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Abstract— Accurate 3D reconstruction from 2D 

images plays a critical role in various applications 

including medical imaging, robotics, autonomous 

navigation, and augmented reality. Traditional 

reconstruction techniques often require multiple 

viewpoints or sensor setups, limiting their feasibility 

in resource-constrained environments. In this work, 

we propose a deep learning-based monocular 3D 

reconstruction pipeline that generates high-quality 

3D models from a single RGB image. The core of this 

framework lies in a custom U-Net++ architecture, 

designed and trained on the NYU Depth V2 dataset 

for robust depth estimation. This model is evaluated 

against state-of-the-art alternatives including 

MiDaS (DPT-Hybrid), Depth Anything V2, and 

GLPN to assess its performance across accuracy, 

efficiency, generalization, and visualization quality. 

The proposed pipeline performs image 

preprocessing, depth map prediction, and 3D point 

cloud generation using Open3D, followed by mesh 

reconstruction techniques like Poisson Surface 

Reconstruction. The evaluation metrics include 

MSE, SSIM, PSNR, and R² Score for depth maps, 

alongside qualitative analysis of 3D reconstruction 

quality. Comparative results demonstrate that while 

GLPN yields the most consistent performance, the 

Custom U-Net++ model achieves competitive 

accuracy with significantly improved efficiency and 

adaptability, making it suitable for real-time or 

domain-specific deployments. 

This research highlights the potential of 

lightweight, custom-designed architectures for 

scalable and robust single-view 3D reconstruction. 

Future directions include multi-view integration, 

dataset expansion, and enhancing interpretability 

through uncertainty estimation techniques. 

Keywords— Monocular Depth Estimation, 3D 

Reconstruction, U-Net++, MiDaS, GLPN, Deep 

Learning, Point Clouds, Open3D. 

 

I. INTRODUCTION  

The reconstruction of three-dimensional (3D) models 

from two-dimensional (2D) images has long been a 

fundamental challenge in the field of computer vision, 

with broad applications in domains such as robotics, 

autonomous vehicles, medical imaging, and 

augmented/virtual reality. Traditional methods such as 

Multi-View Stereo (MVS), Structure-from-Motion 

(SfM), and Simultaneous Localization and Mapping 

(SLAM) have achieved notable success in controlled 

environments. However, these techniques typically 

require multiple viewpoints, consistent lighting 

conditions, and precise camera calibration, limiting their 

applicability in real-world and resource-constrained 

scenarios. 

The recent surge in deep learning has introduced 

novel approaches to 3D reconstruction, particularly 

through monocular depth estimation, which aims to 

predict depth information from a single RGB image. 

This task, however, remains inherently ill-posed due to 

the lack of depth cues and the high variability in scene 

geometry and appearance. Nonetheless, advancements 

in Convolutional Neural Networks (CNNs), Vision 

Transformers, and hybrid encoder-decoder models have 

made it feasible to infer depth with increasing accuracy 

and generalizability. 

This research presents a modular and scalable deep 

learning pipeline for monocular depth estimation and 3D 

scene reconstruction. The framework centers around a 

custom-designed U-Net++ model optimized for indoor 

depth prediction using the NYU Depth V2 dataset. In 

addition to this custom model, several state-of-the-art 

architectures—namely MiDaS (DPT-Hybrid), Depth 
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Anything V2, and GLPN—are implemented to 

benchmark performance under a consistent evaluation 

setup. The generated depth maps are transformed into 

3D point clouds using Open3D and further refined into 

meshes for visual analysis. 

This study addresses key challenges in the field, such 

as depth ambiguity, model generalization, noise 

reduction in depth maps, and evaluation of 3D 

reconstruction quality. The ultimate goal is to assess the 

effectiveness of lightweight and domain-adaptable 

architectures like U-Net++ for real-time or application-

specific deployment, while providing a detailed 

comparative analysis against more complex 

transformer-based alternatives. 

