜽 , where 𝐆(𝐱, 𝐲)  and 𝚯(𝐱, 𝐲)  are the 

gradient magnitude and quantized gradient angle 

of I(𝐱, 𝐲) , respectively.In chapter 3 we will 

discuss the specific channels and features used for 

our baseline results.  

2.1.3 Aggregate Channel Features 

Aggregate Channel Features (ACF) were 

proposed as an extension of ICF by dollar (2014). 

They were designed to provide a faster alternative 

to ICF, but they have also shown to have slightly 

better detection performance when compared to 

ICF, in some cases. ACF uses the same principle 

idea of ICF, which is computing features across 

different image channels and in this work the 

channels are actually the same channels used in 

ICF. The ACF method proposed by dollar (2014) 

for pedestrian detection can be visualized in figure 

2.6.  

 The first step to this process is the same as 

the Integral Channel Features, where we map the 

image into channels with some mapping 

function,  𝐶 =  Ω(𝐼) . Then next step is to sum 

each block of pixels into an integral image. The 

features are even simpler than ICF, they are just 

summed blocks of pixels at various scales and 

http://www.ijsrem.com/
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Figure 2.7: AdaBoost Algorithm  

 

stored in a feature vector. The classifier is learned 

from the feature vectors using AdaBoost.  

 

 

2.1.4 AdaBoost Classifier 

The final part of Mogelmose’s (2015) 

method is the classifier. Their method uses 

machine learning technique called, AdaBoost. 

This section will give a description of the 

AdaBoost technique. Freund and Schapire (1996) 

discovered that it was possible to build a strong 

classifier from a weighted sum of weak classifiers, 

which they called boosting. They defined a weak 

classifier as a classifier that is just better than 

random guessing, meaning that the accuracy of 

the classifier is greater than 50%. The weights of 

each classifier are learned by adjusting the 

weights of the wrongly classified samples. Each 

sample that is incorrectly classified, by the current 

weak classifier, will have a higher weight on the 

next iteration of the algorithm. The pseudocode 

for the AdaBoost algorithm can be viewed in 

figure 2.7. 

http://www.ijsrem.com/
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 We can see from figure 2.7 that we have 

m labeled examples (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚). Where 

the label values 𝑦𝑖  𝜖 {−1, +1} , where -1 will 

represent negative samples and +1 will represent 

positive samples. The first step is to initialize our 

distribution Dt of our samples, which is first 

initialized as each sample equally weight and the 

sum of the weights of all the samples are equal to 

1. In the algorithm we iterate from t=1,…,T, 

where T is the number of weak classifiers. On 

each iteration we are trying to find the weak 

classifier, ℎ𝑡(𝑥) , that is going to give us the 

smallest error rate. This is typically done by using 

a linear decision stump. Also in the same iteration 

we want to find the new distribution and the 

weight of the weak classifier. The following 

equation is used to calculate the weak classifier 

weight, αt:  

Where,  

Equation 7 is just stating that the error rate of the 

weak classifier is equal to the sum of the 

misclassified sample weights. The next step of the 

algorithm is to update all of the sample weights by 

using the following equations: 

Where Zt is the normalization factor, this will 

result in the final strong classifier H(x) seen 

below:  

 

2.2 Deep Learning 

In this section we will discuss, in detail, the 

main components of deep learning. We will start 

with the basic neuron and feed forward neural 

networks. We will then proceed to discuss the 

different components of Convolutional Neural 

Networks (CNNs), which will be the architecture 

proposed in this work. 

 𝜶𝒕 = 𝟏𝟐 ∗ 𝒍𝒏(𝟏 − 𝜺𝒕𝜺𝒕 ) 

 

(6) 

 𝜺𝒕 = ∑ 𝑫𝒕(𝒊)𝒊 𝝐 𝒉𝒕(𝒙𝒊)≠𝒚𝒊  

 

(7) 

 𝑫𝒕+𝟏(𝒊) =  𝑫𝒕 ∗ 𝒆𝒙𝒑(−𝜶𝒕𝒚𝒊𝒉𝒕(𝒙𝒊))𝒁𝒕  

 

(8) 

