
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page i

Traffic Sign Recognition

Jayapratha T , Computer science and engineering , Sri Eshwar college of Engineering

Dinesh Kumar S , Computer science and engineering , Sri Eshwar college of Engineering

Guna seelan D , Computer science and engineering , Sri Eshwar college of Engineering

Avinash Madhav K , Computer science and engineering , Sri Eshwar college of Engineering

Jagadheeshwaran A , Computer science and engineering , Sri Eshwar college of Engineering

_ ***_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

ABSTRACT

Traffic Sign Recognition (TSR) from

video images is an integral part of the driver

support functions needed to make intelligent

vehicles a reality. TSR is composed of two

components: detection and classification. The

focus of the proposed research is detection of U.S

traffic signs based on the LISA dataset, the largest

publicly available U.S traffic sign dataset in the

world, comprising over 9,000 images.

Detection methods involving Integral Channel

Features and Aggregate Channel features have

achieved state-of-the art performance. Our

proposed research consists of a comparative study

of the performance of

Integral Channel Features and Aggregate Channel

features versus using Convolutional Neural

Networks (CNN). Our aim is to explore the

detection performance of the CNN by varying the

convolutional layers, max-pooling layers, and the

fully-connected layers. We will evaluate our

detection performance by using the PASCAL

measure, which is a standard metric for this

application.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 1

INTRODUCTION

For the past several years there has been

significant research interest in self-driving

vehicles and Advanced Driver Assistance Systems

(ADAS), most notably Google’s Self-Driving Car

Project. In order for these systems to become

more and more autonomous, it is essential for the

integration of Traffic Sign Recognition (TSR)

technology. TSR systems are composed of two

main components, classification and detection.

The classification component focuses strictly on

classifying the type of traffic sign, after the sign

has be detected. Whereas, the detection

component focuses on locating the traffic sign in a

sequence of video images. This work focuses

exclusively on the detection task of TSR systems.

Traffic sign detection has been heavily

researched on European traffic signs, or more

specifically traffic signs that follow the Vienna

Convention of Road Signs and Signals (United

Nations et al., 1978). This is largely due to the

introduction of the German Traffic Sign Detection

Benchmark (GTSDB) (Houben 2013)

competition. This competition has shown

promising results, however the performances of

the top performing models of the GTSDB have

not been able to translate as well when used for

U.S traffic signs (Mogelmose 2015). One of the

main reasons that European models have not be

able to translate as well is that, U.S signs and

European signs, which have very similar

meanings can look significantly different as

shown in Figure 1.1 (Mogelmose 2015). Figure

1.1 (a)-(c) are example of Vienna Convention

signs and (d)-(f) are examples of U.S traffic signs.

Figure 1.1(a)(d) are both Keep Right signs, figure

1.1(b)(e) are both Left Turn signs, and figure 1.1

(c)(f) are both Speed Limit signs. From figure 1.1

we can clearly see there are significant difference,

in geometry and color, for the Vienna

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 2

 (a) (b) (c) (d) (e) (f)

Figure 1.1: Examples of Vienna Convention signs and U.S signs

2.BODY OF PAPER

Convention and U.S traffic signs that have the

 same meaning. In order to close this gap in

performance, the largest U.S traffic sign dataset in

the world, the Laboratory for Intelligent and Safe

Automobiles (LISA) dataset (Mogelmose 2012),

was created. The LISA dataset contains

approximately 10,000 images containing U.S

traffic signs and approximately 11,000 images that

have similar scenes but do not encompass any

traffic signs in the images.

 Two of the most promising methods used

for traffic sign recognition include, Integral

channel Features and Aggregate Channel

Features. Integral Channel and Aggregate Channel

features were originally applied to Pedestrian

Detection (Dollar 2009, 2014) and later adopted

for TSR. Where they have shown to achieve

state-of-the-art performance for both European

and U.S traffic signs (Mogelmose 2015).

Although these methods have demonstrated state-

of-the-art performance there is still room for

improvement. To our knowledge, deep learning

architectures, specifically Convolutional Neural

Networks (CNN), have not been explored for

TSR. CNNs have shown to be very powerful

models for image recognition tasks, as was shown

in the ImageNet Challenge (Krizhevsky 2012).

Motived by these results, our proposed research

consists of a comparative study of the

performance of Integral Channel Features and

Aggregate Channel features versus using

Convolutional Neural Networks (CNN). Our aim

is to explore the detection performance of the

CNN by varying the convolutional layers, max-

pooling layers, and the fully-connected layers. We

will evaluate our detection performance by using

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 3

Figure 1.2: Block Diagram of a TSR System

the PASCAL measure (Everingham 2010), which

is a standard metric for this application.

 This chapter will focus first on a simple

overview of traffic sign recognition systems,

followed by a discussion on the related work on

both the German Traffic Sign Detection

Benchmark (GTSDB) and on the LISA dataset.

We will conclude this chapter with an overview of

the entire thesis proposal.

1.1 Traffic Sign Recognition Overview

Although in this work we will be

examining the detection aspect of Traffic Sign

Recognition (TSR) systems, it will be useful to

describe the whole system. Typically when we

authors are referring to TSR systems they are

referring to the detection of the traffic signs, the

classification of that traffic sign, once it has been

detected, and the tracking of the traffic sign.

Figure 2 (Mogelmose 2012) shows a basic block

diagram of the TSR system.

 When given an image or video sequence

as an input, the detection task is only concerned

with discovering where at in the image the traffic

sign is located. Whereas, classification is only

concerned with deciding what type of traffic sign

the detected traffic sign is. The final component is

tracking, which tracks the detected sign from

frame to frame. Each component can be

approached separately in different ways. However

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 4

Figure 1.3: Basic Block Diagram of the Detection Task

for a full TSR system to work each component

will depend on each other.

 Since our work is focused on the detection

task we will only look at this task at a closer level.

