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A Comprehensive Analysis of Optimization Algorithms for Large-
Scale Machine Learning 

 

 

Abstract—Optimization algorithms determine the best model 
parameters that tend to offer prediction accuracy in complex 
machine learning (ML) problems in big data. In fact, they are 
very crucial while handling large-scale data because old ways 
of handling datasets will be computationally very inefficient. 
This paper provides an in-depth comparison of the two most 
widely used optimization techniques in machine learning: SGD, 
and BGD. Our simulated results indicate that though the SGD 
technique indicates very fast initial convergence, its efficiency 
eventually tends to degrade with the increasing iteration of the 
algorithm. On the other hand, the BGD approach might take 
slow initiation but is relatively consistent in a long run. We 
then further probe how the variations in learning rate affect its 
performance in the case of both the methods. Our analysis shows 
that adaptive learning rates drastically accelerate convergence. 
Finally, we show that the computational efficiency of the SGD 
method makes it a better choice since gradients can be computed 
on a per sample basis, which makes the method better for scaling.  

Keywords—Optimization Algorithms, Stochastic gradient de- 
scent, Batch gradient descent, Machine learning, Large-scale data, 

and Adaptive learning rate. 

 

• INTRODUCTION 

 

The fast-paced scenario of embedded systems demands 

the utmost energy efficiency, especially for devices running on 

resource-constrained environments e.g., Internet-of-Things 

(IoT) and wireless sensor networks. In this paper power 

optimizing techniques in embedded systems are explored, 

especially for real-time operating system (RTOS) and their 

effective use to the low-power designs. Strategies from the 

literature such as Dynamic Voltage and Frequency Scaling 

(DVFS), Dynamic Power Management (DPM), sleep modes, 

and task scheduling algorithms are described in order to 

preserve energy consumption while providing real-time per- 

formance support. The paper aims, through this review, to 

provide insights into current energy optimization techniques 

and their relevance to the design of energy-efficient RTOS for 

embedded systems. 

 

I. BACKGROUND AND MOTIVATION 
 

This has been done so that others may know which of 

these algorithms is preferable considering the strengths and 

weaknesses of its capabilities with large-scale tasks of machine 

learning. Optimization methods like development of machine 

learning algorithms are traditionally designed to minimize a 

loss function that measures the amount of disagreement 

between predictions and actual values. These methods play 

an important role in evaluating the ability of the model 

to generalize well to unseen data. However, as large-scale 

datasets have become prominent, time complexity associated 

with the traditional algorithms turned out to be a serious 

limitation. They require optimization methodologies so that 

good results are achieved while using sufficient amount of time. 

LMLs have surfaced to overcome such problems: large- scale 

algorithms more computationally feasible without losing 

performance. 

The paper is a detailed survey of optimization techniques as 

they evolve into scalable machine learning models where the 

maximization of computational efficiency will be accompanied 

by the precision of the model. 

 

II. LITERATURE REVIEW AND RELATED 

WORK 

Some rather good studies have been carried out on ma- chine 

learning using optimization algorithms. Wang et al.’s 

systematic survey [3] have emphasized the requirements of the 

scalability of the machine learning algorithms by study- ing 

existing methods as well as their relevant computational 

efficiency along with limitations. On similar lines, Bottou et al. 

[5] designed optimization methods for large-scale machine 

learning focusing on stochastic gradient descent and how it 

could take the advantages of large amounts of data. 

This work by Robbins and Monro [4] essentially ushered in 

stochastic approximation, which also forms the basis of mod- 

ern stochastic gradient algorithms. More recently, El Hanchi et 

al. [6] have proposed a method of reweighted gradient to less 

than the variance in gradients’ estimators for efficient time in 

running times SGD in large scale applications. Zhou et al. [7] 

also generalized gradient-based methods to multi-task learning 

and gave improvements about stability of convergence. 

This paper extends the material already existing in the 

literature by providing a more detailed comparison between 

SGD and BGD concerning convergence speed, computational 

efficiency, and adaptability to large-scale data.An importance- 

sampling-based algorithm called SRG (stochastic reweighted 

gradient) for reduction of the variance of gradient estimator has 

been proposed in [6]. The authors also proposed an extension 

of the SRG (SRG+) for the variance reduction 
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through an important sampling method. This article Analyse 

the convergence of SRG in the strongly convex and smooth 

case and conclude that the performance of SRG is better than 

SGD (Stochastic Gradient Descent). In article [7], authors 

proposed a novel ML approach based on a multi gradient 

descent method for finding optimal solutions and a gradient 

surgery based gradient descent approach for finding stable 

optimal solutions. 

In article [8], authors proposed a new stochastic regu- larized 

damped Broyden–Fletcher–Goldfarb–Shanno method. This 

method contains a new gradient difference scheme and a 

novel damped parameter for solving a non-convex opti- 

mization problem. A comparative analysis of stochastic (SG) 

and batch methods for optimization of objective function has 

been presented in article [9]. Authors also Analyzed and 

Studied visual classification in a large number of classes. Paper 

Conclude that stochastic training suits our large-scale setting 

well, and stochastic-based method can work as well as a batch 

technique at a fraction of their cost. The article [10], analyzes 

and highlights optimization algorithms from an ML viewpoint. 