 𝑯(𝒙) =  𝒔𝒊𝒈𝒏(∑ 𝜶𝒕𝒉𝒕(𝒙)𝑻
𝒕=𝟏 ) 

 

(8) 
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Figure 2.8: Biological Neuron (left) and Computational Model (right) 

 

2.2.1 Feed Forward Neural Network 

The original inspiration for Neural 

Networks came from the attempt to model the 

biological neural systems. The neuron is the basic 

computational unit of the nervous system. The 

nervous system is composed of billions of 

interconnected neurons. A single neuron receives 

many input signals from the dendrites and sends a 

single output signal along the axon. Where the 

axon branches to multiple synapses that connect to 

other dendrites, of other neurons. Based off of this 

biological knowledge, the computational model 

was created. Where the signal (𝑥0) coming from 

the axiom, of a previous neuron, is multiplied to 

the weights (𝑤0) of the synapses. The signals of 

all the synapses are summed and sent to an 

activation function (𝑓), which then sends a single 

signal back out the axiom. What the model tries to 

learn are the weights of the synapses. We can 

visualize the biological neuron and the 

computational model of the neuron below in 

figure 2.8 (Li 2015). 

The computational model output of a single 

neuron can be expressed mathematically as:  

There are many different types of activations 

functions that can be used, as the output axiom, 

but the one that has become the most popular is 

the Rectified Linear Unit (ReLU). The ReLU is 

simply a ramp function and expressed as:  

 𝒚(𝒙, 𝒃) =  𝒇 (∑ 𝒘𝒊𝒙𝒊 + 𝒃𝒊 ) 

 

(9) 
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Figure 2.9: Fully Connected Feedforward Neural Network 

 

 

 A complete Neural Network is an 

interconnection of the modeled neurons. Where 

the output of one neuron will be the input of 

another. If we have multiple neurons then all of 

these outputs can be inputs of a single neuron. 

However, this should not be interpreted as a big 

blob of neurons, but as neurons connected in 

layers. We can visualize this in figure 2.9 (Li 

2015). 

 On the left of figure 2.9 we have a 2-layer 

Neural Network and on the right we have a 3-

layered Neural Network, typically when 

discussing an N-layer Neural Network the input 

layer is excluded. The architecture or size of a 

Neural Network is defined by two measures, how 

many layers we have and how many neurons are 

in that layer.   

 Now that we have a general idea of the 

architecture we need to examine how to optimize 

the parameters for our data. Once the architecture 

is decided upon we need to decide which 

parameters will minimize the loss (or error) 

function. Typically the loss function is defined by 

the mean square error (Bishop 2007): 

Where 𝑤 , is a vector of the parameters of the 

Neural Network architecture ( 𝑛𝑛(𝑥𝑖 ,𝑤)); 𝑥𝑖 and 𝑦𝑖  are the feature vector input and the feature 

vector labels respectively; and 𝑛 is the number of 

 𝒇(𝒙) = 𝒎𝒂𝒙(𝟎,𝒙) 

 

(10) 

 𝑴𝑺𝑬(𝒘) =  𝟏𝟐𝒏 ∑(𝒚𝒊 − 𝒏𝒏(𝒙𝒊,𝒘))𝟐𝒏
𝒊=𝟏  

 

(11) 
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Figure 2.10: Neural Network (left) and Basic Neuron Arrangement of CNN (right) 

 

training examples used. As stated before the goal 

is to find the parameters, 𝑤, that will minimize the 

MSE:  

In order to minimize the mean square error there 

are many different numerical methods we can 

choose however the most popular is the gradient 

decent algorithm. The idea of gradient decent is to 

find the direction of steepest decent in a local 

area. The first step is to initialize all of our 

parameters. After they are initialized, we will 

update the each parameter by taking the derivate 

of the mean squared error with respect to each 

parameter and subtracting it from the original 

parameter value. The parameter update equation 

can be seen below: 

Where 𝛼 is called the learning rate and can be 

thought of as the size of the step we want to take 

in our local area. Also to note, one update of the 

parameters is called an epoch, and when 

implementing it practically we will limit the 

number of epochs or stop updating the parameters 

if it converges, meaning:  

Where 𝜀 is a very small value. By using gradient 

decent we will be able to learn all of the 

parameters, which will optimize our model to 

minimize the model’s MSE.  