A simple model of the Detection task can be seen

below in figure 3. Figure 3 is a very simplistic

block diagram of the detection process, however

most method will look like this in some form or

another. They will typically have an image

preprocessing stage, then a feature extraction

stage, and then a detection stage. The image

preprocessing stage is used to help clean the data

or transform the image in order to prepare it for

the feature extraction stage. In the feature

extraction stage,

features such as

edges, Harr-like

features, and color

features are taken

from the image

and sent to the

detector. The

detector depends

on the type of

method that we

use. Typically there are two methods used, one is

a model-based approach and the other is a

learning-based approach, both will be discussed in

more detail in the next chapter. The purpose of the

detector is to take the features as input and make a

decision on where the traffic sign is located in the

image. Although in this work the focus is on the

detection step it is important to note that without

the classification and tracking components, a TSR

system is useless.

1.2 Related Work

Traffic sign detection has been researched

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 5

for a little over a decade. Some of the earliest

methods tried to take advantage of the fact that

traffic signs were designed to stand out in the

environment, often through shape and color. The

early shape-based methods searched for specific

geometrical shapes such as rectangular or circular

objects. For example Loy (2004) used edge

features with a radial symmetry model for a

dataset of approximately 50 images. Early color-

based methods extracted colors from different

color spaces of the input image, and used different

thresholding techniques to extract the traffic sign.

For example Vazquez-Reina (2005) converted the

image into HIS color space and used thresholding

in order to extract the traffic signs. While in

theory, the color and shape of traffic signs can be

very well defined, they can have some very

practical issues, such as, illumination changes,

damaged or worn signs, occlusions, and traffic

signs blending in with background color. This

lead to the implementation of learning-based

methods that used more descriptive features such

as Harr-like wavelet features, introduced by Viola

and Jones (2001) for facial recognition, and HOG

features, introduced by Dalal and Triggs (2005).

Mogelmose (2012) surveyed the traffic sign

detection field which illustrates both the early

model-based methods and learning-based

methods. A summary of the different techniques

surveyed can be seen below in table 1

(Mogelmose 2012). For more specific details of

each method please refer to Mogelmose (2012).

However trying to compare the performances of

each surveyed methods becomes very problematic

due to the inconsistencies in types of traffic signs

and the number of traffic signs used in each

method.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 6

Table 1.1: Summary of Surveyed TSD Techniques Until 2012

 The creation of the German Traffic Sign

Detection Benchmark (GTSDB) competition

(Houben 2013) has made the comparison of

different TSD methods much easier and has

significantly pushed state-of-the-art performances

on European signs. Typically TSR research was

split into two different methodologies, model-

based and learning-based approaches. However

more recently learning-based methods have

continued to outperform model-based methods

and are the preferred choice over model-based

approaches. This was also observed in the

GTSDB competition, where all of the frontrunners

used learning-based approaches. The top three

teams of the GTSDB competition where: Team

VISICS (Houben 2013), Team Litsi (Liang 2013),

and Team wgy@HIT501 (Wang 2013). Team

VISICS proposed a method that uses Integral

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 7

Channel Features (ICF), which was originally

proposed by Dollar et al. (2009) for pedestrian

detection. Team VISICS trained these features

using a boosted decision forest. Team Litsi

proposed a method that first segmented the image

into regions of interest, through shape matching

and color classification. They then used HOG

features and color histograms to train a SVM.

Team wgy@HIT501 also used HOG features,

however found the best candidates with LDA. The

best HOG feature candidates were trained using

an IK-SVM. The GTSDB was one of the major

catalysts that pushed the traffic sign detection

performance to near perfection for European

traffic signs.

 However, the research activity in U.S

traffic signs was significantly less than that of the

European traffic signs. Staudenmaier (2012)

proposed a method for U.S speed limit signs,

which used a Bayesian Classifier Cascade with

intensity features and tensor features. The worked

showed to have a good detection rate above 90%

but at the cost of multiple false positives per

image, which in comparison to the European

state-of-the-art methods was much worse. Liu

(2012) also ran into a similar issue of multiple

false positives with a good detection rate, but only

for speed limit signs. One of the main problems

for U.S traffic signs, was the fact that there wasn’t

a large dataset that can be used as a benchmark. It

wasn’t until Mogelmose (2012) that the LISA

dataset became available. This dataset became the

largest collection of U.S traffic signs in the world.

With it, Mogelmose (2015) was able to achieve

state-of-the-art performance by using Integral

Channel features and Aggregate Channel features

with a boosted decision tree forest. There was still

a performance gap between their performance and

the state-of-the-art performance of the European

dataset, however this gap was significantly less

than that of the methods used for U.S traffic signs.

Lim (2014) also presented work on the LISA

dataset with somewhat worse detection

performance that Mogelmose (2015), but tries to

address the issue of adverse weather conditions.

1.3 Thesis Overview

The remainder of this thesis will be divided

into the following sections. In Chapter 2 we will

discuss all of the necessary background

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 8

information. Including model-based approaches

vs. learning-based approaches, the current state-

of-the-art methods for the GTSDB and LISA

datasets, and deep learning architectures. Chapter

3 will explain the proposed method and the data

that we will be using in this work. Chapter 4 will

include the preliminary experiments and the

results of the experiments. Chapter 5 will discuss

the expected outcomes and a timeline for the

remaining tasks.

CHAPTER 2

BACKGROUND

In this chapter we will describe all of the

necessary background information for this work.

We will first describe the sliding window

detection method, which is implemented in most

object detection/recognition systems. We will then

transition into a detailed description of the current

state-of-the-art method for traffic sign detection.

Then the final section will discuss the basics of

deep learning and conclude with a detailed

description of Convolutional Neural Network

(CNN) architectures, which will be our proposed

method for traffic sign detection.

2.1 Sliding Window Detection

Most object detection/recognition systems will

typically implement a sliding window method.

The first step of any learning-based object

detection system, which implements a sliding

window, is to train a classifier from a dataset of

labeled images of size 𝑛 × 𝑚. The dataset should

contain positive and negative image samples.

Where the positive samples are large centered

instances of the object we are looking for, of size 𝑛 × 𝑚 . The negatives images in the dataset

should contain images with scenery similar to that

of the positive images however, they cannot

contain the object in them. To obtain the negative

samples, image patches of size 𝑛 × 𝑚 are

randomly extracted at different scales of the

negative images. Once the dataset is organized a

binary classifier needs to be trained on the

positive and negative samples. Instead of training

on the image patches themselves we train on

features that are extracted from the image patches.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 9

Figure 2.1: Sliding Window Process

Once the classifier is trained, we will test on test

images by extracting an image patch, extract the

features from the image patch, then pass the

features into the binary classifier, which will

determine whether it is or is not the object we are

looking for. Figure 2.1 illustrates this process for a

car detection system (Zimmerman 2012).

