
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52713 | Page 1

A Comparative Study of Threshold-Based and Machine Learning Models

Navneet Kaur1, Deepali Bassi2

1Department of Computer Science and Applications, Khalsa College, Amritsar
2Department of Computer Science and Applications, Guru Nanak Dev University, Amritsar

---***---

Abstract -Fault prediction in software systems is essential for

ensuring software quality and reliability. Traditionally, binary

classification based on threshold values has been seen as a

simpler and more intuitive method than machine learning and

statistical techniques. Threshold-based methods allow

developers and testers to classify software components as faulty

or non-faulty by checking if specific metric values exceed set

thresholds. However, it is important to determine if threshold

techniques can achieve prediction performance that matches

machine learning algorithms. This paper looks into this issue by

building threshold-based models using the concordance

probability method, Alves Rankings, and the Vales method, and

compares their results with those from machine learning and

statistical methods like Naive Bayes, Logistic Regression,

AdaBoost, Random Forest, and Bagging. The results show the

better classification ability of threshold techniques as compared

to machine learning based classifiers.

Key Words: Fault prediction, machine learning, threshold

techniques, ROC curve

1. INTRODUCTION

The process of binary classification based on the concept of

threshold is easier than the repetitive process of constructing
models, as in the former case, developers and testers can sense
the peculiarity in the class just by checking if its metric value
exceeds the calculated threshold [1]. Although, researchers
claimed the effectiveness of threshold concept as compared to
Machine Learning (ML) and statistical methods, as the former
method can be easily used by the software development team to
maintain the quality of the software system, however, it is also
mandatory to verify whether the threshold techniques can
produce the discrimination results as good as the ML algorithms.
Therefore, in this paper, the authors have compared the
prediction peRFormance of the threshold techniques with ML
and statistical techniques.

In this paper, the threshold based models is developed by
using the concordance probability method, Alves Rankings, and
Vales method and their prediction outcome is compared with the
results of Naive Bayes (NB), Logistic Regression (LR),
Adaboost, Random Forest (RF), and Bagging. The concordance
probability method is selected in this study due to its capability
to produce the best prediction results [2]. Furthermore, the Vales
method is evaluated for its ability to determine an effective
threshold in splitting the faulty and non-faulty classes. This
method was originally introduced to find the lazy and god
classes of the software system [3]. God class performs too much
task, whereas, lazy class performs little task in the software
system. In (Vale & Figueiredo, 2015), the authors reported
results signalized the best outcome in case of Vales method as
compared to the Alves Rankings method for detecting the lazy
and God classes. In order to validate the published results of the
referenced study in the fault prediction domain, the current study

compares the prediction efficiency of the Vales method with that
of the Alves method.

The common method to predict faulty classes using a
threshold value includes declaring a class as faulty when a
particular software metric exceeds its threshold value. But in [4],
the authors also tested the scenario when more than one software
metric exceed their threshold values. The authors declared a
class as faulty when at least single software metric exceeds its
threshold value and evaluate the results. The authors declared a
class as faulty when at least single software metric exceeds its
threshold value and evaluate the results. Similarly, performance
was also evaluated when at least two, three and four software
metrics were exceeding their threshold values. The best results
were obtained when the number of software metrics that
exceeded the threshold values reached three or four. The authors
also found that with an increase in the number of software
metrics, the number of false positive predictions gets low and the
number of false negative predictions gets high. In this paper, the
authors adopted the same evaluation criteria to assess the
suitability of the threshold and ML algorithms for the
classification purpose. Herein, ROC-1 denotes a class as faulty
when at least one of the selected software metrics exceeds its
threshold value obtained through the ROC method. Likewise,
ROC-2, ROC-3, and ROC-4 denote a class as faulty when at
least two, three, and four software metrics exceed their
respective threshold values. Similarly, ALVS-1, ALVS-2,
ALVS-3, and ALVS-4 represent the results obtained through the
Alves Rankings method, while VAL-1, VAL-2, VAL-3, and
VAL-4 represent the results obtained through the Vales method.

The main contributions of this paper are

1. To compare the prediction efficiency of ML based and
threshold based models.

2. To explore the contribution of the Vales method in
identifying the optimal threshold value. The prediction model
has been constructed using Vale method and the results have
been compared with Alves based models. Section 5 contains the
results and Section 6 concludes the paper.

The rest of the paper is organized as follow. Section 2
contains review of the studies conducted in the related area.
Section 3 contains the review of the fault prediction related
studies. Section 4 introduces the classification algorithms.

