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A B S T R A C T  

Nowadays, human emotion recognition is a mandatory task for many human machine interaction fields. This paper proposes a novel multi-modal human emotion 

recognition framework. The proposed scheme utilizes first the 3D-Convolutional Neural Network (3D-CNN) deep learning architecture for extracting the spatio-

temporal features from the electroencephalogram (EEG) signals, and the video data of human faces. Then, a combination of data augmentation, ensemble learning 

techniques is proposed to get the final fusion predictions. The fusion of the multi-modalities in the proposed scheme is carried out using data, and score fusion 

methods. Hence, three human recognition approaches are built to achieve the pro- posed goal. They are namely EEG-based emotion recognition approach, face-based 

emotion recognition approach, and fusion-based emotion recognition approach. For the EEG approach, the 3D-CNN is used to get the final predictions of the EEG 

signal. For the face approach, the Mask-RCNN object detection technique in combination with OpenCV libraries are first utilized to extract the exact face pixels with 

emotional content. Then, the Support Vector Machine (SVM) classifier is utilized to classify the 3D-CNN output features of the face chunks. For the fusion-

based emotion recognition approach, two fusion techniques are experimented; bagging, and stacking. It is found that the stacking technique gives the best accuracy, and 

achieves recognition accuracies 96.13%, and 96.79% for valence, and arousal classes respectively using the grid search ensemble learning technique due to transferring 

the weights from the EEG, and the face approaches to the fusion-based emotion recognition approach. The proposed approach out- performs recent works in multi-

modal emotion recognition field. 
 

 

1. Introduction 

 

Emotions play an important role in human life. They affect their 

physiological, and psychological state. Emotions can be used for rating 

customers’ impression for the environment in restaurants as stated by 

authors in [1]. They presented a rating system based on facial 

expression recognition with pre-trained deep convolu- tional neural 

network (CNN) models. The food, and the environ- ment are supposed 

to be rated in their system. Their system consists of Android mobile 

application, a web server, and a pre- trained AI server. Shanok et al. [2] 

utilized an emotion recognition for children with autism disorders. 

Their results showed that the TD children were more proficient on the 

emotion recognition sys- 

 

tems overall, whereas ASD children recognized familiar expres- sions 

more precisely than unfamiliar ones. Emotion recognition is the ability 

of someone to identify what other people feel from moment to moment 

and understand the connection between his feelings and expressions. 

Ekman et al. [3] defined six basic emotions namly happiness, 

sadness, surprise, fear, and anger. He proved that human perceive these 

emotions regardless of their cultures. Emotions could be expressed 

using two orthogonal dimensions: valence, and arousal as stated by 

Feldman et al. [4]. He stated that each individual could express his 

emotions in different way than others. This difference is clearly noted 

when someone asked to express periodic emotions. Valence ranges from 

pleasant to unpleasant, and arousal ranges from calm to excited. In the 

proposed work, authors intend to clas- sify the input instance into its 

binary combinations of valence, and arousal; low/high valence or 

low/high arousal. 

Mehrabian et al. [5] stated that the overall impression could be 

expressed by facial expression with 55%, by vocal part with 38%, 
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and by semantic content with 7%. So, the human emotion is multi- 

modal in nature. Emotion recognition works in literature are parti- 

tioned into two main areas: Some works use one modality for rec- 

ognizing emotions such as face regions [6], speech [7], or 

electroencephalogram (EEG) signals [8]. Other researchers built multi-

modal emotion recognition systems using a combination of different 

emotion modalities. Combining knowledge form different sources to 

produce more accurate information is called fusion [9]. There are three 

common fusion methods; data level, feature level, and score level. Data 

level combines the input raw data from differ- ent sources to produce 

more informative data. Then, one set of fea- tures is extracted for the 

combined data, and one classification system is built to group the 

extracted features. Feature level cre- ates a combined features from 

multiple input features extracted from different data sources. Then, one 

classifier is also used to model the relation between the combined 

features. In score fusion, a separate classification system distributed the 

data from each source, and categorize them into its related classes. 

Then, the scores from each classification system are combined to get the 

final scores. The proposed work adopted the data, and score fusion 

methods in one compact framework. 

