

WIND LOAD ANALYSIS OF HIGH RISE BUILDING WITH AND

WITHOUT SHEAR WALL AND ITS COMPARISON

Kamla patel¹, **Sumit gupta²** ¹Mtech scholar, structural engineering, BIT-Durg, C.G. ₂Ast. Professor, structural engineering, BIT-Durg, C.G.

ABSTRACT-Indian standard code IS 875(part-3)-1987 gives the specifications for wind load analysis on the different structures. The analysis is based on various steps provided for wind pressure intensity, wind load calculation by wind coefficients. Behaviour of building by the wind pressure is dependent on the angle on which the wind is striking the structure.Wind load is dangerous for the high rise building ,hence various techniques are used to reduce its effects. Shear wall is a good option for this, which is effected up to approximate 70 stories. It is expected in this study that a shear walled structure will show the better result and stability against normal building without shear wall. This study compares the performance of buildings with and without shear wall in terms of deflection of at the different stories and various parameters. As a case study, a 40 storey building designed for Gravity loads(dead load +live load) as well as lateral load (wind load) as per IS:875(part-3)-1987 for wind zone IV is considered. This paper also provides other important conclusions on wind load design provisions and shear wall specifications.

Keywords- wind velocity, wind pressure intensity, gravity loads, wind force at diff. Height, etc.

INTRODUCTION-The necessity of high rise building in urban areas is to minimise the land requirements. The wind force acts on high rise building structure very high compared to low rise building. Worldwide as it's necessity has increased hence the various code are adopted in different country to analyse and design of high rise structure. According national building code 2005 of India, the building of height more than 15 m is called high rise building. Many techniques are used to minimise the wind effect on high rise building like Rigid frames, braced hinge frame, Shear wall /hinged frame, Outrigger Structures. Shear wall / Rigid frame of the concrete shear wall and concrete frame is effective up to 70 stories. It creates shear wall-frame interaction that resist the lateral load by wind or earthquake. The main objective of every structural system is to transfer gravity load to the foundation of building. Dead load and live load are the primary load created from the gravity effect. The lateral loads like wind or earthquake also affects the building other than this dead and live load. High stresses are developed due to these lateral loads and also these create sway movement and cause vibration in the structure. Therefore, the building must have sufficient strength and stiffness to encounter the vertical loads and lateral loads respectively.

1.1Specific iObjectives

The iprimary objective of this study is to analyse the building with and without shear wall and compare the results of deflection and other parameters. In the analysis frame elements were used instead of plane stress elements in analysis and modelling of shear walls to reduce the time requirements and to increase the performance of the building.

1.2Experimental Study Plan

Dead load and live load have been taken as per IS 875 (Part 1) (1987) and IS 875 (Part 2) (1987) respectively. Wind load calculation has been done based on the IS 875 (Part 3) (1987). Analysis is being done by STAD-PRO by providing adequate material properties and dimension as per the required building standard.

1.3Layout

This study report is summarised in total 6 chapters, each chapter deals with specific objective and divided according to specific work area. Chapter 1 gives the general information and introduction about the work also about the objective and procedure. Chapter 2 is about the literature work, terms used in the study and work of the previous studies. Chapter 3 deals with the methodology adopted for analysing the structure and also about the detailing of the problem. Chapter 4 gives the modelling done in STAAD-PRO software and analysis separately of both buildings and about the results obtained from the analysis. Chapter 5 is about the comparisons of the results obtained from chapter 4 and a discussion is also made to discuss the results. Chapter 6 is concluded the whole study work.

T

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 05 Issue: 06 | June - 2021

LITERATURE REVIEW- The elevator and the introduction of structural steel, towers and skyscrapers have continued to soar skyward, where they are buffeted in the wind's complex environment. Unfortunately, these advances in height are often accompanied by increased flexibility and a lack of sufficient inherent damping, increasing their susceptibility to the actions of wind. While major innovations in structural systems have permitted the increased lateral loads to be efficiently carried, the dynamic nature of wind is still a factor, causing discomfort to building occupants and posing serious serviceability issues. The next generation of tall buildings research has been devoted in part to the mitigation of such wind-induced motions via global design modifications to the structural system.