There are two subtleties that need to be examined

closer when applying the sliding window detector.

The first being that not all of the objects in the

image will be the same size as the 𝑛 × 𝑚 image

patches that the classifier was trained on. To

remedy this issue, we can slide the windows

across different scales of the same image (Forsyth

2012). The second subtlety deals with the

response of the classifier, if the classifier response

is above a specified threshold it will classify that

window as a detected object. However depending

on the distance between each window, we can

have multiple windows that detect the same

object, this can be visualized in figure 2.2. In

order to handle this issue we would apply a

method called Non-Maximum Suppression

(Forsyth 2012). Non-Maximum Suppression is a

method that looks at local responses of windows

classified as a detected object. If we have multiple

windows that are overlapping, where the

overlapping area is above a certain threshold, we

will only retain the window with the highest

response. To summarize, figure 2.3 shows the

sliding window detection algorithm (Forsyth

2012).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 10

Figure 2.2: Example of Non-Maximum Suppression

Figure 2.3: Sliding Window Detection Algorithm

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 11

2.1 CurrentState-of-the-Art Performance

Mogelmose (2015) has shown that Integral

Channel Features (ICF) and Aggregate Channel

Features (ACF) have achieved state-of-the-art

performance for U.S traffic signs on the LISA

dataset. In this section we will provide a detailed

description of Mogelmose’s (2015) methodology,

which we will use as the baseline measurements

of this work. The main focus of Mogelmose’s

(2015) methodology is in the feature extraction

stage. The features used were Integral Channel

features, which were first introduced by dollar

(2009) for pedestrian detection. Dollar later

introduced an extension of the Integral Channel

features, which were the Aggregate Channel

Features (Dollar 2014). The features were trained

using an AdaBoost Classifier. This section will

provide all of the necessary background

information for these topics.

2.1.1 Integral Images

In order to understand the specific

features used by Mogelmose (2015), we must give

some background information on integral images,

which were first introduced by Viola and Jones

(2001). An integral image is a quick way of

calculating rectangular features by summing the

pixel values in a given rectangular region of an

image. An integral image is defined at each pixel

by the following equation (Viola and Jones 2001):

 𝒊𝒊(𝒙,𝒚) = ∑ 𝒊(𝒙′ ,𝒚′)𝒙′≤𝒙,𝒚′≤𝒚 (1)

Where ii(x,y) is the integral image and i(x,y) is the

original image. Equation 1 tells us that the integral

image at pixel location x and y is the sum of the

all of the pixel values above and to the left of the

original image. We can calculate the entire

integral image in one pass over of the original

image by using the following two equations:

 𝒔(𝒙,𝒚) = 𝒔(𝒙, 𝒚 − 𝟏) + 𝒊(𝒙, 𝒚) (2)

 𝒊𝒊(𝒙,𝒚) = 𝒊𝒊(𝒙 − 𝟏, 𝒚) + 𝒔(𝒙,𝒚) (3)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 12

Figure 2.4: Integral Image Example

Where s(x,y) is the cumulative row sum of the

original image. Using an integral image we can

compute and sum or difference of any rectangular

area, this is illustrated in figure 2.4 (Viola and

Jones 2001).

If we want to find the sum of the pixels in the

rectangle D, in figure 2.4, we only need to use the

four reference points: 1, 2, 3, and 4. Where the

value at reference point 1 is the sum of the pixels

in rectangle A. The value at reference point 2 is

the sum of rectangles A and B. At reference point

3 the value is A+C. We can then compute the sum

within D as 4 + 1 − (2 + 3). This gives us the

ability to calculate the sum in constant time, O(1).

With the knowledge of integral images we can

now examine, in more detail, the Integral Channel

Features used in Mogelmose (2015).

2.1.2 Integral Channel Features

The idea behind ICF is to create multiple

image channels by making linear and non-linear

transformations of the original input image. The

channels are then transformed into integral image.

This allows for more efficient feature extraction

through the integral images. For a given input

image I, a channel can be viewed as a new image

where the original input pixels are mapped to the

new image channel, C. These mappings can be

either linear or non-linear transformations and can

be represented by the channel generating function

Ω. The transformation can be written:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 13

Figure 2.5: Example of Image Channels

 𝑪 = 𝛀(𝑰) (4)

There are multiple channel features that can be

extracted from a transformed image channel, some

that are more complex and longer to compute than

others. One of the fastest to compute is a first-

order channel feature, which is the sum of pixels

in a fixed rectangular region. We have shown in

the previous section that if the integral image is

generated we can calculate the sum of a

rectangular region in constant time, O(1), as it

only requires operations on 4 reference values. A

higher-order channel feature, is defined as a

feature that is computed using multiple first-order

features. An example of a higher-order feature is a

Haar feature (Viola Jones 2001), which involves a

sum of 2-4 rectangles arranged in patters that

compute first and second order image derivatives

at multiple scales.

 Before we extract the first-order or

higher-order channel features, we must first

transform out image into channels. Figure 2.5

shows an example of different types of channels

that were transformed from the original input

image. Each channel contains different pieces of

information from the input image. For example

the Gabor channels, in figure 2.5, are a

convolution of 4 oriented Gabor filters with the

input image. There are many different types of

transformations that can performed on the input

image. One such transform is a linear filter where

we convolve a linear filter, such as the Gabor

filter, with the input image. We also have non-

linear transformations, such as gradient

magnitudes, which looks at specific edge strengths

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 14

Figure 2.6: Aggregate Channel Framework

in the image, see figure 2.5(e). There are also

gradient histogram channels, which is a weighted

histogram where the gradient angle is the index of

the bin and the gradient magnitude at that angle is

the magnitude of the bin. We can express the

channels mathematically as:

 𝑸𝜽(𝒙,𝒚) = 𝐆(𝐱,𝐲) ∗ 𝟏[𝚯(𝐱, 𝐲) = 𝜽] (5) 𝑸𝜽(𝒙,𝒚) is the gradient histogram channel for

angle 𝜽 , where 𝐆(𝐱, 𝐲) and 𝚯(𝐱, 𝐲) are the

gradient magnitude and quantized gradient angle

of I(𝐱, 𝐲) , respectively.In chapter 3 we will

discuss the specific channels and features used for

our baseline results.