Over decades massive research work have been developed using 

artificial intelligence (AI), and deep learning techniques to solve 

efficiently different complex problems [10–14]. Recently, there are 

several human emotion recognition schemes have been devel- oped 

based on AI, and deep learning techniques [8,15,16]. It is seen from the 

literature that these recent techniques can improve per- formance 

dramatically. One of the most common deep learning approaches is 

the 3D-CNNs architicture which is mainly proposed to model the 

temporal correlation in long sequences such as speech, and EEG signals 

as stated by Maturana et al. [17]. Authors in [8] proved the superiority 

of 3D-CNN architicture in recognizing emo- tions from multi-channel 

EEG signals. They employed the DEAP dataset to achieve 87.44% 

accuracy for valence, and 88.49% for arou- sal. Long sequences have 

temporal relationships between its seg- ments, and neglecting these 

temporal information will affect the robustness of emotion recognition 

systems. The 3D-CNN architic- ture models the temporal 

dependencies in long sequences by applying 3D-convolution 

operations over the input segments. The 3D-CNN architecture is 

adopted for the proposed goal of this work. The main drawback of any 

recognition system is the lack of data which may affect its 

generalization to unseen samples. This can be solved by augmenting the 

data (increasing the number of samples), or using a model that is already 

trained on a task, and re-use it on another related task (transfer learning). 

It is well known that data augmentation avoids system over-fitting 

problem. In addition, transfer learning has several benefits such as 

saving processing time, requiring less data and enhancing robustness 

of developed system. Therefore, in the proposed multi-modal emotion 

recogni- tion framework, transfer learning and data augmentation 

phases are employed in one compact fusion system to tackle the 

problem 

of lacking data efficiently. 

This paper is organized as follows: In Section 2, previous related 

works are discussed. In Section 3, the main goal of the proposed 

approach, and the three main components for face, EEG, and fusion 

recognition approaches are discussed. Evaluation of the proposed 

approach on DEAP benchmark, comparison against state-of-the- art 

approaches, discussion, and analysis for the experimental works are 

presented in Section 4. In Section 5, conclusion for the proposed works, 

and future works are presented. 

 

2. Related works 

 

Human emotions can be expressed using several behaviours such as 

gesture [18], text [19], EEG signals [20], and facial expres- sions [21]. 

Authors in [22] improved the accuracy of recent emo- 

tion recognition systems by learning the spatial, and temporal features 

of EEG signals using CNN models which require no feature 

engineering, and achieved the best recognition performance on 

temporal, and frequency combined features. Authors in [23] pro- posed 

a human emotion classification using a hierarchical bi- directional 

Gated Recurrent Unit (GRU) network from continuous EEG signals 

which is able to learn more significant feature repre- sentation from the 

EEG sequence. Noroozi et al. [18] defined a complete framework for 

automatic emotional body gesture recog- nition, and introduced a 

person detection, and comment static, and dynamic body pose 

estimation methods. Pan et al. [24] proposed an EEG-based brain-

computer interface (BCI) system for emotion recognition in patients 

with disorders of consciousness (DOC). Common spatial pattern (CSP), 

and differential entropy (DE) fea- tures in the delta, theta, alpha, beta, 

and gamma frequency bands were employed to classify the EEG 

signals. 

Chu et al. [25] proposed a multi-level algorithm that combines 

the spatial, and temporal features. The spatial representations are 

extracted using a CNN network. While the temporal dependencies are 

modeled by Long-Short-Term-Memory (LSTM) network. The outputs 

of the CNNs, and LSTM networks are further aggregated into a fusion 

network to produce a per-frame prediction. Hasani et al. [26] extracts 

the spacial, and temporal relations within the face frames in video 

sequence using a 3D-Inception-ResNet net- work followed by an LSTM 

unit. The Facial landmark points are set as inputs to this architicture. 

Graves et al. [27] adopted two types of LSTM (bidirectional LSTM, 

and unidirectional LSTM) to model the temporal dependencies within 

the image sequences. Their experiments proved that the bidirectional 

network provides a significant performance compared to the 

unidirectional LSTM. Jain et al. [28] employed an LSTM, and CNN 

architicture to get the final prediction for facial expressions. First, the 

background is abstracted, and isolated from the foreground images. 

Then, the tex- ture patterns are relevant key features are extracted. 

Finally, the relevant features are extracted to be introduced later to 

the LSTM-CNN network. 

Many emotion related works use one source to recognize emo- 

tions. However, the perception of emotion is multi-modal in nat- ure. 

Therefore, several works that combine different source of emotions are 

implemented recently, but achieved accuracy that needs further 

improvement to reach robust recognition perfor- mance. Liao et al. [29] 

proposed two multi-modal fusion methods for emotion recognition 

which ate sum rule, and product rule. The input signals are EEG, and 

facial expression. For EEG detection, emotion states are detected by 

support vector machines (SVM). The face region is detected using the 

AdaBoost algorithm. The neu- ral network classifier is adopted for 

facial expression detection. Emotion recognition results based on fusion 

of both EEG, and facial expression detections show that the accuracies 

of the two multi- modal fusion detections are 81.25%, and 82.75%, 

respectively which are higher than that of facial expression (74.38%) or 

EEG detection (66.88%). Castellano et al. [30] combined facial expres- 

sions, speech, and body gestures information for multi-modal emo- tion 

recognition, and achieved accuracy of 78.3% using the Bayes network 

algorithm which outperforms single modality recognition systems. 