 

II. LITERATURE REVIEW 

The reconstruction of three-dimensional (3D) structures 

from two-dimensional (2D) images has evolved 

significantly with the advent of deep learning. 

Traditionally, geometry-based approaches such as 

Multi-View Stereo (MVS), Structure-from-Motion 

(SfM), and Shape-from-Shading (SfS) [5] were used, 

but these methods require multiple views and controlled 

lighting conditions, limiting their applicability in real-

world settings. Recent advances in deep learning have 

shifted the focus toward monocular depth estimation and 

single-view 3D reconstruction, enabling 3D scene 

understanding from a single RGB image. 

Various deep learning architectures have been 

developed to tackle the inherently ill-posed problem of 

depth prediction. Convolutional Neural Networks 

(CNNs) are foundational in this domain, offering the 

ability to learn spatial features and produce dense depth 

maps [4]. U-Net-based architectures and their variants, 

such as U-Net++, have been widely adopted for their 

encoder-decoder structure with skip connections, which 

preserves high-frequency spatial details [3]. Recent 

models like MiDaS and GLPN have further improved 

depth estimation by integrating multi-scale and attention 

mechanisms, with GLPN demonstrating superior 

generalization in indoor scene reconstructions [13]. 

Generative approaches also show promise in 

enhancing depth reconstruction. For example, 3D-

Mask-GAN [6] and other GAN-based architectures like 

MED-GAN [1] have demonstrated unsupervised 

learning capabilities for generating 3D shapes or 

improving training with limited supervision. 

Additionally, papers such as [2] and [7] propose 

combining GANs with octree structures or feature map 

generation to construct finer 3D models, demonstrating 

improvements in visual realism and mesh resolution. 

These models are particularly helpful in generating 

training data for scenarios with limited 3D ground truth. 

Graph-based networks have also made inroads, with 

GCN-based methods [10] showing significant capability 

in modeling non-Euclidean data like point clouds. These 

approaches are especially useful for understanding the 

structure of 3D meshes and reconstructing surfaces from 

sparse or noisy data inputs. 

Transformer-based models have gained traction 

recently for their ability to capture long-range 

dependencies. Depth Anything V2, for instance, 

leverages Vision Transformers to provide high-quality 

monocular depth estimation with improved robustness 

and scene understanding [9]. Similarly, hybrid models 

combining CNNs and transformers are being used to 

balance local detail capture with global context 

awareness. 

In terms of evaluation and benchmarking, the 

importance of large, diverse datasets like NYU Depth 

V2, KITTI, and TUM Scene View is emphasized in 

several studies [8], [12], [14]. These datasets help in 

standardizing comparisons and driving improvements in 

model generalization across varying indoor and outdoor 

environments. Furthermore, the survey in [15] provides 

an extensive overview of the evolution from traditional 

methods to deep learning techniques in 3D vision, 

highlighting key innovations and remaining challenges 

such as occlusion, texture-less surfaces, and 

computational efficiency. 

Transfer learning has also emerged as a strategy for 

improving model performance on smaller datasets. 

Models fine-tuned from pre-trained networks, such as 

those explored in [16], show improved generalization 

and require fewer training resources. This is especially 

advantageous in real-world applications where 

obtaining annotated 3D ground truth is costly or 

impractical. 

While significant progress has been made in 

monocular depth estimation and 3D reconstruction, 

challenges persist regarding model interpretability, 

robustness to noisy inputs, and efficient processing for 
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real-time applications. This study builds upon the 

existing literature by implementing a custom U-Net++ 

model trained on NYU Depth V2 and evaluating it 

against MiDaS, GLPN, and Depth Anything V2 on both 

NYU and TUM Scene datasets. The system further 

extends to 3D reconstruction using Open3D and 

integrates comparative analysis using metrics like MSE, 

SSIM, PSNR, and R² to evaluate depth map fidelity and 

reconstruction quality. 