2.2.2 Convolutional Neural Network 

Similar to Neural Networks, 

Convolutional Neural Networks (CNNs) are made 

up of neurons that have learnable weights. They 

 𝒂𝒓𝒈 𝐦𝐢𝐧𝒘      𝑴𝑺𝑬(𝒘) 
 

(12) 

 𝒘𝒕+𝟏 =  𝒘𝒕 −  𝜶 ∗ 𝛁𝑴𝑺𝑬(𝒘𝒕) (13) 

 |𝒘𝒕+𝟏 − 𝒘𝒕 | <  𝜺 (14) 
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have a loss function and even the last layer of the 

CNN can be thought of as a fully connected neural 

network. However Convolutional Neural 

Networks are specialized for processing data with 

a grid-like topology, such as images. The 

difference between the CNN and a Neural 

Network is that the layers of a CNN have neurons 

arranged in 3 dimensions, width, height, and 

depth. The high dimensionality of the image data 

makes it impossible to use a single fully 

connected neural network. We will see that 

through the architecture of the CNN we will be 

able to reduce the full image into a single neuron. 

A visualization of the neuron arrangement of a 

CNN can be seen below in figure 2.10 (Li 2015).  

 The CNN’s architecture has three main 

layers: the Convolutional Layer, the Pooling 

Layer, and the Fully-Connected Layer. A basic 

CNN architecture may be structured with the input 

image connected to the Convolutional layer which 

is connected to a Pooling layer and finally 

connected to a Fully-Connected layer. In the 

remainder of this section we will give a 

description of each layer.  

 The first layer we are going to discuss is 

the convolutional layer, which is the main 

building block of the CNN. The convolutional 

layer as the name suggests, applies multiple 

convolutions to the input image with filters that 

are learned. The filters will slide across the 

image’s width, height and then depth, which 

generates a new image. The filters are stacked on 

top of each other giving the depth dimension that 

we see in figure 2.10. Intuitively, we want to learn 

these filters so that when they see a specific 

feature they will activate a response. The reason 

for these filters is so the network can create a local 

connectivity of neurons instead of having 

learnable weights at each pixel. For example if we 

have a 32x32x3 image, where the depth is 3 for 

the RGB channel, if we assigned learnable 

weights to each pixel we would have a 3072 

parameters that need to be learned. However if we 

have a convolutional filter that is 5x5 now we 

only have to learn 5x5x3=75 parameters. Note 

that the depth is three because we must apply the 

filter to each channel. This also gives us the 

ability to use stack multiple filters at each 

convolutional layer and still have less parameters 
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Figure 2.11: Pooling Process  

 

to learn. The number of filters, or the depth, that 

we use can be analogous to the number of neurons 

in a hidden layer of a Feedforward Neural 

Network.  

 The next layer we will discuss is the 

Pooling/Sub-sampling layer. The Pooling layer 

will be found between successive Convolutional 

layers. The Pooling layer is needed to reduce the 

spatial size of the output of the convolutional 

layer. The Pooling layer is applied to every depth 

image generated from the Convolutional layer. 

The most common form of pooling is the max 2x2 

filter, which downsamples the input image by 

taking the max value of every 2x2 block as it 

slides along the height and width of the image. 

There are two specific hyperparameters associated 

with the Pooling layer. The first is the spatial 

extent, F, which is the size of the downsampling 

filter. The second is the stride, which is the 

distance between the filters as it moves from left 

to right and top to bottom of the image. The 

pooling process can be seen below in figure 2.11 

(Li 2015).  

 

On the left of figure 2.11 we can see how the 

Convolutional Layer is downsampled to half the 

size of the original input image, through the 

pooling process. On the right of the figure we see 

how the down sampling is performed using max 

pooling with 2x2 filters with a stride of 2. A 

complete architecture can be visualized in figure 

2.12. 
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Figure 2.12: Full Convolutional Neural Network Architecture  

 
 CHAPTER 3 

DATA & EXPERIMENTS 

3.1 Data 

In this section we describe the details of the 

dataset used for this experiment. The dataset used 

for the detection of U.S. traffic signs is the LISA 

dataset, the largest collection of publicly available 

U.S traffic sign images. 