Deep neural networks are explored in multi-modal fusion in 

several active works [31,30]. Gunes et al. [32] combined the face, and 

body modalities. Performance evaluation showed that bi- modal fusion 

outperformed the classification done using the facial modality alone. 

Baltrusaitis et al. [33] developed a system that inferred emotions from 

upper body gestures in addition to facial expressions, including head, 

and shoulder motions. A multi-level Dynamic Bayesian Network 

(DBN) models the emotional state depending on the probabilities of the 

gestures. It is possible to improve any module, or add features to it, 

but the limitation is 
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properties like intensity, offset, and onset of the emotional state are not 

considered which if included could improve the perfor- mance further. 

As illustrated, the recent multi-modal emotion recognition sys- tems 

still need further improvement in their performance. The objective of 

the proposed approach is to investigate combining facial expressions 

with the EEG signals to recognize person’s emo- tions using deep 

learning approaches. 

 

3. The proposed approach 

 

The main purpose of the proposed work is to investigate the 

effectiveness of deep learning approaches in combination with the 

ensemble learning techniques for multi-modal emotion recog- nition. 

The proposed approach combines the face data from the input video, 

and the EEG signals. In the proposed approach, two phases are created: 

in the first phase, two 3D-CNN based classifiers are trained to classify 

the EEG signals, and the video data into their binary classes. This results 

in two trained models one for each modality. In the second phase, a 

third model is created based on the fusion chunks from the EEG, and 

face modalities. The complete framework of the proposed work that 

contains the two phases is shown in Fig. 1. The detailed description of 

the main building blocks of the proposed framework shown in Fig. 1 will 

be explained in the below subsections. 

The 3D-CNN architicture is the extension of traditional Convo- 

lutional Neural Networks (CNN) deep learning architecture. The 3D-

CNN deep learning architicture is proposed to model the tem- poral 

dependencies, and the spatial correlation between long dura- tion 

sequences using the 3D-convolution operation. The 3D- convolution 

operation produces a set of 3D-feature maps using 3D-filters. The 3D-

Convolution Operation is shown in Fig. 2. 

The adopted 3D-CNN architecture consists of six basic layers. The 

input layer. Then, two convolution layers that results in 3D- feature 

maps. Each convolution layer is followed by a max- pooling layer. The 

max-pooling layer down-samples the 3D- feature maps from previous 

layer to decrease the time needed to process volumes with huge 

dimensions. The last layer is a fully- connected layer to extract the 

final features. The dimension of the input volume is 5*32*128, where 

5 is the number of consecu- tive frames which models the temporal 

information, 32, 128 are the height, and the width of the input frame 

from the EEG, and the face domains respectivly. For the EEG input, 

32 represents the number of channels, and 128 represents the samples 

in the 

 

 
 

Fig. 2. The 3D-Convolution Operation: C is the input volume, F is convolution filter, and 

Q is the output of the convolution operation. 

 

 

frame segment. For the face input, 32, and 128 are the height, and 

the width of the face frame. In the proposed network, the con- volution 

filter has shape of 3*3*3: where 3, 3, and 3 are its height, width, and 

depth respectively. The number of feature maps in the first layer is 8. 

The max-pooling layer has a resolution of 2*2*2. The number of feature 

maps of the second convolution layer is set to 

16. The proposed 3D-CNN network is shown in Fig. 3. Below is a 

detailed description of the main three approaches for achieving the main 

goal of the proposed framework. 

 

3.1. EEG-based emotion recognition approach 

 

Usually, the EEG data from every signal is recorded from differ- ent 

channels. The data from every channel is segmented into small 

segments (frames). The input chunk to the 3D-CNN model is cre- ated 

by combining 5 consecutive frames from 32 EEG channels. The 

temporal domain data is captured from the number of frames appended 

together in the EEG chunk. A sample EEG chunk is shown in Fig. 4. 

Koelstra et al. [34] developed a database for human emotion analysis 

using physiological signals (DEAP). It consists of 32- channel EEG 

signals, and 12 peripheral physiological signals. DEAP dataset rate is 

512 Hz, and pre-processed to have a sample rate of 128 Hz. This 

produces a small number of samples which may affect the performance 

of any machine learning system to generalize to unseen samples. A data 

augmentation operation is employed to increase the number of samples. 

For augmenting the EEG signals, a Gaussian noise signal w is first 

generated randomly. Then, both the noise signal, and the original EEG 

signal are mathematically 

 

 
 

Fig. 1. The framework of the proposed approach using stacking, or bagging techniques for the fusion-based emotion recognition approach. 
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Fig. 3. The proposed 3D-CNN Network. 

 
 

 
 

Fig. 4. The 3D-shape of the EEG chunk. 