 

III. METHODOLOGY 

The proposed methodology establishes a unified deep 

learning pipeline for monocular depth estimation and 3D 

reconstruction from 2D images. It integrates data 

preprocessing, depth map prediction using state-of-the-

art models, 3D point cloud and mesh generation, 

evaluation using both visual and quantitative metrics, 

and comparative analysis. The system was implemented 

in a Jupyter Notebook environment using Python, 

PyTorch, and Open3D, with GPU acceleration provided 

by an NVIDIA RTX 3070 Ti. 

Figure 1. Workflow 

 

A. Dataset and Preprocessing 

To train and evaluate the monocular depth estimation 

models, two benchmark datasets were used: the NYU 

Depth V2 dataset and the TUM Scene View dataset. The 

NYU Depth V2 dataset, comprising over 120K RGB-D 

indoor images, was primarily used for training the 

custom U-Net++ model. Meanwhile, the TUM Scene 

dataset, with real-world RGB-D sequences from 

dynamic indoor environments, served as the primary 

evaluation benchmark for generalization testing. 

Preprocessing involved resizing images to 480×640 

resolution to meet model input requirements, and 

normalizing pixel values to standard scales (typically 

between 0 and 1).  

Additionally, data augmentation was performed 

using random horizontal flips, rotations, brightness 

alterations, and Gaussian noise injection to enhance the 

model’s robustness against lighting conditions and 

geometric transformations. Depth maps were also 

normalized to ensure consistent scaling across the entire 

dataset. The training, validation, and test sets followed 

an 80:10:10 split ratio, and PyTorch’s DataLoader API 

was used to enable mini-batch processing and GPU 

parallelism during training. 

 

B. Depth Estimation Using State-of-the-Art Models 

 The pipeline integrates multiple monocular depth 

estimation models for comparative analysis. These 

include MiDaS (DPT-Hybrid), Depth Anything V2, 

GLPN, and the proposed Custom U-Net++ model. 

MiDaS leverages a Transformer-based backbone with 

multi-scale fusion layers, enabling it to perform 

exceptionally well across diverse datasets and 

challenging scenes. Depth Anything V2 incorporates a 

Vision Transformer (ViT) backbone with enhanced 

feature propagation capabilities, making it suitable for 

dense prediction tasks. GLPN (Global Pixelwise 

Network) focuses on learning global context through a 

combination of convolutional and attention layers, with 

a strong emphasis on preserving resolution during 

feature aggregation. These models were either fine-

tuned or directly evaluated on the TUM dataset using 

pre-trained weights available through Hugging Face or 

PyTorch Hub 

 

 

Figure 2. Depth estimation for MiDaS 

 

http://www.ijsrem.com/


            INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                        VOLUME: 09 ISSUE: 04 | APRIL - 2025                                               SJIF RATING: 8.586                                              ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM44955                                       |        Page 4 
 

 

Figure 3. Depth estimation for Depth Anything V2 

 

Figure 4. Depth estimation for GLPN 

 

Figure 5. Depth estimation for Custom Unet++ 

 

C. Custom UNet ++ Architecture 

 The centerpiece of this work is a custom U-Net++ 

model built using the Segmentation Models PyTorch 

(SMP) library. The model adopts a ResNeXt-50 encoder 

pre-trained on ImageNet, which facilitates efficient and 

deep feature extraction. The decoder reconstructs high-

resolution depth maps using a combination of 

upsampling blocks and dense skip connections from the 

encoder, preserving both local and global contextual 

information.  

 The model was trained from scratch on the NYU 

Depth V2 dataset using Mean Squared Error (MSE) as 

the loss function and optimized using AdamW with a 

learning rate scheduler (OneCycleLR). Training was 

conducted over 10 epochs with a batch size of 32, 

employing mixed precision training to leverage GPU 

acceleration. The model achieved convergence rapidly 

due to its dense architecture and effective regularization 

techniques such as weight decay and batch 

normalization.  

