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Abstract—This paper delves into the realm of 

option pricing, presenting a comparative exploration 

of two distinct methodologies. Specifically, it 

focuses on the application of Hierarchical Kernel 

Learning (HKL) with two kernel functions: the 

Polynomial Kernel and the ANOVA Kernel. 

Furthermore, the paper introduces a hybrid models 

that combine Expectation-Maximization (EM) and 

K-Means clustering techniques with Support Vector 

Regression (SVR) . A comprehensive comparative 

analysis of the hybrid model sheds light on their 

capacity to improve option pricing accuracy across 

diverse market conditions. The insights derived 

from this research provide valuable contributions to 

understanding the performance of different kernel 

functions within the HKL framework. Moreover, it 

underscores the potential advantages of employing 

hybrid models in capturing nuanced market 

dynamics, thus enhancing the accuracy of option 

pricing. Ultimately, this study advances the field of 

option pricing, serving the needs of financial 

professionals and researchers seeking advanced 

tools for the valuation of derivatives. 

Keywords—options pricing; machine 
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Introduction--  

In tandem with the growing significance of 

derivatives in the realm of financial markets, a 

plethora of pricing techniques have been developed 

to address the essential need for accurately 

estimating the true value of financial instruments. 

Futures and options are extensively utilized by 

investors and traders to amplify their investments 

and seek substantial returns while also managing 

risk exposure. In the Indian financial markets, the 

National Stock Exchange (NSE) and Bombay Stock 

Exchange (BSE) stand as two major exchanges, 

with the NSE alone witnessing an average monthly 

turnover of approximately Rs. 7.5 trillion in futures 

and options. Consequently, the precise pricing of 

derivative products becomes of paramount 
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importance due to the sheer volume of transactions 

and the significant monetary involvement. 

The seminal work in option pricing was pioneered 

by Black and Scholes, who introduced the 

renowned Black-Scholes formula for option pricing. 

This model and its variants have served as stalwarts 

in producing reasonably fair values for options for 

over three decades. However, as time passed, 

researchers endeavoured to refine the model by 

challenging its underlying assumptions. Although 

various modifications and alternative models were 

proposed, none could wholly replicate the 

behaviour of actual option prices. These models 

assert that option prices depend on five key 

variables: the value of the underlying asset (S), the 

standard deviation of its expected returns (σ), the 

exercise price of the option (K), the time until 

option maturity (T), and the interest rate on the 

default-free bond (r). The relationship between 

option prices and these five variables is a complex 

and nonlinear one. 

Financial markets exhibit intricate and stochastic 

behaviour, resulting in multivariate and highly 

nonlinear option pricing functions. Parametric 

models such as Black-Scholes model describe 

stationary nonlinear relationships between 

theoretical option prices and various variables. 

There is also evidence suggesting that market 

participants alter their option pricing attitudes over 

time. Parametric Option Pricing Models (OPMs) 

may fall short in adapting to these swiftly changing 

market dynamics. Efforts are ongoing to develop 

nonparametric techniques capable of surmounting 

the limitations of parametric OPMs. Furthermore, 

there is a persistent need among market participants 

for more accurate OPMs applicable in real-world 

scenarios. 

To address these challenges, machine learning 

techniques such as Support Vector Regression 

(SVR), Hierarchical Kernel Learning (HKL), 

emerge as potent nonparametric data-driven 

approaches in empirical options pricing research. 

Support Vector Regression stands out as a powerful 

methodology for approximating complex functions 

without the need for a priori determination of model 

complexity, as seen in other nonparametric 

regression techniques. HKL is particularly valuable 

for non-linear variable selection. 

. 

Background-- 

Options are financial derivatives that provide 

investors and traders with the right, but not the 

obligation, to buy (call option) or sell (put option) 

an underlying asset, such as stocks, commodities, or 

currencies, at a predetermined price (strike price) on 

or before a specific date (expiration date). They 

play a crucial role in modern financial markets, 

enabling participants to hedge risk, speculate on 

price movements, and enhance portfolio strategies. 

Options pricing relies on factors such as the current 

price of the underlying asset, the option's strike 

price, time until expiration, volatility, and interest 

rates. The Black-Scholes model, developed in the 
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early 1970s, was a groundbreaking development in 

options pricing. It established the theoretical 

framework for calculating option prices and 

introduced the concept of implied volatility. 