 

 

added to create a new noisy version. The augmentation step is applied 

in the training phase only. During the testing phase, clean versions of 

the EEG signals are used. The probability density func- tion (P) of a 

Gaussian random noise signal w is defined by: 

(w—l)2 

2r 

face frame. The pre-processing steps included for the face system are 

shown in Fig. 5. 

The Mask-RCNN is proved to give enhanced performance for 

instance segmentation [36]. For the input face frame, the Mask- RCNN 

returns a class label, and a bounding box around each object. The Mask-

RCNN is trained on the COCO dataset. It is labeled for objects such as 

person, cars, and others (face object is not included). The Mask-CNN 

is tested on the DEAP dataset. This results in person region in the input 

image frame. Then, the OpenCV [37] is applied to extract the face pixels 

from the masked frames. OpenCV, or Open Source Computer Vision 

library, is a C++ library which is originally developed for image 

processing, and computer vision. Finally, five consecutive resulting 

frames are appended in one chunk to model the temporal information 

in the video data. The final predictions of face chunks are calculated 

using the SVM classifier of the 3D-CNN output features produced by 

the last fully connected layer. The outputs predictions are the status of 

valence, and arousal. 

 
3.3. Fusion-based emotion recognition approach 

P(w) = 
r
,

2
ffiffiffi
p
ffiffi ffi (1) 

 

Input fusion aims to combine data from multiple sensors to 

Where mu, and sigma are the mean, and the standard variation of the 

noise signal respectively, and w is the noise signal. 

 

 

3.2. Face-based emotion recognition approach 

 

Facial expression is considered as a main source of human emo- tion 

as stated by Khatri et al. [35]. For predicting emotions based on facial 

expression in the proposed face system, the following operations were 

taken: The frame rate of the input video is 30 frames-per second (fps). 

This produces 1800 frames in total since the duration of one video is 

one minute (60 s) in the DEAP dataset. To minimize the processing 

time, only 60 frames are taken per video by taking a frame from each 

30 consecutive frames. A data augmentation step is further added to 

tackle the problem of lack- ing data. The selected augmentation types 

are chosen such that they not affect the emotion related features in the 

image, and pre- serve the shape of face expressions appear clearly 

without any dis- tortion. Only 3 types of augmentation are adopted in 

addition to the original frame; flipping, updating the color, and 

adjusting the brightness. Flipping left to right means reflecting the frame 

around the vertical axes. Updating the color means converting the 

original (Red-Green–Blue) RGB pixel values to (Hue-Scale-Variance) 

HSV domain. Then, update the hue, saturation, and variance pixel val- 

ues with some values. Finally, reconvert the updated HSV to RGB 

again. Updating the brightness means adding a constant value (delta) to 

the input pixel values. Delta with value 0.2 is chosen in the proposed 

work. Then, the Mask-RCNN instance segmentation technique is used 

to remove the background region in the input 

achieve improved accuracy, obtain a lower detection error proba- bility, 

produce a higher reliability, and more specific inferences than could be 

achieved by the use of a single sensor data alone. The proposed fusion 

framework has three main stages that affect the recognition accuracy; 

stages A, B, and C as shown in Fig. 1. 

 

 

Stage                                 A 

 At this stage, the face chunks, and EEG chunks are combined to cre- 

ate the fusion chunks. The EEG chunk, and the face chunk of the 

same 5 s are combined together in one chunk to create the fusion chunk. 

This is achieved by appending the first frame of the EEG chunk, and 

the first frame of the face chunk above each other, then combining the 

consecutive frames in the same manner to create the fusion chunk 

with depth 5, height 64, and width 128. The dura- tion of the EEG signal 

is 63 s. The first 3 s were removed since they have no emotion content. 

In the EEG signals, the original number of samples in the DEAP dataset 

are 8064 which mapped to 384 samples (3*128), the remaining 60s 

seconds have 7680 samples (8064–384). This mapped to 60 frames 

in 60 s (60*128 = 7680). The samples from each 5 consecutive frames 

(sec- onds) are combined in one chunk. This produces 12 chunks 

(60/5 = 12) for each video. For the face video, the frames were 1800 

from one video, after changing the frame rate, the number of frames 

became 60 frames. To create chunks, 5 consecutive frames are 

combined, which results in 12 chunks during the 60s of each video 

(60/5 = 12). This means that in the fusion stage, each 
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Fig. 5. The pre-processing steps for the face-based emotion recognition system. 

 

chunk in the EEG domain is combined with its corresponding chunk in 

the face domain since the same number for chunks (12) exists in the 60 

s. Fig. 6 describes the fusion process on the time scale of the input video, 

and signal. 