 The resulting model was able to generate dense, 

high-resolution depth maps that captured intricate scene 

details and object boundaries. 

 

Figure 6. Custom Unet++ Architecture 

 

D. 3D Reconstructionn 

The depth maps generated by all models were converted 

into 3D point clouds and meshes using the Open3D 

library. This process involved mapping each pixel's 

depth value to its 3D coordinate using known camera 

intrinsic parameters, typically assuming a pinhole 

camera model. The 3D points were calculated using the 

transformation: 

𝑋 =
((𝑢 − 𝑐𝑥)𝑍)

𝑓𝑥
, 𝑌 =

((𝑣 − 𝑐𝑦)𝑍)

𝑓𝑦
, 

𝑍 = 𝐷𝑒𝑝𝑡ℎ 𝑉𝑎𝑙𝑢𝑒 

 

Where (𝑢, 𝑣)are pixel coordinates, (𝑐𝑥 , 𝑐𝑦) are 

principal points, 𝑓𝑥, 𝑓𝑦 are focal lengths, and 𝑍 is the 

depth value at the pixel. After point cloud generation, 

statistical outlier removal and voxel downsampling 

were applied for refinement. Optionally, mesh 

reconstruction was performed using Poisson Surface 

Reconstruction to generate smooth surfaces for 

qualitative visualization. 

 

E. Evaluation and Comparison 

The evaluation of the proposed and existing models was 

conducted using both quantitative and qualitative 

metrics. For depth estimation, common metrics such as 

Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index Measure (SSIM), and R² 

Score were computed to assess pixel-wise and 

perceptual accuracy. For 3D reconstruction, additional 

metrics such as point cloud density, completeness score, 

and surface smoothness were used to evaluate the 

quality of the generated 3D structures. Visual 

inspections and side-by-side comparisons further aided 
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in analyzing each model’s ability to reconstruct complex 

scenes. 

 

F.  Visualization 

Visualizations played a key role in interpreting model 

performance. Using Matplotlib and Open3D, both depth 

maps and reconstructed 3D point clouds were rendered. 

Predicted and ground truth depth maps were visualized 

using color maps such as ‘plasma’ for intuitive 

comparison. Additionally, 3D scenes were rendered 

interactively, highlighting model differences in object 

structure, spatial coherence, and noise artifacts. The 

visualizations also supported error overlays and 

comparative heatmaps to facilitate qualitative 

assessment. 

 

 

Figure 7. 3D View for MiDaS 

 

Figure 8. 3D view for Depth Anything V2 

 

 

Figure 9. 3D view for GLPN 

 

Figure 10. 3D view for Custom Unet 

 

 

IV. RESULTS  

This section presents the experimental outcomes of the 

implemented 3D reconstruction system using multiple 

monocular depth estimation models. The results 

highlight the performance of the Custom U-Net++ 

model in comparison with pre-trained state-of-the-art 

models like MiDaS (DPT-Hybrid), Depth Anything V2, 

and GLPN. Both qualitative and quantitative evaluations 

are discussed to analyze the depth estimation accuracy, 

3D reconstruction quality, and overall system 

robustness. 

 

A. Custom U-Net++ Performance 

The Custom U-Net++ model was trained on the NYU 

Depth V2 dataset and tested on both NYU and TUM 

Scene datasets. The training process demonstrated 

smooth convergence, achieving optimal results by the 

10th epoch. Quantitative metrics used to assess its 

performance include Mean Squared Error (MSE), Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index Measure (SSIM), and R² Score. 

 

 

Table 1. Metric scores for Custom Unet++ 

 

 

Figure 11. Per epoch metrics of Custom Unet ++ 

 

SSIM MSE  PSNR R2 Score 

0.7053 0.0244 16.1293 0.4619 
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Figure 12. Loss, MSE and SSIM training and validation 

graphs 

 

The model showed strong performance in depth 

estimation, particularly in indoor scenes with complex 

geometries. The decoder’s skip connections helped 

preserve spatial details, resulting in sharper and more 

context-aware depth maps. Despite some noise in depth 

prediction, especially at far distances, the model 

captured object boundaries and fine structures 

effectively. Visual inspection of point clouds generated 

from predicted depth maps showed consistent density 

and shape retention. 