2.1.3 Aggregate Channel Features

Aggregate Channel Features (ACF) were

proposed as an extension of ICF by dollar (2014).

They were designed to provide a faster alternative

to ICF, but they have also shown to have slightly

better detection performance when compared to

ICF, in some cases. ACF uses the same principle

idea of ICF, which is computing features across

different image channels and in this work the

channels are actually the same channels used in

ICF. The ACF method proposed by dollar (2014)

for pedestrian detection can be visualized in figure

2.6.

 The first step to this process is the same as

the Integral Channel Features, where we map the

image into channels with some mapping

function, 𝐶 = Ω(𝐼) . Then next step is to sum

each block of pixels into an integral image. The

features are even simpler than ICF, they are just

summed blocks of pixels at various scales and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 15

Figure 2.7: AdaBoost Algorithm

stored in a feature vector. The classifier is learned

from the feature vectors using AdaBoost.

2.1.4 AdaBoost Classifier

The final part of Mogelmose’s (2015)

method is the classifier. Their method uses

machine learning technique called, AdaBoost.

This section will give a description of the

AdaBoost technique. Freund and Schapire (1996)

discovered that it was possible to build a strong

classifier from a weighted sum of weak classifiers,

which they called boosting. They defined a weak

classifier as a classifier that is just better than

random guessing, meaning that the accuracy of

the classifier is greater than 50%. The weights of

each classifier are learned by adjusting the

weights of the wrongly classified samples. Each

sample that is incorrectly classified, by the current

weak classifier, will have a higher weight on the

next iteration of the algorithm. The pseudocode

for the AdaBoost algorithm can be viewed in

figure 2.7.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 16

 We can see from figure 2.7 that we have

m labeled examples (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚). Where

the label values 𝑦𝑖 𝜖 {−1, +1} , where -1 will

represent negative samples and +1 will represent

positive samples. The first step is to initialize our

distribution Dt of our samples, which is first

initialized as each sample equally weight and the

sum of the weights of all the samples are equal to

1. In the algorithm we iterate from t=1,…,T,

where T is the number of weak classifiers. On

each iteration we are trying to find the weak

classifier, ℎ𝑡(𝑥) , that is going to give us the

smallest error rate. This is typically done by using

a linear decision stump. Also in the same iteration

we want to find the new distribution and the

weight of the weak classifier. The following

equation is used to calculate the weak classifier

weight, αt:

Where,

Equation 7 is just stating that the error rate of the

weak classifier is equal to the sum of the

misclassified sample weights. The next step of the

algorithm is to update all of the sample weights by

using the following equations:

Where Zt is the normalization factor, this will

result in the final strong classifier H(x) seen

below:

2.2 Deep Learning

In this section we will discuss, in detail, the

main components of deep learning. We will start

with the basic neuron and feed forward neural

networks. We will then proceed to discuss the

different components of Convolutional Neural

Networks (CNNs), which will be the architecture

proposed in this work.

 𝜶𝒕 = 𝟏𝟐 ∗ 𝒍𝒏(𝟏 − 𝜺𝒕𝜺𝒕)

(6)

 𝜺𝒕 = ∑ 𝑫𝒕(𝒊)𝒊 𝝐 𝒉𝒕(𝒙𝒊)≠𝒚𝒊

(7)

 𝑫𝒕+𝟏(𝒊) = 𝑫𝒕 ∗ 𝒆𝒙𝒑(−𝜶𝒕𝒚𝒊𝒉𝒕(𝒙𝒊))𝒁𝒕

(8)

 𝑯(𝒙) = 𝒔𝒊𝒈𝒏(∑ 𝜶𝒕𝒉𝒕(𝒙)𝑻
𝒕=𝟏)

(8)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 17

Figure 2.8: Biological Neuron (left) and Computational Model (right)

2.2.1 Feed Forward Neural Network

The original inspiration for Neural

Networks came from the attempt to model the

biological neural systems. The neuron is the basic

computational unit of the nervous system. The

nervous system is composed of billions of

interconnected neurons. A single neuron receives

many input signals from the dendrites and sends a

single output signal along the axon. Where the

axon branches to multiple synapses that connect to

other dendrites, of other neurons. Based off of this

biological knowledge, the computational model

was created. Where the signal (𝑥0) coming from

the axiom, of a previous neuron, is multiplied to

the weights (𝑤0) of the synapses. The signals of

all the synapses are summed and sent to an

activation function (𝑓), which then sends a single

signal back out the axiom. What the model tries to

learn are the weights of the synapses. We can

visualize the biological neuron and the

computational model of the neuron below in

figure 2.8 (Li 2015).

The computational model output of a single

neuron can be expressed mathematically as:

There are many different types of activations

functions that can be used, as the output axiom,

but the one that has become the most popular is

the Rectified Linear Unit (ReLU). The ReLU is

simply a ramp function and expressed as:

 𝒚(𝒙, 𝒃) = 𝒇 (∑ 𝒘𝒊𝒙𝒊 + 𝒃𝒊)

(9)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 18

Figure 2.9: Fully Connected Feedforward Neural Network

 A complete Neural Network is an

interconnection of the modeled neurons. Where

the output of one neuron will be the input of

another. If we have multiple neurons then all of

these outputs can be inputs of a single neuron.

However, this should not be interpreted as a big

blob of neurons, but as neurons connected in

layers. We can visualize this in figure 2.9 (Li

2015).

 On the left of figure 2.9 we have a 2-layer

Neural Network and on the right we have a 3-

layered Neural Network, typically when

discussing an N-layer Neural Network the input

layer is excluded. The architecture or size of a

Neural Network is defined by two measures, how

many layers we have and how many neurons are

in that layer.