 

Stage B 

Every 3D-CNN system consists of input data, initial weights, 3D- CNN 

network. The 3D-CNN which is trained in the training part of the 

input data, and the initial weights to give a trained model. Then, this 

trained model is tested on the testing part of the input data to give the 

final predictions of this system. One of the most effective strategies in 

the deep learning techniques is to replace the initial weights with some 

weights from a previously trained model to make use of its learnt 

information, and save time training from scratch without any emotional 

background. This strategy is applied in the proposed fusion system 

which starts training with the initial weights of the EEG, and face 

systems. This is the main idea of transefer learning which transfers the 

knowledge from a task to another related task with the aim to reduce 

the generaliza- tion error, and achieve an improvement in the 

performance in terms of percentages of accuracy, and processing time. 

 

Stage C 

The final scores are achieved by building a third model that works on 

the fusion chunks separately. The prediction of this third model is the 

fusion scores. A further step is added to get the maximum predictions 

of the three models which are considered as the final fusion scores. 

Ensemble learning is the art of combining a diverse 

 

 

Fig. 6. The fusion process between EEG, and face on the time scale. 

set of learners (individual models) together to improvise on the stability, 

and improve the overall performance of the system. There are several 

common types of ensemble learning techniques in machine learning 

including stacking [38], bagging[39], and boost- ing [40]. For the 

proposed work, two different score fusion meth- ods are adopted; 

stacking, and bagging. 

 

3.3.1. Stacking 

Each of the proposed face, and EEG emotions systems produces a 

trained model, and final predictions for valence, and arousal classes. 

Stacking creates a model to learn from previous trained models. Then, 

the output score vector is determined by the Map rule which gives the 

hypothesis that has the maximum probability from the three trained 

models; EEG, face, and stacking models [41]. 

P = arg max⟨S(i); F(i); E(i)⟩ (2) 

where S, F, and E are the predictions of stacking, face, and EEG emo- tion 

recognition approaches, i denotes the current index of predic- tion of 

valence, and arousal. While P is the final combined predictions of the 

three emotion systems. 

 

3.3.2. Bagging 

It is a technique that creates many sampled dataset from the original 

training data in order to reduce the variance. Then, a sep- arate classifier 

is built for each split. Finally, the results of these multiple classifiers are 

combined using the Map rule function that get the maximum prediction 

from the output predictions of the trained models. There are many ways 

for splitting for the whole data into subsets. The original data may be 

splitted using k-fold cross validation which splits that data into equal 

sized subsets, but prevents samples to be repeated over subsets. Another 

possible method for splitting, random sub-sampling with replacement 

which allows samples to be repeated in different subsets. Bagging 

techniques help to reduce the variances error, and avoid over- fitting, 

improve the stability, and the accuracy of machine learning algorithms. 

Fig. 7 illustrates the proposed stacking, and bagging ensemble 

learning techniques. For the stacking technique, the input fusion data is 

splitted using the cross validation technique with K = 5 to have 0.8 of 

the original data for training, and the remaining for testing. This 

produces fusion predictions that are combined later with the face, and 

the EEG predictions using the Map rule that con- sider the indeces of 

maximum predictions from the three predic- tions. For the proposed 

bagging, the original data is splitted into 
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Fig. 7. The proposed stacking (left), and bagging (right) techniques. 

 

5 different splits reserving one split for testing. For each remaining split, 

a separate model is created producing four trained models. These four 

trained models are tested using the fifth split which produces four 

prediction vectors. The final fusion prediction is pro- duced by the Map 

rule. 

Three different stacking methods are adopted for the proposed work; 

they are namely: model averaging ensemble, weighted sum ensemble, 

and grid search ensemble. Model averaging is an ensem- ble learning 

approach where each model contributes with an equal amount to the 

final prediction. In the weighted-sum ensemble, and grid search 

ensemble, the contribution of each ensemble model can be weighted by 

a coefficient(weight) to indicate its expected performance. A product 

for all predictions of any model is multi- plied by its weights to produce 

a new updated weighted prediction vector with length N. 

x = wi * vi  for  all  i ∈ N (3) 

The main difference between the proposed weighted sum ensemble, 

and grid search ensemble methods is the way of finding the best values 

of weights. In the weighted sum ensemble, the weight values are 

determined experimentally. While, in the grid search ensemble [42], the 

weight values are determined by select- ing the values that minimize 

the recognition error after starting with initial weight values. Grid 

search is an automatic algorithm that iterates over the different values 

of hyper-parameters (weights) to update them, and get the best value of 

hyper- parameter that minimized the error. Grid search takes the model 

that you would like to train, and the hyper-parameter values. Then it 

calculates the mean square error of the hyper-parameter values allowing 

you to choose the best value. Initially, it starts up with one value for the 

hyper-parameter, and train the model. Then, used different values to 

train the model. The process is continued, until all set of values of the 

hyper-parameter is finished. Each model produces an error, the hyper-

parameter value that minimizes the error is selected. 