2.1 Codal Provision

In the totally different countries, totally different codes are adopted to design shear wall structure system and wind load consideration and its specification. Some vital code details are enclosed for this study, these ar as follows:

2.1.1 AS/NZS 1170.2:2011

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee, BD-006, General Design Requirements and Loading on Structures, to supersede AS/NZS 1170.2:2002.

The objective of this Standard is to provide wind actions for use in the design of structures subject to wind action. It provides a detailed procedure for the determination of wind actions on structures, varying from those less sensitive to wind action to those for which dynamic response must be taken into consideration.

The objectives of this revision are to remove ambiguities, to incorporate recent research and experiences from recent severe wind events in Australia and New Zealand.

2.1.2 IS 875(Part-3)-1987

This Part (Part 3) deals with wind load to be considered when designing buildings, structures and components thereof. In this revision, many important modifications have been made from those covered in the 1964 version of IS :875

This standard gives wind forces and their effects (static and dynamic) that should he taken into account when designing buildings, structures and components thereof.

2.1.3 IS 456-2000

This standard was first published in 1953 under the title 'Code of practice for plain and reinforced concrete for general building construction' and subsequently revised in 1957. The code was further revised in 1964 and published under modified title 'Code of practice for plain and reinforced concrete', thus enlarging the scope of use of this code to structures other than general building construction also. The third revision was published in 1978, and it included limit state approach to design. This is the fourth revision of the standard. This revision was taken up with a view to keeping abreast with the rapid development in the field of concrete technology and to bring in further modifications/improvements in the light of experience gained while using the earlier version of the standard.

2.1.4IS 1893(Part-1)-2002

Part 1 contains provisions that are general in nature and applicable to all structures. Also, it contains provisions that are specific to buildings only. Unless stated otherwise, the provisions in Parts 2 to 5 shall be read necessarily in conjunction with the general provisions in Part 1.

2.1.5 IS 13920-1993

Whilst the common methods of design and construction have been covered in this code, special systems of design and construction of any plain or reinforced concrete structure not covered by this code may be permitted on production of satisfactory evidence regarding their adequacy for seismic performance by analysis or tests or both.

METHODOLOGY-Analysis is being done by STAD-PRO by providing adequate material properties and dimension as per the required building standard.

The aim of the project is to briefly know about the shear wall concepts and structural concepts through computer aid STAAD-PRO software and the previous study and theory. Briefly I have gone through following points through out of project work-

- ✓ Understanding of design and detailing concept.
- Main objective i.e. using STAAD-pro software for the analysis of wind load and shear wall.
- \checkmark Learning of analysis and design methodology which can be very useful in the field.
- Understanding of wind load design concept on the building.
- ✓ Approach for professional practice in the field of structural engineering.

L

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 05 Issue: 06 | June - 2021

3.1 Methodology Of The Work

The whole analysis is done by the STAAD-PRO.V8i software, in which pressure intensity at different height of the building is predefined for the American code ASCE-07, but not for any other code. This analysis is done on the basis of Indian standard code IS- 875(part-3) for which the intensity values were calculated through the codal provisions.

3.2 Building Details

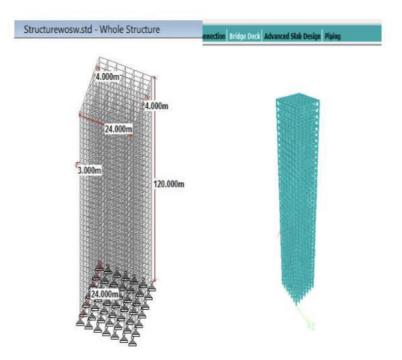
In this work following building details are to be considered: No. of stories=40 Length=24m, each bay @4m Height=120m, each bay @3m Width=24m, each bay @4m Live Load; Area load= 2.5Kn/m^2 Location – Delhi Wind zone –IV wind speed =47m/s Wind Load; as per the IS-875(Part-3) Concrete grade M30 Steel grade Fe415 Risk coefficient ,k1=1.07(considered to be an important building with design life = 100 years)

Terrain Coefficient, k2= as per the table-2 [Building is to be considered in terrain type-3{surrounding structures are the height of between 10m to 25m} and class-B {glazing or roofing type of structural components having its maximum dimension(horizontal or vertical) between 20 to 50m]

 \Box Topography Factor, k3=1.0(upwind slope is assumed to be less than 30)

 \bot For the given structures ,wind pressure is calculated separately (manually) and these values were added in the analysis by staad-pro by providing 80% exposure to the wind.

oxdot To see the effect of wind , a separate envelope of wind load in +X direction was added in the modeling.