 Now that we have a general idea of the

architecture we need to examine how to optimize

the parameters for our data. Once the architecture

is decided upon we need to decide which

parameters will minimize the loss (or error)

function. Typically the loss function is defined by

the mean square error (Bishop 2007):

Where 𝑤 , is a vector of the parameters of the

Neural Network architecture (𝑛𝑛(𝑥𝑖 ,𝑤)); 𝑥𝑖 and 𝑦𝑖 are the feature vector input and the feature

vector labels respectively; and 𝑛 is the number of

 𝒇(𝒙) = 𝒎𝒂𝒙(𝟎,𝒙)

(10)

 𝑴𝑺𝑬(𝒘) = 𝟏𝟐𝒏 ∑(𝒚𝒊 − 𝒏𝒏(𝒙𝒊,𝒘))𝟐𝒏
𝒊=𝟏

(11)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 19

Figure 2.10: Neural Network (left) and Basic Neuron Arrangement of CNN (right)

training examples used. As stated before the goal

is to find the parameters, 𝑤, that will minimize the

MSE:

In order to minimize the mean square error there

are many different numerical methods we can

choose however the most popular is the gradient

decent algorithm. The idea of gradient decent is to

find the direction of steepest decent in a local

area. The first step is to initialize all of our

parameters. After they are initialized, we will

update the each parameter by taking the derivate

of the mean squared error with respect to each

parameter and subtracting it from the original

parameter value. The parameter update equation

can be seen below:

Where 𝛼 is called the learning rate and can be

thought of as the size of the step we want to take

in our local area. Also to note, one update of the

parameters is called an epoch, and when

implementing it practically we will limit the

number of epochs or stop updating the parameters

if it converges, meaning:

Where 𝜀 is a very small value. By using gradient

decent we will be able to learn all of the

parameters, which will optimize our model to

minimize the model’s MSE.

2.2.2 Convolutional Neural Network

Similar to Neural Networks,

Convolutional Neural Networks (CNNs) are made

up of neurons that have learnable weights. They

 𝒂𝒓𝒈 𝐦𝐢𝐧𝒘 𝑴𝑺𝑬(𝒘)

(12)

 𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶 ∗ 𝛁𝑴𝑺𝑬(𝒘𝒕) (13)

 |𝒘𝒕+𝟏 − 𝒘𝒕 | < 𝜺 (14)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 20

have a loss function and even the last layer of the

CNN can be thought of as a fully connected neural

network. However Convolutional Neural

Networks are specialized for processing data with

a grid-like topology, such as images. The

difference between the CNN and a Neural

Network is that the layers of a CNN have neurons

arranged in 3 dimensions, width, height, and

depth. The high dimensionality of the image data

makes it impossible to use a single fully

connected neural network. We will see that

through the architecture of the CNN we will be

able to reduce the full image into a single neuron.

A visualization of the neuron arrangement of a

CNN can be seen below in figure 2.10 (Li 2015).

 The CNN’s architecture has three main

layers: the Convolutional Layer, the Pooling

Layer, and the Fully-Connected Layer. A basic

CNN architecture may be structured with the input

image connected to the Convolutional layer which

is connected to a Pooling layer and finally

connected to a Fully-Connected layer. In the

remainder of this section we will give a

description of each layer.

 The first layer we are going to discuss is

the convolutional layer, which is the main

building block of the CNN. The convolutional

layer as the name suggests, applies multiple

convolutions to the input image with filters that

are learned. The filters will slide across the

image’s width, height and then depth, which

generates a new image. The filters are stacked on

top of each other giving the depth dimension that

we see in figure 2.10. Intuitively, we want to learn

these filters so that when they see a specific

feature they will activate a response. The reason

for these filters is so the network can create a local

connectivity of neurons instead of having

learnable weights at each pixel. For example if we

have a 32x32x3 image, where the depth is 3 for

the RGB channel, if we assigned learnable

weights to each pixel we would have a 3072

parameters that need to be learned. However if we

have a convolutional filter that is 5x5 now we

only have to learn 5x5x3=75 parameters. Note

that the depth is three because we must apply the

filter to each channel. This also gives us the

ability to use stack multiple filters at each

convolutional layer and still have less parameters

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 21

Figure 2.11: Pooling Process

to learn. The number of filters, or the depth, that

we use can be analogous to the number of neurons

in a hidden layer of a Feedforward Neural

Network.

 The next layer we will discuss is the

Pooling/Sub-sampling layer. The Pooling layer

will be found between successive Convolutional

layers. The Pooling layer is needed to reduce the

spatial size of the output of the convolutional

layer. The Pooling layer is applied to every depth

image generated from the Convolutional layer.

The most common form of pooling is the max 2x2

filter, which downsamples the input image by

taking the max value of every 2x2 block as it

slides along the height and width of the image.

There are two specific hyperparameters associated

with the Pooling layer. The first is the spatial

extent, F, which is the size of the downsampling

filter. The second is the stride, which is the

distance between the filters as it moves from left

to right and top to bottom of the image. The

pooling process can be seen below in figure 2.11

(Li 2015).

On the left of figure 2.11 we can see how the

Convolutional Layer is downsampled to half the

size of the original input image, through the

pooling process. On the right of the figure we see

how the down sampling is performed using max

pooling with 2x2 filters with a stride of 2. A

complete architecture can be visualized in figure

2.12.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 22

Figure 2.12: Full Convolutional Neural Network Architecture

 CHAPTER 3

DATA & EXPERIMENTS

3.1 Data

In this section we describe the details of the

dataset used for this experiment. The dataset used

for the detection of U.S. traffic signs is the LISA

dataset, the largest collection of publicly available

U.S traffic sign images.

3.1.1 LISA Dataset

For computer vision and machine learning

applications the dataset is one of the most

important components of the system. When a

dataset is made publicly available, it not only

helps to save time and energy but it also helps to

compare state-of-the-art results, since the

performance is evaluated on the same data. For

this reason the LISA dataset was created

(Mogelmose 2012). Although there are datasets

publicly available for TSR, most of these datasets

are for European, or Vienna Convention, traffic

signs. The LISA dataset was created exclusively

for U.S traffic signs. As there were no large

existing U.S traffic sign datasets publicly

available at the time of its creation.