 

Observations: 

The Custom U-Net++ performed well in learning scene 

geometry, but its outputs were slightly noisier than those 

of GLPN. However, it still outperformed MiDaS and 

Depth Anything V2 in preserving mid-range object 

depth and texture boundaries. 

 

B. Quantitative Comparision of All Models 

Each model was evaluated on a common image from the 

TUM Scene dataset, and the metrics for all four models 

are tabulated. 

 

 

Table 2. Comparative Scores of All Models 

Observations: 

GLPN clearly emerged as the top performer in 

quantitative accuracy and noise resilience. Custom U-

Net++, however, offered the best balance between 

performance and adaptability, particularly when trained 

on domain-specific datasets. MiDaS and Depth 

Anything V2 underperformed in deeper and cluttered 

environments due to limited generalization and over-

smoothing. 

Parameter 

Custom U-

Net 

(Proposed) 

MiDaS 

(DPT-

Hybrid) 

Depth 

Anything 

V2 

GLPN 

(Best 

Model) 

Noise Resilience 

Moderate 

(Needs 

tuning) 

High Moderate High 

Inference Speed Moderate Fast Moderate Fast 

Memory Usage High Moderate High Moderate 

Generalization 

Ability 
Good Moderate Moderate Excellent 

Anomaly 

Detection 

Capability 

Moderate Good Moderate Excellent 

3D Visualization 

Quality 

Good 

(Noisy) 
Moderate Good Excellent 

Robustness to 

Noise 
Moderate Moderate Good Excellent 

Interpretability Moderate Low Moderate High 

Fine-Tuning 

Requirement 
High Moderate Moderate Low 

Uncertainty 

Estimation 

Yes (MC 

Dropout) 
No No No 

Best Use Case 

Customizati

on & 

Specific 

Tasks 

Near-View 

Depth 

Estimation 

General 

Depth 

Estimation 

High-

Fidelity 

3D 

Visualizat

ion 

Table 3. Comparison of Computing aspects for different 

models  

 

C. Depth Map and 3D Reconstruction Visualization 

The depth maps generated by each model were 

subsequently converted into 3D point clouds using the 

Open3D library. Upon visual inspection, it was evident 

that the GLPN model produced the smoothest and most 

MODEL 

NAME 

SSIM MSE  PSNR R2 

Score 

MiDaS 0.6678 0.1453 8.3763 -

2.2077 

Depth 

Anything V2 

0.6652 0.1354 8.6822 -

1.9895 

GLPN 0.8295 0.0094 20.2776 0.7930 

Custom 

UNet 

0.7053 0.0244 16.1293 0.4619 
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complete reconstructions, demonstrating superior 

structural integrity.  

 

The Custom U-Net++ model, while slightly noisier, 

generated dense point clouds with sharper object 

boundaries, suggesting a strong capacity to preserve 

spatial detail. In contrast, MiDaS exhibited difficulty in 

maintaining depth accuracy for far-view structures, 

which often resulted in distorted or flattened 

reconstructions. Depth Anything V2 performed well in 

capturing foreground features with clarity, but it 

struggled to accurately reconstruct rear or background 

elements, leading to inconsistencies in overall scene 

geometry. These visual observations aligned closely 

with the quantitative results, further reinforcing the 

Custom U-Net++ model’s potential when fine-tuned on 

domain-specific datasets and supported appropriate 

noise reduction strategies. 