 ${\mbox{\sc L}}$ Concrete design as per the IS-800 ,was added in modeling to perform concrete design.

L A comparative analysis is also done after obtaining all results of both buildings ie; with shear wall and without shear wall.

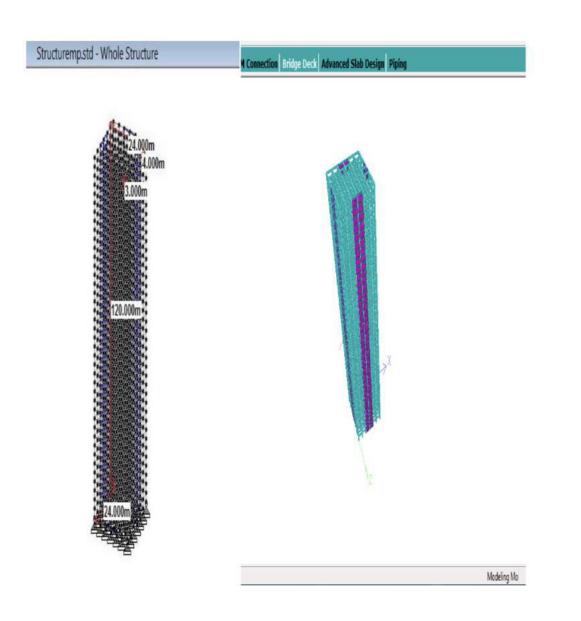
MODELING AND ANALYSIS

4.1 Model of building without shear wall

4.2 STAAD-Pro result

turewosw.std - Whole Structure	- I 🔀			Structurev	vosw.std -	Node Dis	placement	S:		• 8
		1	AII/	Summary /						
				Horizontal	Vertical Y	Horizontal	Resultant	rX	Rotational	rZ
		Node	UC	mm	mm	mm	mm	rad	rad	rad
4.000m 4.000m	24.000m	286	1 DL	-0.030	-17.790	0.036	17.790	0.000	-0.000	0.00
			2LL	-0.039	-8.630	0.060	8.630	0.000	0.000	0.00
			3 WL+X	141.886	-3.499	0.001	141.929	-0.000	0.000	-0.00
		287	1 DL	-0.037	-17.341	0.036	17.341	0.000	-0.000	0.000
			2LL	-0.047	-8.017	0.047	8.018	0.000	-0.000	0.000
			3 WL+X	141.892	-5.957	-0.004	142.017	-0.000	0.000	-0.00
		288	1 DL	0.000	0.000	0.000	0.000	-0.000	-0.000	0.000
		288	10L 21L	0.000	0.000	0.000	0.000	-0.000 -0.000	-0.000	0.00
		<	211	0.000	0.000	0.000	0.000	-0.000	-0.000	0.00
			21L Struct	0.000 turewosw.st Relative Disp Dist	0.000 td - Beam lacement /	0.000 Relative D (Max Relative D	0.000 isplacemer ive Displac z	-0.000 nt Detail: ements / Resultant	-0.000	0.00
		< ब	21L Struct	0.000 turewosw.st Relative Disp	0.000 td - Beam Nacement /	0.000 Relative D (Max Rela	0.000 isplacementive Displac	-0.000 nt Detail: rements /	-0.000	0.00
		<	21L Struct	0.000 turewosw.st Relative Disp Dist m	0.000 td - Beam Nacement, mm	0.000 Relative D (Max Relat y mm	0.000 isplacemer tive Displac z mm	-0.000 nt Detail: ements / Resultant mm	-0.000	0.00
		<	21L Struct	0.000 turewosw.st Relative Disp Dist m 0.000	0.000 td - Beam kacement mm 01000	0.000 Relative D (Max Relat y mm	0.000 isplacemer tive Displac z mm	-0.000 nt Detail: ements / Resultant mm	-0.000	0.00
		<	21L Struct	0.000 turewosw.st Relative Disp Dist m C0000 1.000	0.000 td - Beam lacement, mm 0.000 -0.000	0.000 Relative D (Max Relat y mm 0.000 -0.050	0.000 isplacementive Displac mm 0.000 -0.000	-0.000 nt Detail: rements / Resultant mm 0.000 0.050	-0.000	0.00