 The LISA dataset was developed by the

Laboratory for Intelligent and Safe Automobiles

at the University of California, San Diego

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 23

Original LISA Traffic Sign Dataset LISA-TS Extension GTSD

 Training Set Testing Set Combined

Number of

classes:

47 31 17 35 4

Number of

annotations:

7855 3672 2422 6094 1206

Number of

images:

6610 3307 2331 5638 900

Sign Sizes,

longest edge:

6 – 168 pixels 23–222 pixels 25–222 pixels 23–222 pixels 16-128 pixels

Image Sizes: 640x480 to 1024x522 1280x960 1280x960 1280x960 1360x800

Videos

Included:

Yes Yes Yes Yes No

Table 3.1: Traffic Sign Dataset Statistics

(UCSD) in 2012. When it was first introduced the

dataset contained over 6000, fully annotated,

images contain U.S traffic signs from in-car video

cameras around the San Diego area. The dataset

also has approximately 10,000 negative images,

that don’t contain traffic signs, but are still

captured from an in-car video camera. The image

sizes vary from 640x480 to 1024x522 pixels. The

type of traffic signs vary over 49 different classes

of traffic signs and three so-called Superclasses

which are: warning signs, speed limit signs and

no-turn signs.

 The same authors of the original LISA

dataset made an extension to this dataset in 2015

(Mogelmose 2015). This extension almost

doubled the amount of positive annotated high-

resolution images. The extended images were also

collected in and around the San Diego, California

area. It is important to note that the weather

conditions, during image acquisition, were

generally dry and sunny. No adverse weather

conditions were captured in this dataset. The

hardware used to capture the images, for the

extended dataset, was a Point Grey FL3 color

camera with a resolution of 1280x960 pixels. It is

also important to note that the extended dataset

split the data into a training and testing set. Table

3.1 (Mogelmose 2015) shows the statistics of the

original LISA dataset the extended dataset with a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 24

Table 3.2: Original LISA Dataset Breakdown by Class

Table 3.4: LISA Dataset Extension (Testing) Breakdown by Class

comparison to

the German Traffic Sign Detection (GTSD)

dataset.

 One important component of object

detection is the aspect ratio of the objects in the

data. Many of the traffic signs, in the LISA

dataset, have an aspect ratio of approximately 1.0.

The remaining traffic signs are between 1.2 and

0.8, which gives us a lot of insight into the design

of our object descriptor. With this knowledge we

will be more inclined to have a square detection

box when we implement the sliding window

detector, which will be discussed later. For more

specific details of the type of signs and classes in

the LISA dataset refer to Tables 3.2-3.4.

3.2 Experimental Setup

The proposed work aims to do a

comparative study of the state-of-the-art methods

verses that of deep learning architecture, for

traffic sign detection. This section describes the

specifics of the detailed setup and methodology

used for the baseline results.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 25

Table 3.3: LISA Dataset Extension (Training) Breakdown by Class

 LISA-TS LISA-TS Extension Total

 Positive Negative Positive Negative Positive Negative

Training 6284 12000 2939 6000 9223 18000

Validation 1571 3000 735 1500 2306 4500

Table 3.5: Number of Samples used for Training and Validation

3.2.1 Data Preparation

The first step of any machine learning or

computer vision task is to first prepare the data.

The data preparation step taken in this work are

similar to that of Mogelmose (2015). When

preparing the data, we split the dataset into a

training, validation, and test set. This was done for

both the original LISA dataset and the extensions.

Table 3.5 shows how the positive and negative

samples were separated.

 It is also important to note that the

original LISA-TS dataset contains 11634 negative

color images of size 704x480 pixels. The negative

images are image taken from an in-car video

camera but do not have any traffic signs in the

scene. To get the negative samples random image

patches are extracted from the negative images at

different scales of the images. It is required for the

positive and negative sample image patches to be

the same size. The sample image patch sizes that

are used in this work are 48x48 pixels.

 After the separation of the data we want

to preprocess each of the samples. The samples

are preprocessed using a contrast-limited

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 26

histogram equalization (CLAHE) (dollar 2014).

CLAHE is an adaptive histogram equalization

method that reduces the excessive contrast and

noise that may arise when performing an ordinary

histogram equalization. Ordinary histogram

equalization looks at the CDF of each pixel value

and attempts map new pixel value so that the

PDF, of the pixel values, becomes uniform.

CLAHE does something similar however instead

of looking at all of the pixel values in the image it

only considers the CDF of the pixels in a nearby

tile. Resulting in a local contrast enhancement,

which reduces the noise that would normally be

enhanced across the whole image. Once CLAHE

is finished, the data will be properly separated and

preprocessed, which will then allow for feature

extraction.

3.2.2 Feature Extraction and Training

Once the data has been separated and

preprocessed, the next stage is feature extraction.

The features that are extracted are Integral

Channel Features and Aggregate Channel

features, as was proposed by Mogelmose (2015).

As described above the first step of ICF is to

compute the different channels from the input

image. The features are computed over 10

different channels, these channels are the

following: three LUV color space channels, one

unoriented gradient magnitude channel, and six

gradient channels in varying directions. Each

channel is transformed into an integral image

channel, in order to speed up the computations of

the features. First-order Haar-like features are

computed for each of the 10 different integral

channels. The Haar-like features are simply the

difference of the sum of two rectangular image

filters. After the features are computed, they are

trained using an AdaBoost classifier with 200

depth-2 decision trees as weak learners.

Aggregate Channel Features are similar to

ICF, however they use even simpler features in

order to speed up the computations. The initial

process of transforming the input image into 10

different integral channels is the same. In fact the

channels used in ICF are the same ones used for

ACF. However, the difference between the two

methods is that the features ACF uses, are a

summing up of blocks of pixels at various scales.

Similarly after the features are computed, they are

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 27

trained using an AdaBoost classifier with 200

depth-2 decision trees as weak learners. The ICF

model and the ACF model are the two models

used as our baseline comparisons.

3.2.3 Convolutional Neural Network

Setup

The purpose of this work is to do a

comparative study of U.S traffic sign detection.

We will compare the current state-of-the-art

method with a deep learning architecture. The

deep learning architecture is going to be a

Convolutional Neural Network (CNN). The big

difference between the deep learning architectures

and knowledge based architectures, like the ICF

model and the ACF model, is that we eliminate

the feature extraction stage. We instead learn the

features through the different filters in the

convolutional layers of the CNN. Unlike the data

preparation discussed in the previous section, we

will not have to preprocess the samples or extract

the features. Instead, we will only pass the

positive and negative image patches to the CNN

for training.