 

 

Figure 12. Predicted vs Ground truth Depth map for 

Custom Unet 

 

 

Figure 13. Predicted vs Ground truth Depth map for 

Depth Anything V2 

 

 

Figure 14. Predicted vs Ground truth Depth map for 

GLPN 

 

 

Figure 15. Predicted vs Ground truth Depth map for 

MiDaS 

 

D. Key Insights 

The study demonstrates that with targeted training, the 

Custom U-Net++ model can achieve performance 

comparable to pre-trained state-of-the-art models while 

offering better control and interpretability. The 

effectiveness of the U-Net++ model in estimating 

accurate depth maps makes it a viable candidate for 

resource-constrained applications where model 

customization and lightweight inference are required. 

Moreover, the modular pipeline and 3D reconstruction 

process yielded high-quality visualizations, enhancing 

the real-world applicability of the system in robotics, 

AR/VR, and spatial scene understanding. 

 

V. DISCUSSION 

The outcomes of this study highlight the 

effectiveness of integrating multiple deep learning 

models for monocular depth estimation and 3D 

reconstruction from 2D images. This section delves into 

the significance of the findings, interprets the 

comparative performance of each model, and addresses 

broader implications for real-world applications, as well 

as limitations that present opportunities for future 

improvement. 

 

A. Custom U-Net++ and Comparative Model 

Performance 

 The Custom U-Net++ model demonstrated a strong 

balance between computational efficiency and 

reconstruction accuracy. Although not outperforming 

the GLPN model in every metric, the Custom U-Net++ 

offered competitive depth estimation results and 

exhibited strengths in edge preservation and general 

scene structure when paired with noise reduction 

strategies.  

http://www.ijsrem.com/
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 The GLPN model remained the most consistent and 

structurally accurate across datasets, particularly 

excelling in generalization and point cloud 

completeness.  

 MiDaS and Depth Anything V2 displayed situational 

strengths—MiDaS for near-view predictions and Depth 

Anything for foreground sharpness—but struggled with 

maintaining consistency in far-field regions. 

Comparative results suggest that while the GLPN model 

currently leads in overall robustness, the Custom U-

Net++ architecture offers a lightweight and adaptable 

foundation that can be further optimized for specific use 

cases or constrained environments. 

 

B. Importance of Modular Framework and 

Visualization 

The proposed system architecture’s modularity 

played a critical role in facilitating in-depth analysis and 

fair comparison across different models. Each module—

preprocessing, depth estimation, reconstruction, and 

evaluation—was designed for flexibility, making the 

system easily adaptable for other models or datasets. 

Visualizations generated via Open3D and Matplotlib 

were not only useful for qualitative assessments, but 

they also provided a visual confirmation of the 

quantitative metrics used in evaluation.  

These visual inspections, especially for the Custom 

U-Net++, revealed that despite some noise artifacts, the 

model retained high-fidelity spatial features, which are 

crucial for applications requiring fine structural detail 

such as robotics or AR/VR. 

 

C. Implications for Real-World 3D Applications 

This study reinforces the potential of using deep 

learning-based monocular depth estimation techniques 

for real-world 3D reconstruction applications. The 

ability to generate meaningful 3D structures from single 

view 2D images opens up vast possibilities in fields such 

as autonomous navigation, virtual environment 

modeling, industrial automation, and even medical 

diagnostics. The integration of depth estimation with 3D 

rendering pipelines allows for scalable and cost-

effective alternatives to traditional multi-view or 

LiDAR-based reconstruction systems. Furthermore, the 

inclusion of a custom trainable model enhances 

adaptability to specialized environments, such as indoor 

industrial layouts or constrained medical imaging 

scenarios, where domain-specific fine-tuning can lead to 

notable performance improvements. 

 

D. Limitations 

 Despite the promising results, several limitations 

were observed during the study. One of the primary 

challenges was the presence of noise in the depth maps 

generated by the Custom U-Net++, particularly in 

distant or occluded regions. While refinement 

techniques mitigated some of these issues, future work 

should focus on enhancing the network’s resilience to 

such distortions, possibly through advanced 

regularization methods or improved loss functions. 