Options are actively traded in various financial 

markets, including options exchanges, and have a 

wide range of applications. Traders use them to 

speculate on price movements, while investors use 

them for risk management and income generation. 

The versatility and flexibility of options have made 

them an essential tool in modern finance, providing 

a means to navigate the complexities of financial 

markets and optimize investment strategies. 

 

Literature Review 

The conventional option-pricing models find their 

roots in the pioneering work of Black and Scholes 

in 1973. Their model marked a significant milestone 

as the first comprehensive option pricing model 

with all parameters measurable. However, this 

model and its variations have been subject to 

systematic biases, as reported by numerous 

researchers. For instance, it has been observed that 

Implied Volatility derived from the Black-Scholes 

model, as a function of the moneyness ratio (S/X) 

and time to expiration (T), often exhibits a U-

shaped pattern, commonly referred to as the 

volatility smile. Additionally, empirical studies 

have shown that implicit stock return distributions 

exhibit negative skewness and greater excess 

kurtosis than accounted for in the Black-Scholes 

lognormal distribution. The Black-Scholes model 

assumes continuous diffusion of the underlying 

asset, a normal distribution of returns, constant 

standard deviation (volatility), and no impact on 

option prices from supply and demand, all of which 

are assumptions frequently challenged in real-world 

scenarios. 

The model is based on the assumption that the 

underlying asset follows a geometric Brownian 

motion described by the stochastic differential 

equation: 

                      dS = μdt + σSdW                              

(1) 

Where W represents Brownian motion and dW is 

the uncertainty in the stock price. 

Applying Ito's Lemma and the no-arbitrage 

condition yields the second-order Black-Scholes 

partial differential equation (PDE): 

 ∂V/∂t + (1/2)σ²S²∂²V/∂S² + rS∂V/∂S - rV = 0     (2) 

The Black-Scholes formula is derived by solving 

this PDE. It expresses the value of a call option on a 

non-dividend-paying underlying stock as: 

 C(S, t) = SN(d1) - Xe^(-r(T-t))N(d2)             (3) 

Where: 

• C(S, t): Premium paid for the European call 

option 

• S: Spot price of the underlying asset 

• X: Exercise price of the call option 
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• r: Continuously compounded risk-free 

interest rate 

• T-t: Time remaining until the option's 

expiration date 

• σ²: Yearly variance rate of return for the 

underlying asset 

• N(.): Standard normal cumulative 

distribution 

The original model is founded on assumptions that 

do not always hold in the real world. Various 

extensions and modifications have been proposed to 

relax these constraints. 

Model description: 

Hierarchical models: This approach is designed to 

enhance the accuracy and precision of option 

pricing models by incorporating the hierarchical 

decomposition of the kernels. 

Hierarchical Kernel Learning (HKL)  

1. Hierarchical Kernel Learning (HKL) is a 

machine learning framework that extends 

the concept of Multiple Kernel Learning 

(MKL) by introducing a hierarchical 

structure to the selection and combination of 

multiple kernels. It aims to find a suitable 

function that approximates complex, 

nonlinear relationships in data by leveraging 

a set of kernels and their convex 

combinations. The hierarchical structure 

allows for more flexibility and adaptability 

in modelling complex data patterns.MKL 

typically involves combining multiple basic 

kernels into a single composite kernel using 

a single optimization function. However, the 

exponential growth in the number of basic 

kernels with the dimension of the input 

space can make this approach intractable. 

2. HKL addresses this challenge by organizing 

basic kernels into a hierarchical structure 

represented as a directed acyclic graph 

(DAG). In this hierarchy, certain kernels are 

considered ancestors, while others are 

descendants. Kernels are selected based on 

specific rules that ensure a kernel can only 

be chosen after all of its ancestor kernels 

have been selected. Additionally, subsets of 

kernels are chosen only after all their subsets 

have been selected. These rules guide the 

selection process and make it 

computationally feasible. 

3. HKL is particularly valuable in scenarios 

where a large number of potential kernels 

and non-linear relationships need to be 

efficiently handled. It is often applied to 

tasks involving non-linear variable selection 

in machine learning. The hierarchical 

structure and selection rules help capture 

complex relationships between variables and 

data points while maintaining polynomial 

time complexity. 