There are many design aspects when

creating a CNN architecture, such as the type of

activation function to use, the number of filters or

neurons in the convolutional layer, the type of

pooling in the pooling layer, the number of

neurons in the fully connected output layer, and

number of convolutional and pooling layers used.

In our study we will examine multiple

architectures but we will keep a couple of

components constant. The activation functions

used will consistently be a rectified linear unit

(ReLU). Also the pooling layer will be a 2x2 max

pooling filter with a stride of 2, so that the pooling

filter is not overlapping. Instead we will

experiment with the depth of the architecture, in

other words we will vary the number of

convolutional layers and pooling layers. The

number of filters or neurons in the convolutional

layer will be experimented with. As well as, the

number of neurons in the fully connected layer.

The performance of each architecture will be

examined and compared with the ICF and ACF

models. The baseline detection performance of the

ICF and ACF models, proposed by Mogelmose

(2015), will be discussed in the next chapter.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 28

Preliminary Experiments & Results

4.1 Evaluation

This section discusses how the detection

performance will be evaluated. The standard

measure for object detection tasks is the PASCAL

measure, which was introduced in (Everingham,

2010). All of our models will be evaluated with

the PASCAL measure. The PASCAL measure is

used to determine whether one of the positively

detected bounding boxes, in the test image, is a

true positive. This is determined by the following

equation:

Where BBdt is the detected bounding box and BBgt

is the ground truth bounding box. Equation 15

tells us that if the overlap between the ground

truth and the detected bounding boxes is greater

than 50% then the detected bounding box will be

considered a true positive.

 The PASCAL measure is a measure of

true positives however this is not a measure of the

overall performance of the system. The detection

performance of the system is evaluated by the area

under the curve of a precision recall graph.

Precision is defined as the percentage of retrieved

items, or in our case detection boxes, that are

actually relevant. Recall is defined as the

percentage of relevant items that are detected or

recovered. We can formally define them with the

following equations:

Where TP is the total number of true positives, FP

is the total number of false positives, and FN is

the total number of false negatives.

4.2 Baseline Results

In this section we will discuss the detection results

presented by Mogelmose (2015), which will be

replicated in our work. The previous section

explained how detection performance is evaluated

by the area under the curve of the precision recall

graph. The precision recall curves evaluated for

ICF and ACF models presented by Mogelmose

(2015), for both the LISA and GTSD datasets, can

be seen below in figure 4.1 and

 𝒂𝟎 ≡ 𝒂𝒓𝒆𝒂(𝑩𝑩𝒅𝒕 ∩ 𝑩𝑩𝒈𝒕)𝒂𝒓𝒆𝒂(𝑩𝑩𝒅𝒕 ∪ 𝑩𝑩𝒈𝒕) > 𝟎. 𝟓 (15)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 29

Figure 4.1: Precision-Recall Curves for Detection of U.S Traffic Signs

 figure 4.2 respectively.

3.CONCLUSION

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷𝑻𝑷 + 𝑭𝑷 (16)

 𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷𝑻𝑷 + 𝑭𝑵 (17)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 30

Figure 4.2: Precision-Recall Curves for Detection of European Traffic Signs

 LISA Dataset GTSD Dataset

 Speed

Limit

Warning No

Turn

Stop Mean

AUC

Prohibitory Danger Mandatory Mean

AUC

ACF 84.31 98.98 96.17 96.11 93.89 99.86 100.00 98.38 99.41

ICF 87.91 87.32 91.09 96.03 90.59 99.58 99.15 98.52 99.08

8bit-MCT

AdaBoost

(Lim 2014)

81.43 21.22 57.63 65.81 56.52 N/A N/A N/A N/A

Boosted_ICF

(Houben 2013)

N/A N/A N/A N/A N/A 100.00 100.00 96.98 98.99

HOG + SVM

(Liang 2013)

N/A N/A N/A N/A N/A 100.00 98.85 92.00 96.95

HOG_LDA_SVM

(Wang 2013)

N/A N/A N/A N/A N/A 100.00 99.95 93.99 97.98

Table 4.1: State-of-the-Art Detection Performances on the LISA and GTSD Datasets

Mogelmose demonstrated the detection

performance for the U.S traffic signs was slightly

worse than the performance on European Traffic

signs. In this work we want to do a comparative

study of a deep learning network versus other

knowledge based representations. To do this we

need performance evaluations of different

methods. Table 4.1 provides a performance

summary of the top performing algorithms for

both the LISA and GTSD datasets.

References

 Bishop, C. (2007). "Pattern Recognition and

Machine Learning" (2nd ed). New York,

New York, USA: Springer.

Dalal, N. and Triggs, B. (2005) "Histograms of

oriented gradients for human

detection," Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, San
Diego, CA, USA, 2005, pp. 886-893 vol. 1.

doi: 10.1109/CVPR.2005.177

Dollár, P., “Piotr’s Computer Vision Matlab

Toolbox (PMT).” [Online]. Available:

http://vision.ucsd.edu/\ignorespacespdollar/t
oolbox/doc/index. html

Dollar, P., Appel, R., Belongie, S., and Perona, P.

(2014), "Fast Feature Pyramids for Object

Detection," in IEEE Transactions on Pattern

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 31

Analysis and Machine Intelligence, vol. 36,

no. 8, pp. 1532-1545, Aug. 2014. doi:
10.1109/TPAMI.2014.2300479

Dollár, P., Tu, Z., Perona, P., and Belongie S.

(2009), “Integral channel features,” in Proc.

BMVC, vol. 2, no. 3, p. 5, 2009

Everingham, M., Gool, L., Williams, C., Winn, J.,

and Zisserman, A. (2010). The Pascal Visual

Object Classes (VOC) Challenge. Int. J.

Comput. Vision 88, 2 (June 2010), 303-338.