2. RELATED WORK

This section contains the review of existing studies
conducted in the fault prediction area.

Grcer and Tarhan (2025) applies five machine learning
models—RF, GB, NB, MLP, and NN—for software defect
prediction and integrates an explainable AI (XAI) framework to
enhance interpretability [5]. Using six XAI methods on the KC2
dataset, the research provides both global and local explanations,
reducing the “black-box” nature of ML models and offering
clearer insights into defect prediction.

In [6], the authors responded to the need for software quality
and defect prediction to prevent expensive maintenance. The

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52713 | Page 2

authors compared algorithms like GNB, Bernoulli NB, RF, and
MLP, and suggested a PCA-based ensemble with class balancing
as well. Performance was measured in terms of metrics such as
accuracy, precision, and recall.

Shatnawi et al. proposed the ROC curve for threshold-based
classification in fault prediction, choosing the point with the
highest sum of specificity and sensitivity [7]. While thresholds
of 12 OO metrics effectively partitioned classes by fault severity,
they failed to divide Eclipse classes into faulty and non-faulty.
Catal et al. also applied the ROC approach but maximized for
maximum area under the curve [8]. Ferreira et al. developed yet
another method based on data fitting to probability distributions
[9].

Boucher and Badri (2018) compared ROC, Alves Rankings,
and VARL, and concluded that ROC had the highest predictive
efficiency, next was Alves, whereas VARL thresholds were
inadmissible in over half of the cases [4]. Subsequently, Kaur
and Singh (2020) compared ROC and Alves Rankings on 20 OO
measures and found much superior results for ROC for measures
like RFC, NPM, LOC, CAM, and AMC [10].

3. THRESHOLD TECHNIQUES

In this paper, threshold-based models are constructed using

three techniques: the concordance probability method, the Alves

Rankings method, and the Vales method. Although the

classification ability of the Alves method is lower than that of

the concordance probability method, it is selected for threshold

identification in this study due to its advantage of deriving

threshold values without relying on previous fault data. Some

companies are unable to collect fault information because of the

high costs associated with data collection tools. In such cases,

unsupervised methods can be employed to extract threshold

values. Therefore, in this paper, along with the Alves method,

another unsupervised method proposed by in the study [3], is

also tested for the identification of optimal threshold values.

The Vales method is similar to the Alves Rankings method as it

can show the proficient results in case of skewed metric values.

However, it does not take into account the size metric in order

to find the threshold value. The steps to find an optimal value

using Vales method are explained as follows.

a) The first step is the extraction of values of the software

metric whose threshold value is to be calculated.

b) The next step is the calculation of weight ratio of each

entity (here entity represents class), which can be computed by

dividing the class weight by the total number of classes and the

result is multiplied by 100. Each class is assigned with the same

weight and their aggregation should produce 100%. For e.g., if

dataset contains 1000 classes, then the weight ratio of each class

will be 0.1% [0.1%*1000=100].

c) The next step is entity aggregation, this step requires

the summation of weight ratios of the classes having similar

value of the selected software metrics. For e.g., if the dataset

contains five classes with CBO value 6 and weight ratio of each

class is 0.1, then the results after entity aggregation will be 0.5.

d) The last step involves the threshold derivation. It

requires the construction of a cumulative line chart, where the

X-axis represents weight ratio and the Y-axis represents metric

value. Here the metric value corresponding to the weight ratio

producing efficient results is selected as an optimal threshold

value.

4. CLASSIFICATION ALGORITHMS

The following statistical and machine algorithms are considered

and evaluated for their relative performances on the fault

dataset. The selected algorithms are NB, LR, Adaboost, RF, and

Bagging.

NB is a simple probabilistic classifier that trains the model by

assuming that features are independent of each other. Although,

the stated assumption seems unrealistic, however the technique

works efficiently and produces results as well as other

sophisticated classifiers.

LR is the standard technique to handle the classification

problem by providing the estimates of event outcome

probability. It measures the association between the dependent

variable and one or more independent variables by estimating

the likelihood of occurrence of certain case using a logistic

function. LR has been selected n the multitude of studies for

identifying the faulty classes.

Adaboost is a prevalent method for constructing an ensemble

classifier. It is a process of making classification by creating

several weak classifiers also known as decision stumps and

aggregating them into a strong classifier. The stumps are weak

in the sense as they use only one variable to make a decision.

The next weak classifier is created by taking into account the

mistake made in the last classifier.