		<	21L Struct	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000	0.000 td - Beam Hacement, x mm -0.000 -0.000 -0.000	0.000 Relative D (Max Relat y mm 0.0000 -0.050 -0.050 -0.037	0.000 isplacemen ive Displac z mm 0.000 -0.000 -0.000 -0.000 -0.000	-0.000 nt Detail: rements / Resultant mm Close 0.050 0.037	-0.000	0.00
		<	21L Struct	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000 3.000	0.000 td - Beam lacement, x mm 0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.000 Relative D (Max Relat (Max Relat (Max Relat (Max Relat (Max Relat (Max Relat) (Max R	0.000 isplacemen ive Displac 2 mm 0.000 4.000 4.000 0.000	-0.000 nt Detail: ernents / Resultant mm 0.050 0.037 0.000	-0.000	0.00
		<	21L Struc NAIF UC	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000 3.000 4.000	0.000 td - Beam lacement, x mm -0.000 -0.000 -0.000 -0.000 0.000	0.000 Relative D (Max Relat 9 0.000 -0.000 -0.000 0.000 0.000	0.000 isplacemen ive Displac z mm 0.000 4.000 4.000 0.000 0.000	-0.000 nt Detail: erenents / Resultant mm 0.000 0.050 0.037 0.000 0.000	-0.000	0.00
		<	21L Struc NAIF UC	0 000 turewosw.st Relative Disp 0.000 1.000 2.000 3.000 4.000 0.000	0.000 td - Beam Accement 4000 -0.000 -0.000 -0.000 0.000 0.000	0.000 Relative D (Max Relat 9 0.000 -0.000 -0.000 0.000 0.000 0.000	0.000 isplacementive Displac z mm 0.000 4.000 4.000 0.000 0.000 0.000	-4 000 nt Detail: ernents / Resultant mn 0.000 0.050 0.037 0.000 0.000 0.000	-0.000	0.00
	Load 3 : Displacement	<	21L Struc NAIF UC	0 000 turewosw.st m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	0.000 td - Beam lacement, x mm -0.000 -0.000 -0.000 0.000 0.000 0.000	0.000 Relative D (Max Relat 9 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000	0.000 isplacement ive Displac 0.000 0.000 0.000 0.000 0.000 0.000	-0.000 nt Detail: ernents / Resultant mm 0.0050 0.037 0.000 0.000 0.000 0.005	-0.000	0.00