3.1.1 LISA Dataset 

For computer vision and machine learning 

applications the dataset is one of the most 

important components of the system. When a 

dataset is made publicly available, it not only 

helps to save time and energy but it also helps to 

compare state-of-the-art results, since the 

performance is evaluated on the same data. For 

this reason the LISA dataset was created 

(Mogelmose 2012). Although there are datasets 

publicly available for TSR, most of these datasets 

are for European, or Vienna Convention, traffic 

signs. The LISA dataset was created exclusively 

for U.S traffic signs. As there were no large 

existing U.S traffic sign datasets publicly 

available at the time of its creation.  

 The LISA dataset was developed by the 

Laboratory for Intelligent and Safe Automobiles 

at the University of California, San Diego 
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Original LISA Traffic Sign Dataset LISA-TS Extension GTSD 

  Training Set Testing Set Combined  

Number of 

classes: 

47 31 17 35 4 

Number of 

annotations: 

7855 3672 2422 6094 1206 

Number of 

images: 

6610 3307 2331 5638 900 

Sign Sizes, 

longest edge: 

6 – 168 pixels 23–222 pixels 25–222 pixels 23–222 pixels 16-128 pixels 

Image Sizes: 640x480 to 1024x522 1280x960 1280x960 1280x960 1360x800 

Videos 

Included: 

Yes Yes Yes Yes No 

 

Table 3.1: Traffic Sign Dataset Statistics  

 

(UCSD) in 2012. When it was first introduced the 

dataset contained over 6000, fully annotated, 

images contain U.S traffic signs from in-car video 

cameras around the San Diego area. The dataset 

also has approximately 10,000 negative images, 

that don’t contain traffic signs, but are still 

captured from an in-car video camera. The image 

sizes vary from 640x480 to 1024x522 pixels. The 

type of traffic signs vary over 49 different classes 

of traffic signs and three so-called Superclasses 

which are: warning signs, speed limit signs and 

no-turn signs.  

 The same authors of the original LISA 

dataset made an extension to this dataset in 2015 

(Mogelmose 2015).  This extension almost 

doubled the amount of positive annotated high-

resolution images. The extended images were also 

collected in and around the San Diego, California 

area. It is important to note that the weather 

conditions, during image acquisition, were 

generally dry and sunny. No adverse weather 

conditions were captured in this dataset. The 

hardware used to capture the images, for the 

extended dataset, was a Point Grey FL3 color 

camera with a resolution of 1280x960 pixels. It is 

also important to note that the extended dataset 

split the data into a training and testing set. Table 

3.1 (Mogelmose 2015) shows the statistics of the 

original LISA dataset the extended dataset with a 
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Table 3.2: Original LISA Dataset Breakdown by Class  

 

Table 3.4: LISA Dataset Extension (Testing) Breakdown by Class  

comparison to 

the German Traffic Sign Detection (GTSD) 

dataset.  

 One important component of object 

detection is the aspect ratio of the objects in the 

data. Many of the traffic signs, in the LISA 

dataset, have an aspect ratio of approximately 1.0. 

The remaining traffic signs are between 1.2 and 

0.8, which gives us a lot of insight into the design 

of our object descriptor. With this knowledge we 

will be more inclined to have a square detection 

box when we implement the sliding window 

detector, which will be discussed later. For more 

specific details of the type of signs and classes in 

the LISA dataset refer to Tables 3.2-3.4.  

3.2 Experimental Setup 

The proposed work aims to do a 

comparative study of the state-of-the-art methods 

verses that of deep learning architecture, for 

traffic sign detection. This section describes the 

specifics of the detailed setup and methodology 

used for the baseline results.  
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Table 3.3: LISA Dataset Extension (Training) Breakdown by Class  

 

 

 LISA-TS LISA-TS Extension Total 

 Positive Negative Positive Negative Positive Negative 

Training  6284 12000 2939 6000 9223 18000 

Validation 1571 3000 735 1500 2306 4500 

 

Table 3.5: Number of Samples used for Training and Validation 

 

3.2.1 Data Preparation 

The first step of any machine learning or 

computer vision task is to first prepare the data.  