Another method utilized in this paper is Bagging, which was put

forward by Breiman, with the motive to enhance the

classification outcome by randomly generated trainings set [11].

Decision Trees (DT) are known for their ease in construction,

use and interpretation. However, they can efficiently manage

the problem of over-fitting by using the pruning method. But, in

the arena of predictive learning, DT produce inaccurate results

because of their inflexibility in classifying the new samples.

Consequently, RF can be used which possess easiness property

of DT along with their improved accuracy. RF works by

constructing a large number of DT from the training dataset and

makes predictions by aggregating the predictions resulting from

these DT. The process involves the construction of bootstrapped

dataset from the original dataset. For this, samples are selected

randomly from the original dataset. The size of bootstrapped

dataset should be equal to that of original one, in this process

the duplicated samples can be chosen i.e. the former can pick

any sample more than one time. Then, a DT is created from the

bootstrapped dataset. The process of creating a DT is repeated

for another bootstrapped dataset many times. After the

formation of a forest, test data is run down on all trees and mark

the option (true or false) containing the highest number of votes.

5. RESULTS

In this paper, the selected classification algorithms are used to

find the optimal cut-off values of CK and LOC metrics. The

experiment is executed on Ant-1.7, Arc, Prop-6, Synapse-1.2,

Tomcat, Velocity, Antlr, BroadleafCommerce, Junit, McMMO,

and Netty. The metrics selected based on the univariate analysis

are WMC, CBO, RFC, and LOC. These metrics were showing

their significant relationship with the target class in a high

number of the software systems.

5.1 Threshold values
The threshold values obtained with the application of chosen

threshold methods are given in Table-1. In the case of the Alves

method, selecting the appropriate weight ratio is essential, and

the metric values corresponding to a weight ratio of 20 produce

the best results. In this paper, the metric value corresponding to

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52713 | Page 3

the same weight ratio is also selected as the optimal threshold

value. A similar approach is adopted to find the optimal

threshold values in case of Vales method. To determine the

appropriate weight ratio the G-mean results of the thresholds

acquired at weight ratios 10%, 20%, up to 100% are compared,

and the ratio producing the highest G-mean results are

considered as an optimal weight ratio. The findings revealed

that the metric values corresponding to ratio 50% gives the best

classification outcome, therefore, the metric values

corresponding to this ratio are selected as an optimal threshold

value.

Table-1 Threshold values computed using Concordance, Alves,

and Vales method

5.2 Performance results

In this paper, three performance parameters, i.e., FPR, FNR,

and G-mean, are considered to express the predictive

performance of the prediction models.

In Ant-1.7, ROC-2 shows the best classification ability to

discriminate the faulty and non-faulty classes followed by Alvs-

3 and VAL-4 (as shown in Fig-1). The lowest false predictions

(FPR- 0.328 and FNR- 0.115) and the highest G-mean value,

i.e. 0.771, are obtained when at least two of the software metrics

transcend the threshold values of the corresponding metrics

obtained using the ROC method. With the execution of ROC-3,

the false positive predictions slightly decline, i.e. 0.328, as

compared to ROC-2 and false negative predictions slightly rise,

i.e. .115. For ROC-1, average results are obtained when a class

is declared faulty if at least one software metric exceeds the

computed cut-off value. No classification ability is observed for

ROC-4 due to its high rate of false negative predictions. The

Alves method produces the best results when at least three

software metrics exceed the derived threshold values, achieving

a G-mean of 0.758. Similarly, for the Vales method, the best

results are observed for VAL-2 and VAL-3, with G-mean

values of 0.74. Among the selected machine learning

techniques, AdaBoost reports the best classification results, with

a G-mean of 0.715, while the others produce only average

classification performance. Although AdaBoost shows the

strongest discrimination ability among the machine learning

techniques, its performance remains lower than that of the

threshold-based models.

Fig -1: Results of threshold and ML based models on Ant-1.7

The prediction results obtained by the threshold-based and ML

models are displayed in the Fig-2. In case of Arc, the ML based

models fail to achieve the required classification ability.

Although, the threshold based models produced better results

than ML based models, but the former still fail to produce the

acceptable classification power. The threshold based model

produced the maximum of average classification ability in case

of ROC-2 and ROC-3 with G-mean score of 0.67, in case of

ALVS-2 with G-mean score of 0.636 and in case of VAL-3

with G-mean value of 0.652. As compared to threshold based

models the techniques like NB, LR, Adaboost, RF, and Bagging

showed considerably low prediction outcome.