4.  
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5. HKL with polynomial kernel: A 

polynomial kernel is a kernel function that 

calculates the similarity or inner product 

between data points by raising the dot 

product of the data points to a certain power. 

The general formula for a polynomial kernel 

between two data points, denoted as x and 

x', is given as: 

 k(x, x') = (γ * (x^T * x' + r))^d                 (4) 

• γ (gamma) is a scaling factor that controls 

the influence of the polynomial term. 

• r is a coefficient that can be added to the dot 

product. 

• d is the degree of the polynomial, 

determining the maximal degree of 

polynomial terms considered. 

In the context of HKL, the polynomial kernel used 

considers a specific form where xi and xi' are the 

data points being compared, and qj represents 

certain parameters for each dimension or feature. 

The full kernel, denoted as k(x, x'), is defined 

as a product (the ∏ symbol indicates multiplication) 

over all these parameters qj for each dimension. 

 

HKL with ANOVA Kernel: 

The ANOVA kernel is designed to capture 

interactions among subsets of features in the data. It 

is particularly useful when dealing with data where 

interactions between multiple features are essential 

for understanding the underlying relationships. 

ANOVA kernels are expressed as a sum of terms, 

with each term representing interactions between a 

specific subset of features. The kernel equation is 

typically defined as: 

k(x, x') = ∑ [I ⊆ {1, 2, ..., p}] (γ_I * ∏ [i∈I] xi * xi')   

(5) 

• I represents a subset of feature indices from 

1 to p, where p is the total number of 

features. 

• γ_I is a parameter that scales the 

contribution of each subset I to the kernel 

value. 

• The product is taken over all dimensions i 

within the selected subset I 

2.Clustering hybrid model: 

a)  EM & SVR model: This is a hybrid model uses 

EM algorithm described in to cluster the series into 

two cluster based on moneyness ratio(S/K) & time 

to maturity(T). SV regression is then applied to 

each of these clusters separately to determine best 

model parameters. 

EM:The Expectation-Maximization (EM) algorithm 

is a statistical iterative method used to estimate 

model parameters when data is incomplete or 

contains hidden variables. Its primary goal is to find 

the Maximum Likelihood (ML) estimates that make 

the observed data most probable. The EM algorithm 

operates through cycles of two steps: the 
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Expectation (E-step) and the Maximization (M-

step). 

In the E-step, the algorithm estimates missing or 

hidden data given the observed data and the current 

model parameter estimates. This step derives 

conditional expectations to assess the most likely 

values for the unobserved data. 

In the M-step, the likelihood function is maximized, 

assuming the missing data are known using values 

estimated in the E-step. This optimization process 

seeks the best model parameters that fit the 

observed data. 

Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a robust non-

parametric approach used in empirical options 

pricing and other regression problems. It operates 

based on the idea of optimizing a model that strikes 

a balance between fitting the data as closely as 

possible and allowing for deviations within a certain 

margin, denoted as ε (epsilon). This margin 

represents the level of tolerance for errors, and SVR 

aims to keep these errors within this margin. 

Training Data: SVR works with training data 

consisting of pairs of input patterns (xi) and 

corresponding output values (yi). In the context of 

options pricing, this could represent data such as 

index call options and related econometric 

indicators. 

ε-Insensitive Loss Function: SVR employs an ε-

insensitive loss function. This loss function 

penalizes errors but only considers errors larger 

than ε. This is crucial in situations where you want 

to limit your risk and are willing to accept 

deviations within a specific margin (ε). 

Dimensionality Independence: One of the 

advantages of SVR is that its capacity is not 

dependent on the dimensionality of the feature 

space. It is controlled by parameters that do not rely 

on the dimensionality of the feature space, which 

makes it suitable for high-dimensional data. 

Generalization and Model Complexity: SVR 

seeks to optimize generalization bounds for 

regression problems. It handles function estimation 

effectively without requiring prior determination of 

model complexity, unlike some other non-

parametric regression techniques. 

Empirical Options Pricing: SVR has gained 

importance in options pricing research. It is 

particularly valuable because it can model both 

linear and non-linear relationships in the data. 

