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Abstract -Fault prediction in software systems is essential for 

ensuring software quality and reliability. Traditionally, binary 

classification based on threshold values has been seen as a 

simpler and more intuitive method than machine learning and 

statistical techniques. Threshold-based methods allow 

developers and testers to classify software components as faulty 

or non-faulty by checking if specific metric values exceed set 

thresholds. However, it is important to determine if threshold 

techniques can achieve prediction performance that matches 

machine learning algorithms. This paper looks into this issue by 

building threshold-based models using the concordance 

probability method, Alves Rankings, and the Vales method, and 

compares their results with those from machine learning and 

statistical methods like Naive Bayes, Logistic Regression, 

AdaBoost, Random Forest, and Bagging. The results show the 

better classification ability of threshold techniques as compared 

to machine learning based classifiers. 
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1. INTRODUCTION  

 
The process of binary classification based on the concept of 

threshold is easier than the repetitive process of constructing 
models, as in the former case, developers and testers can sense 
the peculiarity in the class just by checking if its metric value 
exceeds the calculated threshold [1]. Although, researchers 
claimed the effectiveness of threshold concept as compared to 
Machine Learning (ML) and statistical methods, as the former 
method can be easily used by the software development team to 
maintain the quality of the software system, however, it is also 
mandatory to verify whether the threshold techniques can 
produce the discrimination results as good as the ML algorithms. 
Therefore, in this paper, the authors have compared the 
prediction peRFormance of the threshold techniques with ML 
and statistical techniques.  

In this paper, the threshold based models is developed by 
using the concordance probability method, Alves Rankings, and 
Vales method and their prediction outcome is compared with the 
results of Naive Bayes (NB), Logistic Regression (LR), 
Adaboost, Random Forest (RF), and Bagging. The concordance 
probability method is selected in this study due to its capability 
to produce the best prediction results [2]. Furthermore, the Vales 
method is evaluated for its ability to determine an effective 
threshold in splitting the faulty and non-faulty classes. This 
method was originally introduced to find the lazy and god 
classes of the software system [3]. God class performs too much 
task, whereas, lazy class performs little task in the software 
system. In (Vale & Figueiredo, 2015), the authors reported 
results signalized the best outcome in case of Vales method as 
compared to the Alves Rankings method for detecting the lazy 
and God classes. In order to validate the published results of the 
referenced study in the fault prediction domain, the current study 

compares the prediction efficiency of the Vales method with that 
of the Alves method.  

The common method to predict faulty classes using a 
threshold value includes declaring a class as faulty when a 
particular software metric exceeds its threshold value. But in [4], 
the authors also tested the scenario when more than one software 
metric exceed their threshold values. The authors declared a 
class as faulty when at least single software metric exceeds its 
threshold value and evaluate the results. The authors declared a 
class as faulty when at least single software metric exceeds its 
threshold value and evaluate the results. Similarly, performance 
was also evaluated when at least two, three and four software 
metrics were exceeding their threshold values. The best results 
were obtained when the number of software metrics that 
exceeded the threshold values reached three or four. The authors 
also found that with an increase in the number of software 
metrics, the number of false positive predictions gets low and the 
number of false negative predictions gets high. In this paper, the 
authors adopted the same evaluation criteria to assess the 
suitability of the threshold and ML algorithms for the 
classification purpose. Herein, ROC-1 denotes a class as faulty 
when at least one of the selected software metrics exceeds its 
threshold value obtained through the ROC method. Likewise, 
ROC-2, ROC-3, and ROC-4 denote a class as faulty when at 
least two, three, and four software metrics exceed their 
respective threshold values. Similarly, ALVS-1, ALVS-2, 
ALVS-3, and ALVS-4 represent the results obtained through the 
Alves Rankings method, while VAL-1, VAL-2, VAL-3, and 
VAL-4 represent the results obtained through the Vales method. 

The main contributions of this paper are 

1. To compare the prediction efficiency of ML based and 
threshold based models.  

2. To explore the contribution of the Vales method in 
identifying the optimal threshold value. The prediction model 
has been constructed using Vale method and the results have 
been compared with Alves based models. Section 5 contains the 
results and Section 6 concludes the paper. 