Additionally, the computational cost of evaluating 

multiple models, especially those involving 

transformers or hybrid architectures like Depth 

Anything V2—necessitated high GPU memory and 

prolonged training cycles.  

 This may restrict real-time deployment or usage in 

resource-constrained environments. Another limitation 

pertains to the lack of interpretability techniques; while 

the results were promising, incorporating explainability 

frameworks (such as Grad-CAM for spatial activation 

analysis) could enhance transparency, particularly in 

critical applications like autonomous driving or 

healthcare. Lastly, this study primarily focused on 

indoor datasets (NYU Depth V2, TUM Scene), and 

broader generalization to outdoor, high-variance 

environments remains an open challenge that future 

research must address. 

 

VI. CONCLUSION AND FUTURE WORK 

 

A. Conclusion 

This research presents a comprehensive deep 

learning-based framework for 3D scene reconstruction 

from single-view 2D images by leveraging monocular 

depth estimation techniques. The system integrates 

state-of-the-art models such as MiDaS, Depth Anything 

V2, GLPN, and a custom U-Net++ architecture trained 

specifically on the NYU Depth V2 dataset. Through a 

robust evaluation pipeline, including both quantitative 

metrics like MSE, SSIM, PSNR, and R² Score, and 
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qualitative 3D visualizations using Open3D, the study 

effectively benchmarks the performance of each model 

under diverse conditions. Among the methods 

compared, GLPN emerged as the most stable and 

structurally consistent model, offering high-fidelity 

reconstructions with minimal artifacts. However, the 

custom U-Net++ demonstrated promising results in 

preserving structural details and achieving competitive 

accuracy, albeit with mild noise artifacts in complex 

regions. The modular design of the proposed pipeline 

enabled easy integration and evaluation of various 

architectures, providing a flexible framework adaptable 

to multiple real-world domains, including robotics, 

AR/VR, and autonomous systems. 

The 3D point cloud generation and mesh 

reconstruction capabilities further validated the strength 

of the proposed system, with detailed visual outputs 

offering critical insight into each model’s effectiveness. 

Visual inspections aligned with metric scores, especially 

highlighting the potential of the custom U-Net++ when 

paired with proper denoising techniques. Overall, the 

project effectively illustrates how combining diverse 

architectures and rigorous evaluation strategies can lead 

to scalable and efficient depth-to-3D reconstruction 

systems using only monocular input. 

 

B. Future Work 

While the results demonstrate the viability of the 

proposed framework, several areas warrant further 

investigation and enhancement. The custom U-Net++ 

model, though effective, can benefit from additional 

fine-tuning and the incorporation of advanced loss 

functions or attention mechanisms to further reduce 

noise and improve depth consistency, especially in 

occluded or distant regions. Future iterations of this 

work may explore the use of ensemble models or hybrid 

architecture that combine the spatial awareness of CNNs 

with the global context modeling capabilities of 

transformers. Additionally, introducing real-time 

optimization techniques could make the system more 

suitable for latency-sensitive applications such as 

mobile robotics or AR rendering. 

From a dataset perspective, expanding training and 

evaluation beyond indoor-focused datasets like NYU 

Depth V2 and TUM Scene to include outdoor 

environments, varied lighting conditions, and complex 

object geometries would significantly enhance the 

model's generalizability. Another promising direction is 

the integration of interpretability frameworks, such as 

Grad-CAM or SHAP, to provide visual insight into the 

regions influencing depth predictions, thereby 

increasing transparency for high-stakes applications. 

Lastly, the automation of hyperparameter tuning and 

denoising strategies could further streamline model 

deployment, making the system more robust and 

scalable in both academic and commercial settings. By 

addressing these challenges, future work can continue to 

improve upon this foundation and unlock broader 

applications for single-image-based 3D reconstruction 

in dynamic, real-world environments. 
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