Fig -2 Results of threshold and ML based models on Arc

In case of Prop, model built using ROC gives the best result (as
depicted in Fig-3). The acceptable results are also observed in
the case of Vales method. The results produced by Alves
method are showing average ability to classify the faulty and
non-faulty groups. LR, Adaboost, RF, and Bagging fail to
classify the software classes into the accurate group, whereas,
Naïve Bayes shows the average classification ability to separate
the software classes. Therefore, based on the above results it can
be concluded that between the threshold based and ML, the
former models are better choice for the development of fault
prediction models.

Fig -3 Prediction performances of the selected models on Prop

In case of Synapse, Adaboost gives slightly better results than

other ML based models (as shown in Fig-4). The G-mean value

obtained by Adaboost is 0.753, followed by ROC-3 (with G-

mean score of 0.743), VAL-3 (with G-mean score of 0.739),

ALVS-3 (with G-mean score of 0.727), and RF (with G-mean

value of 0.715). Therefore, no significant difference can be

observed in the prediction results of ROC and Adaboost

methods. All of these previously mentioned methods showed

acceptable results, however, the average results were shown by

other ML techniques (excluding Adaboost and RF).

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52713 | Page 4

Fig -4 Prediction performance of threshold and ML based

models on Synapse

Similarly, In Tomcat, the prediction model developed using
ROC and Vales method produced the best result, as here the
excellent results were revealed when at least three software
metrics exceeds the derived threshold values. The detailed
prediction peRFormance hold by the different classification
models is depicted in Fig-5. The ML models such as LR,
Adaboost, Bagging showed no classification ability, RF
revealed a poor ability, and Naïve Bayes achieved average
results. Therefore, in case of Tomcat, the threshold based
models provided significantly better results than ML based
models.

Fig -5 Prediction performance of the selected models on

Tomcat

In case of velocity (as shown in Fig-6), the threshold based

models gave the best results as compared to the ML based

models. Among ROC, Vales, and Alves, the prediction models

developed using the former two techniques gave the best

classification results. In case of ML algorithms, Naïve Bayes

and LR depicted poor classification ability, whereas, RF and

Bagging managed to produce the average discrimination

outcome.

Fig -6 Performance of the selected models on Velocity

In Antlr (as shown in Fig-7), the threshold based models

developed using ROC and Alves method showed the excellent

discrimination result, whereas, ML lagged behind the threshold

based models in terms of classification efficiency. The ML

techniques such as Adaboost, RF, and Bagging showed no

classification ability. Similarly, the models built using LR and

Naïve Bayes failed to produce an efficient discrimination

outcome.

Fig-7 Prediction performance of the selected models on Antlr

In Broadleaf Commerce (as depicted in Fig-8), among the
selected threshold based models, the models constructed using
ROC and Alves give the best results. As compared to threshold
based models, the model developed using ML techniques
depicts significantly low prediction ability. The
misclassification rate of LR, AdaBoost, RF, and Bagging is too
high; most of the software classes that are predicted as faulty
are actually non-faulty. Although NB demonstrates better
classification ability compared to its counterparts, its
performance is still not up to the mark.

Fig-8 Performance of the selected models on

BroadleafCommerce

Similarly, in case of Junit, the threshold based models
outperforms the ML based models with significant performance
difference. The detailed performance outcome is depicted in
Fig-9. Here, ROC and Alves based models shows the excellent
prediction ability. All of the ML based models shows very high
false positive rate, which further impacts the overall
classification performance.

In case of McMMO (as shown in Fig-10), slightly different

results are observed as compared to the previous software

systems, as here two of the ML techniques, i.e., RF and

bagging, shows the prediction results as good as the ROC based

threshold model. On the other hand, the prediction performance

of NB, LR and boosting algorithm is not satisfctory.

Fig-9 Performance of threshold and ML based models on Junit

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52713 | Page 5

Fig -10 Performance of the selected models on McMMO

In case of Netty, the ROC based model gives the best results
followed by Vales and Alves methods. The G-mean score of the
threshold based and other classifiers are shown in Fig-11. The
discrimination strength of the RF-based model is close to that of
the threshold-based models. By contrast, NB, LR, and
AdaBoost depict no classification ability.

Fig -11 Performance of the selected models on Netty

Based on the previous results, it can be observed that threshold
based models show better prediction results as compared to ML
algorithms. Furthermore, among the selected threshold based
models, the one constructed using ROC curve produces the best
results. No significant difference is found between the
prediction performance of the Alves and Vales methods, as in
some cases the former gives better results and in other cases the
latter produces a better outcome. As opposed to the [3] where
the Vales method was proven significantly better than the Alves
method in detecting the God and Lazy classes, in the fault
prediction domain the Vales method fails to show a significant
difference from the Alves method.