The rest of the paper is organized as follow. Section 2 
contains review of the studies conducted in the related area. 
Section 3 contains the review of the fault prediction related 
studies. Section 4 introduces the classification algorithms. 

2. RELATED WORK 

This section contains the review of existing studies 
conducted in the fault prediction area.  

Grcer and Tarhan (2025) applies five machine learning 
models—RF, GB, NB, MLP, and NN—for software defect 
prediction and integrates an explainable AI (XAI) framework to 
enhance interpretability [5]. Using six XAI methods on the KC2 
dataset, the research provides both global and local explanations, 
reducing the “black-box” nature of ML models and offering 
clearer insights into defect prediction. 

In [6], the authors responded to the need for software quality 
and defect prediction to prevent expensive maintenance. The 
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authors compared algorithms like GNB, Bernoulli NB, RF, and 
MLP, and suggested a PCA-based ensemble with class balancing 
as well. Performance was measured in terms of metrics such as 
accuracy, precision, and recall. 

Shatnawi et al. proposed the ROC curve for threshold-based 
classification in fault prediction, choosing the point with the 
highest sum of specificity and sensitivity [7]. While thresholds 
of 12 OO metrics effectively partitioned classes by fault severity, 
they failed to divide Eclipse classes into faulty and non-faulty. 
Catal et al. also applied the ROC approach but maximized for 
maximum area under the curve [8]. Ferreira et al. developed yet 
another method based on data fitting to probability distributions 
[9]. 

Boucher and Badri (2018) compared ROC, Alves Rankings, 
and VARL, and concluded that ROC had the highest predictive 
efficiency, next was Alves, whereas VARL thresholds were 
inadmissible in over half of the cases [4]. Subsequently, Kaur 
and Singh (2020) compared ROC and Alves Rankings on 20 OO 
measures and found much superior results for ROC for measures 
like RFC, NPM, LOC, CAM, and AMC [10]. 

3. THRESHOLD TECHNIQUES 

 
In this paper, threshold-based models are constructed using 

three techniques: the concordance probability method, the Alves 

Rankings method, and the Vales method. Although the 

classification ability of the Alves method is lower than that of 

the concordance probability method, it is selected for threshold 

identification in this study due to its advantage of deriving 

threshold values without relying on previous fault data. Some 

companies are unable to collect fault information because of the 

high costs associated with data collection tools. In such cases, 

unsupervised methods can be employed to extract threshold 

values. Therefore, in this paper, along with the Alves method, 

another unsupervised method proposed by in the study [3], is 

also tested for the identification of optimal threshold values. 

The Vales method is similar to the Alves Rankings method as it 

can show the proficient results in case of skewed metric values. 

However, it does not take into account the size metric in order 

to find the threshold value. The steps to find an optimal value 

using Vales method are explained as follows. 

a) The first step is the extraction of values of the software 

metric whose threshold value is to be calculated. 

b) The next step is the calculation of weight ratio of each 

entity (here entity represents class), which can be computed by 

dividing the class weight by the total number of classes and the 

result is multiplied by 100. Each class is assigned with the same 

weight and their aggregation should produce 100%. For e.g., if 

dataset contains 1000 classes, then the weight ratio of each class 

will be 0.1% [0.1%*1000=100]. 

c) The next step is entity aggregation, this step requires 

the summation of weight ratios of the classes having similar 

value of the selected software metrics. For e.g., if the dataset 

contains five classes with CBO value 6 and weight ratio of each 

class is 0.1, then the results after entity aggregation will be 0.5. 

d) The last step involves the threshold derivation. It 

requires the construction of a cumulative line chart, where the 

X-axis represents weight ratio and the Y-axis represents metric 

value. Here the metric value corresponding to the weight ratio 

producing efficient results is selected as an optimal threshold 

value. 
 

 

4. CLASSIFICATION ALGORITHMS  

 

The following statistical and machine algorithms are considered 

and evaluated for their relative performances on the fault 

dataset. The selected algorithms are NB, LR, Adaboost, RF, and 

Bagging.  

NB is a simple probabilistic classifier that trains the model by 

assuming that features are independent of each other. Although, 

the stated assumption seems unrealistic, however the technique 

works efficiently and produces results as well as other 

sophisticated classifiers.  