Additionally, SVR's statistical properties allow it to 

generalize well to unseen data. 

Comparison with Least Squares SVR: In 

empirical research for pricing call options, SVR 

models, particularly ε-insensitive and Least Squares 

SVR, have been compared. It was found that Least 

Squares SVR outperformed ε-insensitive techniques 

for out-of-sample pricing performance. 

In summary, Support Vector Regression (SVR) is a 

flexible and powerful approach for various 

regression tasks, including options pricing. It allows 
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you to control the tolerance for errors, making it 

suitable for scenarios where risk management is 

crucial. Its capacity is independent of feature space 

dimensionality, and it optimizes generalization 

bounds, making it a valuable tool in empirical 

research and modeling complex relationships in 

financial data. 

b) K-means clustering & SVR: 

This is a hybrid model uses K-means algorithm 

described to cluster the series into two cluster based 

on moneyness ratio(S/K) & time to maturity(T). SV 

regression is then applied to each of these clusters 

separately to determine best model parameters. 

K-means clustering: The K-means clustering 

method is a popular unsupervised machine learning 

technique used to partition a dataset into a specified 

number of clusters, denoted as "k." The goal is to 

create clusters that have the greatest possible 

distinction from each other. The K-means method 

starts with random clusters and proceeds by 

iteratively optimizing the cluster assignments and 

centroid positions. The key idea is to create clusters 

that minimize the internal variability by grouping 

similar data points together. Simultaneously, it 

maximizes the variability between clusters, ensuring 

that the clusters are as distinct as possible from each 

other. 

Data: The analysis used data on S&P CNX Nifty 

index call options traded on National Stock Ex-

change (NSE) over the period from January 2010 to 

July 2020 .The options with 1-month to expiry are 

considered for the purpose of this study. For the 

purpose of this study the options data is classified 

into five series depending on the difference between 

the index price and strike price. The dataset was 

then scaled in between [0, 1]. The data points with 0 

days to maturity were removed from the sample 

data. 

To manage and analyse the data effectively, the 

dataset was categorized into five distinct series 

based on the difference between the index price and 

the strike price. These series include: 

1. Deep In-the-Money (DITM): Options 

where the index price is significantly higher 

than the strike price. 

In-the-Money (ITM): Options where the index 

price is higher than the strike price. 

At-the-Money (ATM): Options where the index 

price is approximately equal to the strike price. 

Out-of-Money (OTM): Options where the index 

price is lower than the strike price. 

Deep Out-of-Money (DOTM): Options where 

the index price is significantly lower than the 

strike price. 

 

Methodology: 

In this study, the methodology is designed to 

enhance the accuracy of option pricing through the 

application of Hierarchical Kernel Learning (HKL) 

and innovative hybrid models. 
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The kernel selection process involves the choice of 

two kernel functions, namely the Polynomial and 

ANOVA Kernels, offering increased flexibility in 

modelling option pricing. This diverse kernel 

selection enables the capture of non-linear 

relationships and the decomposition of kernels to 

effectively approximate complex option pricing 

processes. 

HKL employs a hierarchical structure that integrates 

multiple kernels, providing a comprehensive 

approach to modelling. This hierarchical structure 

enhances the precision of option pricing. 

The hybrid models introduced in this research 

incorporate Expectation-Maximization (EM), K-

Means clustering, and Support Vector Regression 

(SVR) techniques to improve option pricing 

accuracy. Clustering is performed using EM and K-

Means methods, segmenting financial series data 

into two clusters based on moneyness ratio (S/K) 

and time to maturity (T). Subsequently, SVR is 

applied independently to each cluster to determine 

the optimal model parameters for precise option 

pricing. 

A crucial component of the methodology involves a 

comprehensive comparative analysis of these hybrid 

models. This analysis evaluates their performance 

and their potential to enhance option pricing 

accuracy across various market conditions. 

Performance characteristics: 

Performance measurement is a critical aspect of 

evaluating the accuracy of different models used in 

option pricing. In this study, several error 

measurement parameters are employed to quantify 

the pricing performance of these models, with a 

focus on the following key metrics: 

Mean Squared Error (MSE): Mean Squared Error 

is a commonly used performance measurement 

criteria in various studies. It quantifies the 

dissimilarity between an estimator's predictions and 

the true values of the quantity being estimated. The 

MSE is calculated as the average of the squared 

differences between the observed values and the 

predicted values. 