The data preparation step taken in this work are 

similar to that of Mogelmose (2015). When 

preparing the data, we split the dataset into a 

training, validation, and test set. This was done for 

both the original LISA dataset and the extensions. 

Table 3.5 shows how the positive and negative 

samples were separated.  

 It is also important to note that the 

original LISA-TS dataset contains 11634 negative 

color images of size 704x480 pixels. The negative 

images are image taken from an in-car video 

camera but do not have any traffic signs in the 

scene. To get the negative samples random image 

patches are extracted from the negative images at 

different scales of the images. It is required for the 

positive and negative sample image patches to be 

the same size. The sample image patch sizes that 

are used in this work are 48x48 pixels. 

 After the separation of the data we want 

to preprocess each of the samples. The samples 

are preprocessed using a contrast-limited 
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histogram equalization (CLAHE) (dollar 2014). 

CLAHE is an adaptive histogram equalization 

method that reduces the excessive contrast and 

noise that may arise when performing an ordinary 

histogram equalization. Ordinary histogram 

equalization looks at the CDF of each pixel value 

and attempts map new pixel value so that the 

PDF, of the pixel values, becomes uniform. 

CLAHE does something similar however instead 

of looking at all of the pixel values in the image it 

only considers the CDF of the pixels in a nearby 

tile. Resulting in a local contrast enhancement, 

which reduces the noise that would normally be 

enhanced across the whole image. Once CLAHE 

is finished, the data will be properly separated and 

preprocessed, which will then allow for feature 

extraction.  

3.2.2 Feature Extraction and Training 

Once the data has been separated and 

preprocessed, the next stage is feature extraction. 

The features that are extracted are Integral 

Channel Features and Aggregate Channel 

features, as was proposed by Mogelmose (2015). 

As described above the first step of ICF is to 

compute the different channels from the input 

image. The features are computed over 10 

different channels, these channels are the 

following: three LUV color space channels, one 

unoriented gradient magnitude channel, and six 

gradient channels in varying directions. Each 

channel is transformed into an integral image 

channel, in order to speed up the computations of 

the features. First-order Haar-like features are 

computed for each of the 10 different integral 

channels. The Haar-like features are simply the 

difference of the sum of two rectangular image 

filters. After the features are computed, they are 

trained using an AdaBoost classifier with 200 

depth-2 decision trees as weak learners.  

Aggregate Channel Features are similar to 

ICF, however they use even simpler features in 

order to speed up the computations. The initial 

process of transforming the input image into 10 

different integral channels is the same. In fact the 

channels used in ICF are the same ones used for 

ACF. However, the difference between the two 

methods is that the features ACF uses, are a 

summing up of blocks of pixels at various scales. 

Similarly after the features are computed, they are 
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trained using an AdaBoost classifier with 200 

depth-2 decision trees as weak learners. The ICF 

model and the ACF model are the two models 

used as our baseline comparisons. 

3.2.3 Convolutional Neural Network 

Setup 

The purpose of this work is to do a 

comparative study of U.S traffic sign detection. 

We will compare the current state-of-the-art 

method with a deep learning architecture. The 

deep learning architecture is going to be a 

Convolutional Neural Network (CNN). The big 

difference between the deep learning architectures 

and knowledge based architectures, like the ICF 

model and the ACF model, is that we eliminate 

the feature extraction stage. We instead learn the 

features through the different filters in the 

convolutional layers of the CNN. Unlike the data 

preparation discussed in the previous section, we 

will not have to preprocess the samples or extract 

the features. Instead, we will only pass the 

positive and negative image patches to the CNN 

for training.  

There are many design aspects when 

creating a CNN architecture, such as the type of 

activation function to use, the number of filters or 

neurons in the convolutional layer, the type of 

pooling in the pooling layer, the number of 

neurons in the fully connected output layer, and 

number of convolutional and pooling layers used. 

In our study we will examine multiple 

architectures but we will keep a couple of 

components constant. The activation functions 

used will consistently be a rectified linear unit 

(ReLU). Also the pooling layer will be a 2x2 max 

pooling filter with a stride of 2, so that the pooling 

filter is not overlapping. Instead we will 

experiment with the depth of the architecture, in 

other words we will vary the number of 

convolutional layers and pooling layers. The 

number of filters or neurons in the convolutional 

layer will be experimented with. As well as, the 

number of neurons in the fully connected layer. 