4.3 Beam results graph



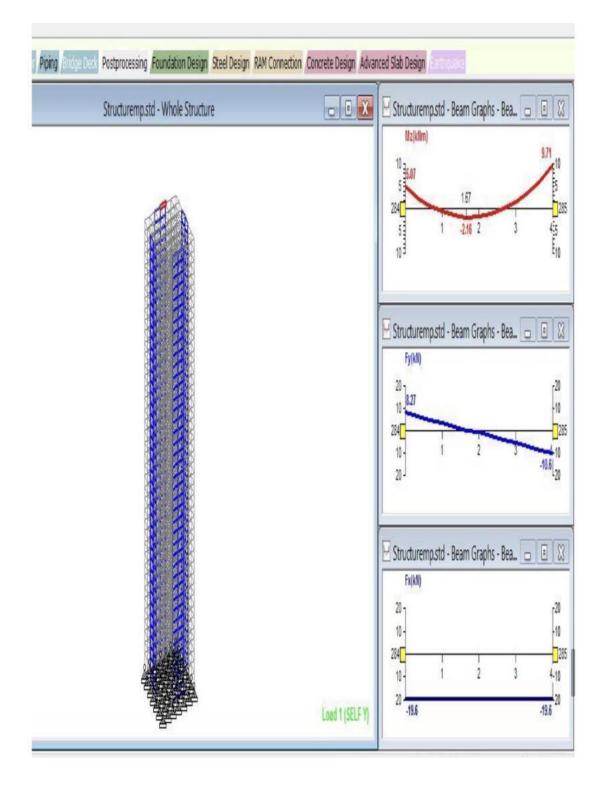
T

4.4 model of the building with shear wall

International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 05 Issue: 06 | June - 2021 ISSN: 2582-3930

4.5 STAAD-Pro result

ructuremp.std - Whole Structure			Structure	emp.std - I	Node Displ	acements			•
	11	TAL AL	Summary /						
		(ron)	Vertical	Horizontal	Resultant		Rotational		-
			Y	Z	negunani	٢X	rY	٢Z	
	Node	LIC	mm	mm	mm	rad	rad	rad	
		3 WL+X	-3.202	0.001	73.246	-0.000	0.000	-0.001	
	224	10L	-14,411	-0.023	14.412	0.000	0.000	0.000	
		2LL	-5.678	-0.009	5.678	0.000	0.000	0.000	
		3WL+X	-4.648	-0.012	73.325	-0.000	0.000	-0.001	
	225	10L	-14.575	-0.020	14.575	0.000	-0.000	-0.000	
		2LL	-5.746	-0.008	5.746	0.000	-0.000	-0.000	
		3 WL+X	4.663	0.012	75.253	0.000	0.000	-0.001	
()	226	101	-14.645	-0.001	14.645	0.000	-0.000	0.000	
	<		•				ann an Ar		-
					elative Disp		Detail:		
		All F	lelative Disp	placement,	elative Disp (Max Relati		Detail: ements /		
					elative Disp	ve Displac	Detail:		•
		All F	lelative Disp Dist	placement / x	elative Disp (Max Relati y	ve Displac z	Detail: ements / Resultant		٥
	E Beam	All F	elative Disp Dist m	blacement / x mm	elative Disp (Max Relati y mm	ve Displac z mm	Detail: ements / Resultant mm		٩
	E Beam	All F	Dist m 0,000	olacement/ x mm	elative Disp (Max Relati y mm	ve Displac z mm 0.000	Detail: ements / Resultant mm 0.000		
	E Beam	All F	lelative Disp Dist m 0.000 1.000	blacement / x mm 0.000 -0.000	elative Disp (Max Relati y mm 0.000 -0.051	ve Displac z mm 0.000 0.002	Detail: ements / Resultant mm 0.000 0.051		
	☐ 	LIC LIC	lelative Disp Dist m 1.000 2.000 3.000 4.000	Diacement , mm 0.000 -0.000 0.001 0.000 0.000	elative Disp (Max Relati y mm 0.000 -0.051 -0.059 -0.029 0.000	ve Displac z mm 0.000 0.002 0.000	Detail: ements / Resultant 0.000 0.051 0.059 0.029 0.029		
	☐ 	All F	elative Disp m 0,000 1,000 2,000 3,000 4,000 0,000	Diacement / mm 0.000 0.001 0.000 0.000 0.000	lelative Disp (Max Relati y mm 00000 -0.051 -0.059 -0.029 0.000 0.000	ve Displac z mm 0.000 0.002 0.000 -0.002 0.000 0.000	Detail: ements / Resultant 0.000 0.051 0.059 0.029 0.000 0.000		
	☐ 	LIC LIC	elative Disp m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	Diacement / mm 0.000 0.001 0.000 0.000 0.000 0.000 0.000	elative Disp (Max Relati y mm 0.000 -0.051 -0.059 -0.029 0.000 0.000 -0.047	ve Displac z mm 0.000 0.002 0.000 -0.002 0.000 0.000 0.000	Detail: ements / Resultant mm 0.000 0.051 0.059 0.029 0.000 0.000 0.000		
	☐ 	LIC LIC	elative Disp m 0,000 1,000 2,000 3,000 4,000 0,000 1,000 2,000	acement / mm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000	elative Disp (Max Relati y mm 0.000 -0.059 -0.059 -0.029 0.000 0.000 -0.047 -0.037	ve Displac z mm 0.000 0.002 0.000 -0.002 0.000 0.000 0.000 0.000	Detail: ements / Resultant 0.000 0.059 0.029 0.029 0.000 0.000 0.000 0.001		
Load 1: Displacement	☐ 	LIC LIC	elative Disp m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	Diacement / mm 0.000 0.001 0.000 0.000 0.000 0.000 0.000	elative Disp (Max Relati y mm 0.000 -0.051 -0.059 -0.029 0.000 0.000 -0.047	ve Displac z mm 0.000 0.002 0.000 -0.002 0.000 0.000 0.000	Detail: ements / Resultant mm 0.000 0.051 0.059 0.029 0.000 0.000 0.000		