Overall, the selected threshold-based methods show better
prediction performance than ML. The acceptable results are
observed only for AdaBoost in Ant, AdaBoost and RF in
Synapse, and RF and Bagging in McMMO.

5.3 Comparison results

Although, it is imperative from the results, obtained so far, that
threshold techniques perform better than ML techniques for the
detection of faulty classes. However, Freidman test is applied to
verify whether the performance difference between them is
actually significant. Among ROC-1, ROC-2, ROC-3, and
ROC-4, the model that gave the highest G-mean score was
selected for the comparison process. The similar selection
criterion is applied to Alves and Vales models. The null and
alternate hypotheses of Friedman test based on this paper are as
follows.

Null hypothesis: Both ML and threshold techniques shares same
predictive capability.

Alternate hypothesis: The predictive efficiency of ML and
threshold techniques is not same.

The null hypothesis of Friedman test was rejected with p-value
0.000, which indicates that there exists a significant difference
between the predictive performances of selected techniques.

The outcome of post-hoc Nemenyi test is shown in Table-2. The
results reported the effectiveness of the ROC method than all of
the selected ML techniques. The Alves based model succeeded
to hold significant difference with only LR, Adaboost, and
bagging. Similar findings were observed in the case of Vales
method, as here also no significant difference was found with
the prediction performance of NB and RF.

Table -2: Comparison results based on post-hoc Nemenyi test

6. CONCLUSIONS

This paper contains the comparison of the classification ability

of the models constructed using threshold and ML techniques.

The threshold techniques selected for the comparison purpose

are concordance, Alves, and vales method. The ML methods

chosen are NB, LR, Adaboost, RF, and Bagging. In the

comparison between threshold-based and ML-based models, the

threshold-based model built using the concordance method

gives significantly better results than all of the selected ML

techniques, whereas the prediction results of the Alves and

Vales based models are significantly better only than LR,

AdaBoost, and Bagging. Furthermore, no significant difference

is found between the Alves and Vales methods.

This paper has considered only CK and LOC metric. The future

work can be conducted on more software metrics.

REFERENCES
1. Shatnawi, R., Li, W., Swain, J., Tim, N.: Finding software metrics

threshold values using ROC. J. Softw. Maint. Evol.: Res. Pract. 22,

1–16 (2010).

2. Kaur, N., Singh, H.: An empirical assessment of threshold

techniques to discriminate the fault status of software. J. King Saud

Univ.-Comput. Inf. Sci. 34(8), 6339–6353 (2022)

3. Vale, G., Figueiredo, E.: A method to derive metric thresholds for

software product lines. In: Proc. 29th Brazilian Symposium on

Software Engineering (SBES), pp. 110–119 (2015).

4. Boucher, A., Badri, M.: Software metrics thresholds calculation

techniques to predict fault-proneness: An empirical comparison. Inf.

Softw. Technol. 96, 38–67 (2018).

5. Gezici Geçer, B., Kolukısa Tarhan, A.: Explainable AI framework

for software defect prediction. J. Softw.: Evol. Process 37(4),

e70018 (2025).

6. Setia, S., Ravulakollu, K.K., Verma, K., Garg, S., Mishra, S.K.,

Sharan, B.: Software defect prediction using machine learning. In:

Proc. 11th Int. Conf. on Computing for Sustainable Global

Development (INDIACom), pp. 560–566. IEEE, February 2024.

7. Shatnawi, R.: A quantitative investigation of the acceptable risk

levels of object-oriented metrics in open-source systems. IEEE

Trans. Softw. Eng. 36(2), 216–225 (2010).

8. Catal, C., Sevim, U., Diri, B.: Practical development of an Eclipse-

based software fault prediction tool using Naive Bayes algorithm.

Expert Syst. Appl. 38(3), 2347–2353 (2011).

9. Ferreira, K.A.M., Bigonha, M.A.S., Bigonha, R.S., Mendes, L.F.O.,

Almeida, H.C.: Identifying thresholds for object-oriented software

metrics. J. Syst. Softw. 85(2), 244–257 (2012).

10. Kaur, N., Singh, H.: An empirical analysis of threshold techniques

for identifying faulty classes in object-oriented software systems.

Int. J. Next-Gener. Comput. 11(3) (2020).

11. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).

https://ijsrem.com/