DOI=http://dx.doi.org/10.1007/s11263-009-

0275-4

Freund, Y. and Schapire, R.E. (1996),

``Experiments with an new boosting

algorithm, Machine Learning: Proceedings

of the Thirteenth International Conference,

Morgan Kauffman, SanFrancisco, pp.148-
156 (1996). Introduced AdaBoost

Friedman, J., Hastie, T., and Tibshirani, R. (2000),

“Additive LogisticRegression: A Statistical

View of Boosting,” Annals of Statistics,vol.

38, no. 2, pp. 337-374, 2000.

Forsyth, D. and Ponce, J. (2012). Computer Vision

a Modern Approach (2nd ed., p. 549). New

York, New York, USA: Pearson

Houben, S., Stallkamp, J., Salmen, J., Schlipsing,

M., and Igel, C. (2013), "Detection of traffic

signs in real-world images: The German
traffic sign detection benchmark," Neural

Networks (IJCNN), The 2013 International

Joint Conference on, Dallas, TX, 2013, pp.

1-8. doi: 10.1109/IJCNN.2013.6706807

Krizhevsky, A., Sutskever, I., and Hinton, G.

(2012), Imagenet classification with deep

convolutional neural networks. In NIPS,

2012. 1, 2, 3, 4

Li, F., Karpathy, A., and Johnson, J. (2015),

"CS231n: Convolutional Neural Networks

for Visual Recognition,"

www.http://cs231n.stanford.edu/

Liang, M., Yuan, M., Hu, X., Li, J., and Liu, H.

(2013) “Traffic sign detection by ROI
extraction and histogram features-based

recognition,” in Proc. IEEE IJCNN, Aug.

2013, pp. 1–8.

Lim, K., Lee, T., Shin, C., Chung, S., Choi, Y.,

and Byun, H., (2014). Real-time
illumination-invariant speed-limit sign

recognition based on a modified census

transform and support vector machines.

In Proceedings of the 8th International

Conference on Ubiquitous Information

Management and Communication (ICUIMC

'14). ACM, New York, NY, USA, , Article
92 , 5 pages.

DOI=http://dx.doi.org/10.1145/2557977.255

8090

Liu, W., Wu, Y., Lv, J., Yuan, H., and Zhao, H.

(2012) "U.S. speed limit sign detection and
recognition from image sequences," Control

Automation Robotics & Vision (ICARCV),

2012 12th International Conference on,

Guangzhou, 2012, pp. 1437-1442.

doi: 10.1109/ICARCV.2012.6485388

Loy, G. and Barnes, N. (2004), “Fast shape-based

road sign detection for a driver assistance

system,” in Proc. IEEE/RSJ Int. Conf. IROS,

2004, vol. 1, pp. 70–75

Mogelmose, A., Liu, D., and Trivedi, M. M.
(2015), "Detection of U.S. Traffic Signs,"
in IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 6, pp.

3116-3125, Dec. 2015. doi:

10.1109/TITS.2015.2433019

Mogelmose, A., Liu, D., and Trivedi, M. M.

(2014), "Traffic sign detection for U.S.

roads: Remaining challenges and a case for

tracking," Intelligent Transportation Systems

(ITSC), 2014 IEEE 17th International

Conference on, Qingdao, 2014, pp. 1394-

1399. doi: 10.1109/ITSC.2014.6957882

Mogelmose, A., Trivedi, M. M., and Moeslund, T.

B. (2012), "Vision-Based Traffic Sign

Detection and Analysis for Intelligent Driver

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 32

Assistance Systems: Perspectives and

Survey," in IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 4, pp.

1484-1497, Dec. 2012.

doi: 10.1109/TITS.2012.2209421

Staudenmaier, A., Klauck, U., Kreßel, U.,

Lindner, F., and Wöhler, C. (2012)
“Confidence measurements for adaptive

Bayes decision classifier cascades and their

application to US speed limit detection,” in

Proc. Pattern Recognit., ser. Lecture Notes in

Computer Science, vol. 7476, pp. 478–487,

2012.

Vázquez-Reina, A., Lafuente-Arroyo, S.,

Siegmann, P., Maldonado-Bascón, S., and

Acevedo-Rodríguez, F. (2005), “Traffic sign

shape classification based on correlation

techniques,” in Proc. 5th WSEAS Int. Conf.

Signal Process., Comput. Geometry Artif.
Vis., 2005, pp. 149–154.

Viola, P. and Jones, M. (2001), "Rapid object

detection using a boosted cascade of simple

features," Computer Vision and Pattern

Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society

Conference on, 2001, pp. I-511-I-518 vol.1.

doi: 10.1109/CVPR.2001.990517

Wang, G., Ren, G., Wu, Z., Zhao, Y., and Jiang,

L. (2013), “A robust, coarse-to- fine traffic
sign detection method,” in Proc. IEEE
IJCNN, Aug. 2013, pp. 1–5.

United Nations (1978), "Vienna Convention on

road signs and signals,"

Zimmerman, A (2012), "Category-level

Localization", Visual Geometry Group

University of Oxford,

http://www.robots.ox.ac.uk/~vgg

http://www.ijsrem.com/

	Traffic Sign Recognition
	Jayapratha T , Computer science and engineering , Sri Eshwar college of Engineering
	Dinesh Kumar S , Computer science and engineering , Sri Eshwar college of Engineering
	Guna seelan D , Computer science and engineering , Sri Eshwar college of Engineering
	Avinash Madhav K , Computer science and engineering , Sri Eshwar college of Engineering
	Jagadheeshwaran A , Computer science and engineering , Sri Eshwar college of Engineering
	_ ***_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ ABSTRACT
	Introduction
	1.1 Traffic Sign Recognition Overview
	1.2 Related Work
	1.3 Thesis Overview
	2.1 Sliding Window Detection
	2.1 CurrentState-of-the-Art Performance
	2.1.1 Integral Images
	2.1.2 Integral Channel Features
	2.1.3 Aggregate Channel Features
	2.1.4 AdaBoost Classifier
	2.2 Deep Learning
	2.2.1 Feed Forward Neural Network
	2.2.2 Convolutional Neural Network
	3.1 Data
	3.1.1 LISA Dataset
	3.2 Experimental Setup
	3.2.1 Data Preparation
	3.2.2 Feature Extraction and Training
	3.2.3 Convolutional Neural Network Setup
	4.1 Evaluation
	4.2 Baseline Results