4.6 moment diagram of the building

Structurempstd - Whole Structure 📃 🖸 🚺				emp.std -	Beam End	Forces:		a	0 🛛
		AL	Summary),	Envelope/	(
	Beam	UC	Node	Fx kli	Fy kN	Fz kN	Mx klim	My klim	Wz klim
1	238	101	284	-19.573	8285	0.009	0.061	-0.078	5.07
			285	19.573	10.584	-0.009	-0.061	0.041	-9.70
		211	284	-12.787	4.181	0.030	0.101	-0.119	2.51
			285	12.787	5.819	-0.030	-0.101	0.001	-5.788
ACC - CONSTRUCTION		3WL+X	284	19.988	1959	1.843	0.770	-3.583	2.52
			285	-19.988	-1.959	-1.843	-0.770	-3.787	5.317
	239	10L	285	-3.216	20.798	0.411	1.162	-0.837	28.93
			286	3.216	-1949	-0.411	-1.162	-0.807	16.55
		211	285	2.903	13.695	0.406	1.138	-0.827	20.35
	<							_	}
			Structur	emp.std - f	Beam Foro	e Detail:) 0 ()
		DI) AI (Structur Max Axial Fo		the motorer		Max Shear	- Canada and Canada an) • X
	<	LC			Un motorn		Max Shear Mx klim	- Canada and Canada an) I II Klim
		UC	Max Axial Fo Dist	rces), Max Fx	Bending M Fy	loments) (Fz	Mx	Forces/ My	Mz
	H () Beam	UC	Max Axial Fo Dist m	rces), Max Fx kii	Bending M Fy KN	loments) (Fz kli	Mx klim	Forces/ Ny klim	Mz klim
	H () Beam	UC	Max Axial Fo Dist m	rces), Max Fx kli 49,578	Bending M Fy KII 8 265	loments)(Fz kil 0.009	Mx klim 0.051	Forces/ Ny klim -4.078	Mz kilm 5.07
	H () Beam	UC	Max Axial Fo Dist m 1.000 2.000 3.000	rces), Max Fx kli 49,578 -19,573	Bending M Fy kN 8.265 3.553	loments) Fz kN 0.009 0.009	Mx klim 0.051 0.051	Forces/ My klim -0.078 -0.068	Mz kilm 5.07 -0.831
	H () Beam	UC	Max Axial Fo Dist m 0.000 1.000 2.000	rces), Max Fx kli -19.573 -19.573 -19.573 -19.573 -19.573	Bending N Fy kN 8265 3553 -1159	loments) Fz kli 0.009 0.009	Mx klim 0.061 0.061 0.061	Forces / My klim 4008 40.068 40.059	Mz klim 507 -0.831 -2.031
	H () Beam 238	UC	Max Axial Fo Dist m 1.000 2.000 3.000	rces), Max Fx kli -19.573 -19.573 -19.573 -19.573	Bending N Fy kN 8,265 3,553 -1,159 -5,872	loments) Fz kN 0.009 0.009 0.009	Να klim 0.051 0.061 0.061 0.061	Forces / My kNm -0.018 -0.068 -0.059 -0.050	Mz kilm 500 -0.83 -2.03 1.47
	H () Beam 238	UC 10L	Max Axial Fo Dist m 1.000 2.000 3.000 4.000	rces), Max Fx kli -19.573 -19.573 -19.573 -19.573 -19.573	Bending M Fy kli 3.553 -1.159 -5.872 -10.584	loments) (Fz kli 0.009 0.009 0.009 0.009 0.009	Mx klim 0.061 0.061 0.061 0.061 0.061	Forces / My kNm 40018 40.068 40.068 40.059 40.059 40.050 40.050	Mz kilm -0.831 -2.038 1.471 9.701 2.511 -0.421
	H () Beam 238	UC 10L	Max Axial Fo Dist m 1.000 2.000 3.000 4.000 0.000 1.000 2.000	rces), Max Fx kll -19.573 -19.573 -19.573 -19.573 -19.573 -19.573 -12.787 -12.787	Bending M Fy kli 8265 3553 -1159 -5872 -10584 4.181 1.681 -0819	Ioments) Fz kii 0.009 0.009 0.009 0.009 0.030 0.030 0.030	Mx klim 0.061 0.061 0.061 0.061 0.061 0.061 0.101 0.101	Forces / My kNm -0.068 -0.059 -0.059 -0.050 -0.050 -0.041 -0.119 -0.090 -0.060	Nz klim 4083 4083 4083 4083 4083 4083 4083 4085
Load 1: Bending Z	H () Beam 238	UC 10L	Max Avial Fo Dist m 1.000 2.000 3.000 4.000 0.000 1.000	rces), Max Fx kli -19.573 -19.573 -19.573 -19.573 -19.573 -19.573 -19.573 -19.573	Bending M Fy kli 8,265 3,553 -1,159 -5,872 -10,584 4,181 1,681	loments) Fz kli 0.009 0.009 0.009 0.009 0.009 0.030	Mx klim 0.061 0.061 0.061 0.061 0.061 0.061 0.101	Forces / My kNm -0.068 -0.059 -0.059 -0.050 -0.041 -0.119 -0.090	kilm 5.001 -0.831 -2.034 1.471 9.701 2.511 -0.421