LR is the standard technique to handle the classification 

problem by providing the estimates of event outcome 

probability. It measures the association between the dependent 

variable and one or more independent variables by estimating 

the likelihood of occurrence of certain case using a logistic 

function. LR has been selected n the multitude of studies for 

identifying the faulty classes. 

Adaboost is a prevalent method for constructing an ensemble 

classifier. It is a process of making classification by creating 

several weak classifiers also known as decision stumps and 

aggregating them into a strong classifier. The stumps are weak 

in the sense as they use only one variable to make a decision. 

The next weak classifier is created by taking into account the 

mistake made in the last classifier.  

Another method utilized in this paper is Bagging, which was put 

forward by Breiman, with the motive to enhance the 

classification outcome by randomly generated trainings set [11].  

Decision Trees (DT) are known for their ease in construction, 

use and interpretation. However, they can efficiently manage 

the problem of over-fitting by using the pruning method. But, in 

the arena of predictive learning, DT produce inaccurate results 

because of their inflexibility in classifying the new samples. 

Consequently, RF can be used which possess easiness property 

of DT along with their improved accuracy. RF works by 

constructing a large number of DT from the training dataset and 

makes predictions by aggregating the predictions resulting from 

these DT. The process involves the construction of bootstrapped 

dataset from the original dataset. For this, samples are selected 

randomly from the original dataset. The size of bootstrapped 

dataset should be equal to that of original one, in this process 

the duplicated samples can be chosen i.e. the former can pick 

any sample more than one time. Then, a DT is created from the 

bootstrapped dataset. The process of creating a DT is repeated 

for another bootstrapped dataset many times. After the 

formation of a forest, test data is run down on all trees and mark 

the option (true or false) containing the highest number of votes. 

 

5. RESULTS 

 
In this paper, the selected classification algorithms are used to 

find the optimal cut-off values of CK and LOC metrics. The 

experiment is executed on Ant-1.7, Arc, Prop-6, Synapse-1.2, 

Tomcat, Velocity, Antlr, BroadleafCommerce, Junit, McMMO, 

and Netty. The metrics selected based on the univariate analysis 

are WMC, CBO, RFC, and LOC. These metrics were showing 

their significant relationship with the target class in a high 

number of the software systems. 

5.1 Threshold values 
The threshold values obtained with the application of chosen 

threshold methods are given in Table-1. In the case of the Alves 

method, selecting the appropriate weight ratio is essential, and 

the metric values corresponding to a weight ratio of 20 produce 

the best results. In this paper, the metric value corresponding to 
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the same weight ratio is also selected as the optimal threshold 

value. A similar approach is adopted to find the optimal 

threshold values in case of Vales method. To determine the 

appropriate weight ratio the G-mean results of the thresholds 

acquired at weight ratios 10%, 20%, up to 100% are compared, 

and the ratio producing the highest G-mean results are 

considered as an optimal weight ratio. The findings revealed 

that the metric values corresponding to ratio 50% gives the best 

classification outcome, therefore, the metric values 

corresponding to this ratio are selected as an optimal threshold 

value. 

 

Table-1 Threshold values computed using Concordance, Alves, 

and Vales method 

 
5.2 Performance results 

In this paper, three performance parameters, i.e., FPR, FNR, 

and G-mean, are considered to express the predictive 

performance of the prediction models.  

In Ant-1.7, ROC-2 shows the best classification ability to 

discriminate the faulty and non-faulty classes followed by Alvs-

3 and VAL-4 (as shown in Fig-1). The lowest false predictions 

(FPR- 0.328 and FNR- 0.115) and the highest G-mean value, 

i.e. 0.771, are obtained when at least two of the software metrics 

transcend the threshold values of the corresponding metrics 

obtained using the ROC method. With the execution of ROC-3, 

the false positive predictions slightly decline, i.e. 0.328, as 

compared to ROC-2 and false negative predictions slightly rise, 

i.e. .115. For ROC-1, average results are obtained when a class 

is declared faulty if at least one software metric exceeds the 

computed cut-off value. No classification ability is observed for 

ROC-4 due to its high rate of false negative predictions. The 

Alves method produces the best results when at least three 

software metrics exceed the derived threshold values, achieving 

a G-mean of 0.758. Similarly, for the Vales method, the best 

results are observed for VAL-2 and VAL-3, with G-mean 

values of 0.74. Among the selected machine learning 

techniques, AdaBoost reports the best classification results, with 

a G-mean of 0.715, while the others produce only average 

classification performance. Although AdaBoost shows the 

strongest discrimination ability among the machine learning 

techniques, its performance remains lower than that of the 

threshold-based models. 