 

4. Experimental works 

 

4.1. Experimental setup and Results 

 

Several emotion related databases are built to evaluate multi- modal 

recognition systems such as DEAP, SEED, and MAHNOB- HCI 

databases [43]. DEAP dataset is chosen to evaluate the pro- 

posed work since it has the longest duration signals, and contains more 

multi-modal emotion signals than others [43]. For evaluating the 

proposed approach, the DEAP dataset which is developed by Koelstra 

et al. [34] is utilized to model the state of a participant by his 

Physiological signals. Physiological signals were recorded from 32 

participants. the frontal face video data is recorded for only 22 

participants. The EEG signals, and peripheral signals were recorded at 

a sampling rate of 512 Hz. 

A set of pre-processing operations are applied to improve the output 

EEG signals including minimizing the sampling rate to 128 Hz, 

averaging it to the common reference, and the eye artifacts were 

removed. Also, a band-pass filter from 4 to 45 Hz is applied to the EEG 

signals. In addition, the EOG artifacts is removed from the EEG signals. 

Music videos are used to elicit different emotions, and produce EEG 

signals, and video data for each participant in the DEAP dataset after 

performing self-assessment for each music video on a scale between 0 

to 9 for arousal, valence, like/dislike, and dominance. Only the valence, 

and the arousal classes are adopted in the proposed work. To convert 

these scales to labels, the valence scale of 1–4 was mapped to low, and 

5–9 to high, respectively. The arousal scale of 1–4 was mapped to low, 

and 5– 9 to high, respectively. In order to save time required to 

process a huge number of pixels in the proposed deep learning 

model, and have similar input to the 3D-CNN model in the fusion 

system, the input frame is resized to small ratio. The video data, and 

EEG segments are resized to 32*128 height, and width respectively. 

The number of features extracted from each system is 600, 600, and 200 

for the EEG, the face, and the fusion systems respectively. The number 

of features are chosen experimentally. 

Table 1 lists the experimental results of the proposed frame- 

work in terms of the average accuracy over 22 users from the DEAP with 

both the EEG, ensemble learning techniques are shown in details. For 

the face part, three main experiments are conducted: the face system 

without augmntation using the 3D-CNN classifier, the face system 

without augmentation using the SVM classifier, and the face system 

with augmentation using the SVM classifier. The SVM is tested as a 

classifier to enhance the system classification results. The SVM 

classifier proved to give better recognition results than the 3D-CNN 

one. In the SVM experiment, the SVM classifier works on the features 

extracted from the 3D-CNN deep learning architicture. The aug- 

mentation process proves t give better accuracy than without 
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Table 1 

The average accuracy: stacking, and bagging. 
 

Systems with details  Valence Arousal 

Face + 3D-CNN  65.43% 69.17% 

Face + SVM  70.28% 71.45% 

Face + SVM + Augment  74.93% 75.15% 

EEG + 3D-CNN  79.31% 77.97% 

EEG + 3D-CNN + Augment  82.32% 84.12% 

Bagging + Augment Sub-sample 86.22% 86.22% 

 K-Fold 85.49% 87.75% 

 Average Ensemble 84.46% 86.49% 

 Weighted Sum Ensemble 84.83% 86.64% 

 Grid Search Ensemble 84.40% 87.43% 

Stacking + Augment + Transfer Learning Average Ensemble 95.98% 96.31% 

(Proposed Fusion Work) Weighted Sum Ensemble 95.38% 95.15% 

 Grid Search Ensemble 96.13% 96.79% 

 
 

augmentation experiments. For the EEG part, two main experi- ments 

are conducted namely EEG with, and without augmentation. Both 

experiments are conducted using the 3D-CNN classifier. The number 

of augmentation times are three that mapped to the aug- mentation times 

in face part: flip, change the color, and adjust the brightness. Therefore, 

three noisy versions of the input EEG signal, in addition to the original 

sample data. Fig. 8 shows the fusion of EEG segments with the face 

frames in the case of augmentation. 

8 
1, 1 if type Average 

W = 
<> 

[0.9, 0.4] experimentally if type = Weighted 

>:
> [0.9, 0.4]  initially if type = GridSearch 

 

 
4.2. Comparison with other literature 

 

 

(4) 

In addition, it describes a sample fusion chunk with its dimensions. In 

the fusion part, two main ensemble learning techniques are 

experimented namely bagging, and stacking. Both of them are con- 

ducted using the augmentation process. An additional experiment is 

conducted using the stacking technique with the augmentation process, 

and transferring the weights from the EEG, and the face trained 

models to the fusion approach. From the experimental results, the 

EEG modality gives better accuracy than the face one. Consequently, 

in the proposed stacking technique, larger weight values are set to 

the EEG modality than the face one. the weight values that are chosen 

in the proposed work are 0.9, and 0.4 for EEG, and Face modalities 

respectively. The weight values for the three proposed stacking 

methods are shown in the below equation such that W is the weight 

vector with length two which mapped to the EEG, and the face weight 

values respectivly. The type parame- ter represents the type of the 

current working stacking method; average, weighted sum, or grid 

search. As can be concluded from Table 1, the grid search method is 

the best method comparing to the weighted sum, and average ensemble 

method. This is due to using weight values based searching for the 

values that minimize the error, while the weighted sum method uses 

weight values that are chosen by hand, and not many values are tested 

in this method. 