Explained Variance: Explained Variance, a 

statistical metric, assesses the extent to which a 

mathematical model accounts for the variation or 

apparent randomness within a given dataset. It 

measures how well the model explains the variance 

in the observed data relative to the variance in the 

true values. 

Results: 

      

 

     

6.       
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7. HKL Models: The HKL models (HKL-poly 

and HKL-ANOVA) show significant 

improvements over the standard Black-Scholes 

model (BS) in various categories, especially in 

ATM and DOTM. 

8. Clustering Models: The clustering models 

(EM SVR clustering model and KM SVR 

clustering model) perform even better, 

particularly in ATM and DOTM, where they 

show substantial improvements over both HKL 

models and the standard Black-Scholes model. 

9. ATM and DOTM: Both the EM and KM 

clustering models provide the highest 

improvements in the ATM and DOTM 

categories, demonstrating the effectiveness of 

clustering techniques in enhancing option 

pricing accuracy. 

10. Conclusion: 

11. The overall conclusion of the analysis is that 

the hybrid models, particularly those combining 

clustering techniques (EM and KM) with 

Support Vector Regression (SVR), provide 

substantial improvements in the accuracy of 

option pricing. These models outperform both 

the standard Black-Scholes model and the 

Hierarchical Kernel Learning (HKL) models in 

various categories of options, with the most 

significant enhancements observed for At-The-

Money (ATM) and Deep Out-Of-The-Money 

      

(DOTM) options. 

12. The results indicate that traditional models, 

such as the Black-Scholes model, may not 

adequately capture the complex dynamics of 

financial markets, especially in the case of 

options that are ATM or DOTM. This 

limitation highlights the need for more 

advanced and adaptive modelling techniques. 

13. By incorporating clustering methods, these 

hybrid models demonstrate their effectiveness 

in segmenting financial series data into distinct 

clusters based on moneyness ratio and time to 

maturity. These clusters provide a more 

nuanced understanding of market dynamics, 

allowing the SVR component of the hybrid 

model to adapt more accurately to different 

market conditions. 

14. In summary, the study underscores the 

importance of considering advanced machine 

learning techniques, specifically hybrid models 

that leverage clustering and SVR, to enhance 

option pricing accuracy, especially for options 

that are ATM or DOTM. This research 

contributes valuable insights for financial 

professionals and researchers seeking improved 

tools for derivative valuation in dynamic and 

evolving market conditions. 

15.  

16.  

http://www.ijsrem.com/


          INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

            VOLUME: 07 ISSUE: 11 | NOVEMBER - 2023                              SJIF RATING: 8.176                                      ISSN: 2582-3930                                                                                                                                               

 

© 2023, IJSREM      | www.ijsrem.com                                                                                                                              |        Page 10 

      

17. REFERENCES 

18. 1)Park, H., Kim, N., & Lee, J. (2014). 

Parametric models and non-parametric machine 

19. 2)learning models for predicting option prices: 

Empirical comparison study over KOSPI 

20. 3) Zeynep lt¨uzer Samur and G¨ul Tekin 

Temur. The use of artificial neural network in 

option pricing: The case of s&p 100 index 

options. World Academy of 

Science,Engineering and Technology, 2009. 

21. 4) Pawel Radzikowski. Non-parametric 

methods of option pricing. INFORMS & KO-

RMS, 2000. 

22. 5) Chih-Chung Chang and Chih-Jen Lin. 

LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent 

Systems and Technology, 2:27:1–27:27, 2011. 

23. 6) ] Panayiotis Ch. Andreou, Chris 

Charalambous, and Spiros H. Martzoukos. 

Criticalassessment of option pricing methods 

using artificial neural networks. Springer-

Verlag Berlin Heidelberg, 2002. 

24. 7) Panayiotis C. Andreou, Chris Charalambous, 

and Spiros H. Martzoukos. Pricing and trading 

european options by combining artificial neural 

networks and parametricmodels with implied 

parameters. European Journal of Operational 

Research, 2008 

      

25.  

 

 

      

      

      

 

 

http://www.ijsrem.com/