 
Fig -1:  Results of threshold and ML based models on Ant-1.7 

The prediction results obtained by the threshold-based and ML 

models are displayed in the Fig-2. In case of Arc, the ML based 

models fail to achieve the required classification ability. 

Although, the threshold based models produced better results 

than ML based models, but the former still fail to produce the 

acceptable classification power. The threshold based model 

produced the maximum of average classification ability in case 

of ROC-2 and ROC-3 with G-mean score of 0.67, in case of 

ALVS-2 with G-mean score of 0.636 and in case of VAL-3 

with G-mean value of 0.652. As compared to threshold based 

models the techniques like NB, LR, Adaboost, RF, and Bagging 

showed considerably low prediction outcome. 

 
Fig -2 Results of threshold and ML based models on Arc 

In case of Prop, model built using ROC gives the best result (as 
depicted in Fig-3). The acceptable results are also observed in 
the case of Vales method. The results produced by Alves 
method are showing average ability to classify the faulty and 
non-faulty groups. LR, Adaboost, RF, and Bagging fail to 
classify the software classes into the accurate group, whereas, 
Naïve Bayes shows the average classification ability to separate 
the software classes. Therefore, based on the above results it can 
be concluded that between the threshold based and ML, the 
former models are better choice for the development of fault 
prediction models.    

 

Fig -3 Prediction performances of the selected models on Prop  

 

In case of Synapse, Adaboost gives slightly better results than 

other ML based models (as shown in Fig-4). The G-mean value 

obtained by Adaboost is 0.753, followed by ROC-3 (with G-

mean score of 0.743), VAL-3 (with G-mean score of 0.739), 

ALVS-3 (with G-mean score of 0.727), and RF (with G-mean 

value of 0.715). Therefore, no significant difference can be 

observed in the prediction results of ROC and Adaboost 

methods. All of these previously mentioned methods showed 

acceptable results, however, the average results were shown by 

other ML techniques (excluding Adaboost and RF). 
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Fig -4 Prediction performance of threshold and ML based 

models on Synapse 

Similarly, In Tomcat, the prediction model developed using 
ROC and Vales method produced the best result, as here the 
excellent results were revealed when at least three software 
metrics exceeds the derived threshold values. The detailed 
prediction peRFormance hold by the different classification 
models is depicted in Fig-5.  The ML models such as LR, 
Adaboost, Bagging showed no classification ability, RF 
revealed a poor ability, and Naïve Bayes achieved average 
results. Therefore, in case of Tomcat, the threshold based 
models provided significantly better results than ML based 
models. 

 
Fig -5 Prediction performance of the selected models on 

Tomcat 

In case of velocity (as shown in Fig-6), the threshold based 

models gave the best results as compared to the ML based 

models. Among ROC, Vales, and Alves, the prediction models 

developed using the former two techniques gave the best 

classification results. In case of ML algorithms, Naïve Bayes 

and LR depicted poor classification ability, whereas, RF and 

Bagging managed to produce the average discrimination 

outcome. 

 

 
Fig -6 Performance of the selected models on Velocity 

In Antlr (as shown in Fig-7), the threshold based models 

developed using ROC and Alves method showed the excellent 

discrimination result, whereas, ML lagged behind the threshold 

based models in terms of classification efficiency. The ML 

techniques such as Adaboost, RF, and Bagging showed no 

classification ability. Similarly, the models built using LR and 

Naïve Bayes failed to produce an efficient discrimination 

outcome.   

 

Fig-7 Prediction performance of the selected models on Antlr 

In Broadleaf Commerce (as depicted in Fig-8), among the 
selected threshold based models, the models constructed using 
ROC and Alves give the best results. As compared to threshold 
based models, the model developed using ML techniques 
depicts significantly low prediction ability. The 
misclassification rate of LR, AdaBoost, RF, and Bagging is too 
high; most of the software classes that are predicted as faulty 
are actually non-faulty. Although NB demonstrates better 
classification ability compared to its counterparts, its 
performance is still not up to the mark. 