The proposed stacking technique is compared with one baseline 

technique (bagging), and five state-of-the-art approaches [44–48]. All 

compared works use the same DEAP dataset in their experi- mental 

work. Fig. 9 shows the comparison of the proposed work with related 

works in literature. A detailed description of the works in literature that 

we compare with is listed below. The final cell in the figure represents 

the proposed fusion results from the stacking fusion method with 

augmentation in combination with transferring learning stage. The 

difference in accuracy between the proposed system, and the 

compared works is also provided at the end of this section. 

Tang et al. [44] has suggested two models to classify emotions from 

EEG signals, and peripheral physiological signals. The first model is 

referred as Bi-modal Deep De-noising Auto-Encoder (BDDAE) which 

is an extension of the original De-noising Auto- encoders (DAE). The 

second model is the Bi-modal-LSTM which models the temporal 

information in input features from data gen- erated from EEG signals, 

and eye movement data. Bi-modal-LSTM obtains better performance 

on both arousal, and valence classifica- tion tasks. Their performance 

for valence, and arousal are 83.82%, and 83.23% respectively. Liu et 

al. [48] demonstrated a Bi-modal Auto-Encoder (BDAE) to model the 

shared representation of EEG 

 
 

Fig. 8. The fusion process of the EEG signals and the face frames in the augmentation case. 
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Fig. 9. Comparison of the proposed fusion work (stacking with augmentation, and transfer 

learning) with the related works in literature. 

 

 

features, or eye movements which is later classified by a linear SVM 

classifier to enhance the performance of multi-modal emotion 

recognition models. Their proposed approach achieved 85.2%, and 

80.5% for valence, and arousal binary classes respectivly. Shu et 

al. [47] proposed restricted Boltzmann machine (RBM) to model the 

dependencies among multiple physiological signals specifi- cally, the 

visible nodes of RBM represent EEG signals, and periph- eral 

physiological signals. The RBM generates new representation from 

multiple physiological signals. Then, the support vector machine is 

adopted to recognize users’ emotion states from the generated features. 

This provided 60.7%, and 64.6% classification accuracy for valence, 

and arousal respectivly. 

Kawde et al. [46] presented the deep learning network (DLN) to 

determine the correlation between features from EEG, EMG, and EOG 

signals. It is introduced into two semi-supervised algorithms, namely 

the Stack Auto-Encoder (SAE), and Deep Belief Network (DBN). 

Decision fusion is used to give more precise explanation for all signals. 

Their classification accuracy for valence, and arousal classes are 

78.84%, and 73.08% respectivly. Huang et al. [45] inves- tigated the use 

of facial expression, and EEG signals in a combined fusion system. For 

face system, CNN architecture is used to detect the state of valence, and 

arousal. For EEG detection, support vector machine classifier. All 

experiments are conducted using DEAP dataset. Their Face, and EEG 

fusion system are 68.00%, and 70.00% for two dimension classes: 

valence, and arousal. 

The best accuracy achieved from the proposed work is 96.13%, 

and 96.79% for valence, and arousal classes respectivly using the grid 

search stacking method with data augmentation, and transfer learning 

methods. The results from the proposed work are better than the results 

from the work developed by Huang et al. [45] who combined 

modalities similar to the proposed method; the EEG signals, and the 

face data, and reached fusion accuracy of 68.00%, and 70.00% for 

valence, and arousal classes respectivly. Their results may be worth 

since they use the decision level fusion only while our work make use 

of the data, and decision level fusion. In addition, their work neglect the 

temporal correlation between the EEG, and face segments. Our work is 

better than the work presented by Liu et al. [48] who combined the EEG 

signals, and eye movement data, and achieved 85.2%, and 80.5% for 

valence, and arousal binary classes respectivly using Bi-Modal Auto-

Encoder Model which is the best recent fusion system for emotion 

recognition in literature. This may be due to working on the eye region 

only which neglects the remaining parts of the face which have rich 

emotional information. The proposed results proves the superior effect 

of transferring the knowledge from sin- gle modality systems to the 

fusion system compared to other works in literature. 

4.3. Discussion 

 

For the fusion of the facial expressions, and the EEG signals for 

emotion recognition, two methods are proposed in this study; stacking, 

and bagging. One data set containing facial videos, and EEG data is 

used to evaluate these methods. Significant results were obtained for 

both single modalities. Moreover, two fusion methods outperformed the 

single modalities. 