4.7 Beam results graph

Ι

ternational Journal of Scientific Research in Engineering and Management (IJSREM)

ISSN: 2582-3930

COMPARISONS OF RESULTS AND DISCUSSIONS

It took time to run the analysis as the basic version of the software was used. Results of deflection, shear force, moment of the entire building and individual member were analysed; also the graphical diagrams of deflection, shear force, moment of each member and of whole structure were analysed.

Advantages of shear wall

- L Effectively resists lateral loads by producing shear truss frame interacting system.
- \bot It provides large stiffness and strength.
- \bot Symmetric location of shear wall along the perimeter of building is desirable.

Disadvantages of shear wall

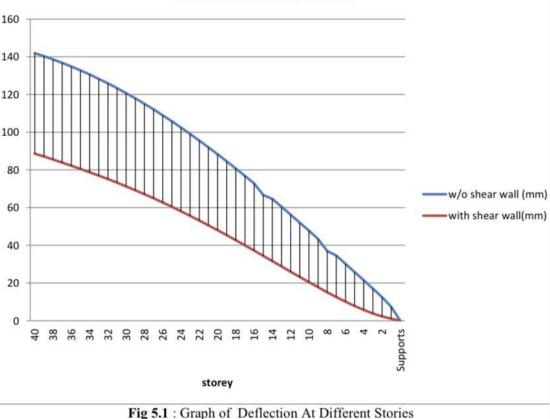
- $\hfill \sqcup$ Unsymmetrical location of shear wall along the perimeter of building is not desirable.
- ${\mbox{\sc L}}$ The opening provided in shear wall should be symmetrical.
- igsquare Shear wall is effective only when it is located along the perimeter not interior.

4.1 Shear Wall Effect On Deflection

Storey drift also known as shear wall deflection is limited by two primary causes. The first is for limiting cracks in wall by plaster, gypsum, and paint in serviceability. The second is for limiting the shear wall's maximum inelastic response, which is important in the seismic or wind design of wood buildings. Furthermore, the relative flexibility and rigidity of shear wall and diaphragms is also calculated by storey drift.