 
Fig-8 Performance of the selected models on 

BroadleafCommerce 

Similarly, in case of Junit, the threshold based models 
outperforms the ML based models with significant performance 
difference. The detailed performance outcome is depicted in 
Fig-9. Here, ROC and Alves based models shows the excellent 
prediction ability.  All of the ML based models shows very high 
false positive rate, which further impacts the overall 
classification performance. 

In case of McMMO (as shown in Fig-10), slightly different 

results are observed as compared to the previous software 

systems, as here two of the ML techniques, i.e., RF and 

bagging, shows the prediction results as good as the ROC based 

threshold model. On the other hand, the prediction performance 

of NB, LR and boosting algorithm is not satisfctory. 
 

 

 
Fig-9 Performance of threshold and ML based models on Junit 
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Fig -10 Performance of the selected models on McMMO 

In case of Netty, the ROC based model gives the best results 
followed by Vales and Alves methods. The G-mean score of the 
threshold based and other classifiers are shown in Fig-11. The 
discrimination strength of the RF-based model is close to that of 
the threshold-based models. By contrast, NB, LR, and 
AdaBoost depict no classification ability. 

 

Fig -11 Performance of the selected models on Netty 

Based on the previous results, it can be observed that threshold 
based models show better prediction results as compared to ML 
algorithms. Furthermore, among the selected threshold based 
models, the one constructed using ROC curve produces the best 
results. No significant difference is found between the 
prediction performance of the Alves and Vales methods, as in 
some cases the former gives better results and in other cases the 
latter produces a better outcome. As opposed to the [3] where 
the Vales method was proven significantly better than the Alves 
method in detecting the God and Lazy classes, in the fault 
prediction domain the Vales method fails to show a significant 
difference from the Alves method.  

Overall, the selected threshold-based methods show better 
prediction performance than ML. The acceptable results are 
observed only for AdaBoost in Ant, AdaBoost and RF in 
Synapse, and RF and Bagging in McMMO. 

5.3 Comparison results  

Although, it is imperative from the results, obtained so far, that 
threshold techniques perform better than ML techniques for the 
detection of faulty classes. However, Freidman test is applied to 
verify whether the performance difference between them is 
actually significant.  Among ROC-1, ROC-2, ROC-3, and 
ROC-4, the model that gave the highest G-mean score was 
selected for the comparison process. The similar selection 
criterion is applied to Alves and Vales models. The null and 
alternate hypotheses of Friedman test based on this paper are as 
follows. 

Null hypothesis: Both ML and threshold techniques shares same 
predictive capability. 

Alternate hypothesis: The predictive efficiency of ML and 
threshold techniques is not same. 

The null hypothesis of Friedman test was rejected with p-value 
0.000, which indicates that there exists a significant difference 
between the predictive performances of selected techniques. 

The outcome of post-hoc Nemenyi test is shown in Table-2. The 
results reported the effectiveness of the ROC method than all of 
the selected ML techniques. The Alves based model succeeded 
to hold significant difference with only LR, Adaboost, and 
bagging. Similar findings were observed in the case of Vales 
method, as here also no significant difference was found with 
the prediction performance of NB and RF.                       

Table -2: Comparison results based on post-hoc Nemenyi test 

 

 
 

6. CONCLUSIONS 

 
This paper contains the comparison of the classification ability 

of the models constructed using threshold and ML techniques. 

The threshold techniques selected for the comparison purpose 

are concordance, Alves, and vales method. The ML methods 

chosen are NB, LR, Adaboost, RF, and Bagging. In the 

comparison between threshold-based and ML-based models, the 

threshold-based model built using the concordance method 

gives significantly better results than all of the selected ML 

techniques, whereas the prediction results of the Alves and 

Vales based models are significantly better only than LR, 

AdaBoost, and Bagging. Furthermore, no significant difference 

is found between the Alves and Vales methods. 

This paper has considered only CK and LOC metric. The future 

work can be conducted on more software metrics. 
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