In the proposed work, a significant improvement for the multi- 

modal fusion detection is found compared to single modality detection. 

The reason could be due to the fact that the facial expression detection 

has a fast, and strong but fluctuating response. While the EEG detection 

has a a stable response over the trial time. In addition, human could 

trick machine learning sys- tems since they are able to know how to 

pretend via their facial expressions. The drawback of facial expression 

detection could be compensated using the EEG detection to a large 

extent. Thus, the facial expression detection, and EEG detection are 

complementary to each other, and the multi-modal fusion system should 

achieve higher accuracies using both detections than using one of 

the two detections alone. 

Although most studies combine data at the feature level, the 

score fusion method is preferred for combining the information from 

different sources since it proved to have a strong reliable advantage of 

combining data. On the one hand, combining sources at the feature level 

is difficult to achieve in practice since different modalities may not be 

compatible (e.g., video data, and EEG signals in this study). In addition, 

feature level produces a high dimen- sional space that require further 

dimentionality reduction proce- dure to reduce the feature space. On the 

other hand, in the score level fusion, the knowledge from different 

sources can be applied separately. In this work, the facial expression, 

and EEG signals have their own capabilities, and limitations as 

mentioned above. This information can be used to improve the 

recognition performance. In addition, it is relatively easy to access, and 

combine the score generated by deep learning models pertained on 

facial expression, and EEG modalities. Thus, fusion at the score level 

is preferred in this study. 

For the proposed fusion approach, data fusion, and score fusion 

levels are combined to get the final predictions. The EEG signals, and 

the facial expressions from the input participant are combined at the 

data level. Then, the combined data is set as an input to the proposed 

3D-CNN deep learning architicture. Finally, the final pre- dictions are 

calculated using the Map rule from the three output scores from the 

three systems; Face-based, EEG-based, and fusion-based systems. Our 

other highlight was solving this prob- lem by pre-training our deep 

learning model before processing on the target data set. The number 

of samples extracted from a sin- gle object is limited. Therefore, it is 

challenging to train a complex model, such as the 3D-CNN, using only 

a small amount of training data without over-fitting. The data 

augmentation phase is added to avoid over-fitting. The proposed results 

proves the superior effect of transferring the knowledge from single 

modality systems to the fusion system. The accuracy is increased by 

8.41%, and 9.36% for valence, and arousal classes respectivly 

compared to the pro- posed approach that does not transfer the weights 

between systems. 

 

5. Conclusion 

 

Information fusion technology by combining facial expressions, and 

EEG signals for recognizing human states is introduced in the proposed 

work. In this study, two fusion methods are explored for combining the 

facial expressions, and the EEG signals. In addition to implementing 

the widely used ensemble fusion methods in which different weights 

between two models, another novel fusion 
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method is explored by applying two different bagging techniques. 

Moreover, the proposed fusion methods outperform single modal- ities 

systems. From the experimental results, the 3D-CNN network is 

demonstrated to extract shared representations that have better 

performance in terms of accuracy. Based on the conducted com- 

parative study, it is shown that the proposed scheme can achieve better 

performance in terms of arousal and valence binary classes since an 

end-to-end deep leaning framework is performed to map of the video 

data, and the EEG signals directly to emotion states instead of trying to 

manually extract features from the input frames, and model the 

temporal information in video, and EEG data. 

Deep learning methods are often difficult to apply due to the limits 

of the samples. Therefore, it is challenging to train a complex model, 

such as a 3D-CNN using only a small amount of training data without 

over-fitting. Our other highlight is solving this prob- lem by pre-training 

our single modality systems before processing on the target fusion task. 

This reduces the generalization error, and the overall time taken to 

develop, and learn a model is reduced. The main contributions of the 

proposed work that can be summa- rized as following: The proposed 

approach introduces a novel framework which investigates the use of 

the 3D-CNN for extracting related features in the EEG signals, and the 

video data with the combination of ensemble learning techniques. In 

addition, trans- ferring the knowledge from a single modality system to 

the fusion system results in improvement in the overall time taken to 

develop, and learn a model, and increases the performance of the 

proposed fusion framework. Besides, The combination of EEG sig- 

nals, and face information proves its superiority in comparison with 

other recent modalities combination. Finally, in the proposed work, data 

fusion, and score fusion are utilized on one compact fusion system. This 

study still has further issues that need to be addressed in the future. Most 

of recent emotion recognition sys- tems are developed to be off-line, and 

huge processing are required to convert them to be on-line to simulate 

the human life, and facil- itate the way people live. In addition, the 

DEAP dataset suffer from having many electrodes on different 

positions on the face, and this affect the process of face segmentation, 

and hence affect the per- formance of the proposed emotion recognition 

from the face region. 
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