4.2 Deflection result on both analysis

TABLE- 4.1 Deflection Values comparison


storey	w/o shear wall (mm)	with shear wall(mm)	%Reduction
40	141.908	88.621	37.55038476
39	140.297	87.093	37.92240746
38	138.601	85.486	38.32223433
37	136.786	83.855	38.6962116
36	134.85	82.194	39.04783092
35	132.793	80.496	39.38234696
34	130.614	78.752	39.7063102
33	128.314	76.958	40.02369188
32	125.894	75.108	40.34028627
31	123.355	73.199	40.65988407
30	120.7	71.229	40.98674399
29	117.929	69.195	41.32486496
28	115.046	67.095	41.6798498
27	112.052	64.931	42.05279692
26	108.952	62.7	42.45172186
25	105.748	60.405	42.87835231
24	102.442	58.046	43.33769352
23	99.038	55.626	43.83368
22	95.538	53.145	44.37291968
21	91.947	50.608	44.95959629
20	88.267	48.017	45.60028097
19	84.503	45.375	46.30368153

18	80.659	42.689	47.07472198
17	76.739	39.964	47.92217777
16	72.746	37.204	48.85766915
15	66.692	34.418	48.39261081
14	64.575	31.614	51.04297329
13	60.403	28.801	52.31859345
12	56.181	25.981	53.75482814
11	51.916	23.196	55.32013252
10	47.812	20.432	57.26595834
9	43.278	17.715	59.06696243
8	36.921	15.066	59.19395466
7	34.547	12.51	63.7884621
6	30.164	10.073	66.60588781
5	25.781	7.789	69.78782825
4	21.397	5.696	73.37944572
3	16.997	3.835	77.4371948
2	12.483	2.263	81.87134503
1	7.363	1.034	85.95681108
Suppo	orts 0	0	0

Τ

Deflection at stories

• Deflection values in the building with shear wall are significantly less than the building withoutshear wall, at the top of building deflection of thestorey has been reduced up to 37.55%.

• Moment value for beam and nodes has also been reduced in shear wall building that shows its more reliability to the load as compared to without shear wall building.

• By this analysis and study in the urban areas to reduce the requirement of space for the building, high rise buildings are used; and to prevent danger against wind load on those buildings ,shear wall is a good and easy choice in the construction.

CONCLUSION -

 $\[mu]$ From the above study work, it is observed that in 40 story building, constructing building with shear wall in short span at middle is economical and effective as compared with the building without shear wall. From this it can be concluded that large dimension of shear wall is not effective in less number of stories of any building but it is effective in high number of stories. • Software does not take direct values from IS-875(3) for the wind load; hence must be improved.

• Software does not support Indian codes like IS-456 for concrete design and IS -13920 for shear wall design, hence must be improved.

• Results are acceptable in both building and very significantly loss (37.55% in top story) in deflection in shear wall building has been shown compared to normal building without shear wall.

REFERENCES-

L Text Book On Tall Building Structures - Analysis And Design By BRAYN STAFFORD SMITH & ALEX COULL

I

∟ Journal Study Of Seismic And Wind Effect On Multi Storey R.C.C., Steel And Composite Building(International Journal of Advances in Engineering & Technology, Sept. 2013.)

L Estimation of Wind Load on a Tall Building under Interference Effects: A Case Study, Pallab Kheyari 1) and Sujit Kumar Dalui 2)*

L Structural Developments in Tall Buildings: Current Trends and Future Prospects ,Mir M. Ali† and Kyoung Sun Moon

L Alfa Rasikan, M G Rajendran / International Journal of Engineering Research and Applications (IJERA)

L http://www.engineeringcivil.com/deflections-of-bents-and-shear- walls.html

L https://en.wikipedia.org/wiki/Shear wall

L CODES:-AS/NZS 1170.2:2011 SEI/ASCE 7-02 EN 1991-1-4:2005+A 1 IS 875(Part-3)-1987 IS 456-2000 IS 1893(Part-1)-2002 IS 13920-1993