The performance of each architecture will be 

examined and compared with the ICF and ACF 

models. The baseline detection performance of the 

ICF and ACF models, proposed by Mogelmose 

(2015), will be discussed in the next chapter.   
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Preliminary Experiments & Results 

4.1 Evaluation 

This section discusses how the detection 

performance will be evaluated.  The standard 

measure for object detection tasks is the PASCAL 

measure, which was introduced in (Everingham, 

2010). All of our models will be evaluated with 

the PASCAL measure. The PASCAL measure is 

used to determine whether one of the positively 

detected bounding boxes, in the test image, is a 

true positive. This is determined by the following 

equation: 

Where BBdt is the detected bounding box and BBgt 

is the ground truth bounding box. Equation 15 

tells us that if the overlap between the ground 

truth and the detected bounding boxes is greater 

than 50% then the detected bounding box will be 

considered a true positive.  

 The PASCAL measure is a measure of 

true positives however this is not a measure of the 

overall performance of the system. The detection 

performance of the system is evaluated by the area 

under the curve of a precision recall graph. 

Precision is defined as the percentage of retrieved 

items, or in our case detection boxes, that are 

actually relevant. Recall is defined as the 

percentage of relevant items that are detected or 

recovered. We can formally define them with the 

following equations: 

 

Where TP is the total number of true positives, FP 

is the total number of false positives, and FN is 

the total number of false negatives.  

4.2 Baseline Results  

In this section we will discuss the detection results 

presented by Mogelmose (2015), which will be 

replicated in our work. The previous section 

explained how detection performance is evaluated 

by the area under the curve of the precision recall 

graph. The precision recall curves evaluated for 

ICF and ACF models presented by Mogelmose 

(2015), for both the LISA and GTSD datasets, can 

be seen below in figure 4.1 and 

 

 𝒂𝟎 ≡ 𝒂𝒓𝒆𝒂(𝑩𝑩𝒅𝒕  ∩ 𝑩𝑩𝒈𝒕)𝒂𝒓𝒆𝒂(𝑩𝑩𝒅𝒕  ∪ 𝑩𝑩𝒈𝒕) > 𝟎. 𝟓 (15) 
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Figure 4.1: Precision-Recall Curves for Detection of U.S Traffic Signs  

 

 

 figure 4.2 respectively. 

 

 

 

3.CONCLUSION 

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷𝑻𝑷 + 𝑭𝑷 (16) 

 𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷𝑻𝑷 + 𝑭𝑵 (17) 
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Figure 4.2: Precision-Recall Curves for Detection of European Traffic Signs  

 

 

 LISA Dataset GTSD Dataset 

 Speed 

Limit  

Warning No 

Turn 

Stop  Mean 

AUC 

Prohibitory Danger Mandatory Mean 

AUC 

ACF 84.31 98.98 96.17 96.11 93.89 99.86 100.00 98.38 99.41 

ICF 87.91 87.32 91.09 96.03 90.59 99.58 99.15 98.52 99.08 

8bit-MCT 

AdaBoost 

(Lim 2014) 

81.43 21.22 57.63 65.81 56.52 N/A N/A N/A N/A 

Boosted_ICF 

(Houben 2013) 

N/A N/A N/A N/A N/A 100.00 100.00 96.98 98.99 

HOG + SVM 

(Liang 2013) 

N/A N/A N/A N/A N/A 100.00 98.85 92.00 96.95 

HOG_LDA_SVM 

(Wang 2013) 

N/A N/A N/A N/A N/A 100.00 99.95 93.99 97.98 

 

Table 4.1: State-of-the-Art Detection Performances on the LISA and GTSD Datasets  

 

Mogelmose demonstrated the detection 

performance for the U.S traffic signs was slightly  

worse than the performance on European Traffic 

signs. In this work we want to do a comparative 

study of a deep learning network versus other 

knowledge based representations. To do this we 

need performance evaluations of different 

methods. Table 4.1 provides a performance 

summary of the top performing algorithms for 

both the LISA and GTSD datasets.  
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