The article [11], presented a computationally efficient gradient 

based optimization method for the optimization of the stochas- 

tic cost function with a large data set and high dimension 

parameters machine learning problems. 

Although much of the related work has been carried out in 

the literature to optimize the machine learning problem, we 

restrict our discussion to the most suitable algorithms for the 

large-scale machine learning problem, i.e. stochastic gradient 

descent algorithm.  

 

III. OPTIMIZATION METHODS 

The numerical computation of the system design param- eter or 

specification of the designed learning training model is 

optimization. Optimization is one of the vital pillars of ma- 

chine learning. Machine learning comput- ing methods design 

and train a model in the objective function to perform a specific 

task using given data. Many researchers in various communities 

have been inspired to design widely applicable new methods 

with the recent success outcomes of LML optimization 

methods. The effectiveness of the optimization methods will 

improve the efficiency and performance of the machine 

learning training models. The performance of the optimization 

algorithm is usually measured via loss or pre- diction function. 

The optimization issues in machine learning appeared through 

prediction and loss functions. The main aim of these machine 

learning optimization algorithms is to minimize the loss 

function or prediction function. 

A. Gradient Descent Method 

An optimisation technique for training machine learning 

models is gradient descent. A convex function serves as the 

foundation for the gradient descent algorithm. This approach 

iteratively updates a model’s weights in the opposite direction 

of the loss/cost function’s gradients. The goal of these updates 

is to progressively converge to the optimal point of the 

 

objective function. In order to compute the objective function’s 

step size and the number of iterations required to achieve 

the point of convergence or fact of minima, the learning 

rate, or , is utilized. Reducing or minimizing the loss/cost 

function (h(x; ), y) (error of projected and actual output) is the 

aim of gradient descent. The convex function’s(local or global 

minimum) lowest point on its curve can be found using gradient 

descent known as the point of convergence. 

B. Batch optimization method 

The Batch or Full Gradient Method (FG) is another name for 

this comprehensive gradient descent technique. Instead of 

computing a single sample, this approach computes all the 

samples in an iteration. Therefore, compared to the previously 

reported stochastic gradient descent approach, it is more costly 

and computationally inefficient. Instead of computing a single 

sample on the complete data set at each iteration, the algorithm 

in this method computes all samples at once randomly. 

C. Stochastic optimization method 

In other words, stochastic gradient descent (SGD) Com- putes 

the gradient primarily based on a single randomly selected 

sample from the dataset at every iteration. This leads to faster 

initial updates, making it computationally efficient for large-

scale datasets. However, SGD can in- troduce noise within the 

gradient estimates, which may also result in fluctuations across 

the top-rated solution as opposed to convergence to a 

unmarried factor. t+1 ←t  tf jt (t) (9)  t T := 1, 2, 3, 4... , 

index jt is selected randomly from 1, 2....., n . t is a positive 

step size. fjt (t) corresponding to computation of single sample. 

Therefore, the stochastic estimates of the gradient are 

computationally more efficient than a gradient based on the 

entire training set [5], [14]. The main objective of the 

stochastic gradient descent method is minimizing a strongly 

convex function. The objective function F : Rdy R is strongly 

convex function, there exists a constant a <  0 such that function 

f is called strongly convex with parameter. 

 

IV.  RESULTS AND DISCUSSION 

This chapter provides a comprehensive analysis of the 

experimental results obtained in performance comparing 

Stochastic Gradient Descent (SGD) versus Batch Gradi- ent 

Descent (BGD) over different learning rate strategies and data 

scales. Our experiment on these measurements compares 

computation efficiency, convergence speed, and the overall 

effectiveness of these algorithms on the large- scale machine 

learning task. Testing both will provide an evaluation of the 

influence of fixed and adaptive learning rates on the 

convergence behavior of each optimization method. 

 Key Observation: 

The BGD learns much slower at the initialization but steadily 

moves toward the optimum and has less variance, hence 

reliable for tasks that require high precision. SGD, on the other 

hand, learns much faster in the early phases but as it is getting 
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close to the optimal solution, the stability becomes 

problematic. Variable learning rate improves the performance 

of both SGD and BGD. For SGD, this damps out the 

oscillations around the minimum seen before, whereas for 

BGD, this accelerates convergence in general. It shows that 

adaptive learning rates are indeed crucial in realising the trade-

off between convergence speed and convergence accuracy, 

especially in all large-scale optimization tasks. he results 

summarize quite important trade-offs between SGD and BGD:  

1) Speed of convergence vs. stability: SGD makes fast, initial 

progress but can easily be unsta- ble near the optimum without 

careful learning rate tuning. BGD is slower at first but gives a 

way to more stable and consistent path to convergence, 

particularly if the learning rate is adaptive.  

2)Computational Efficiency: SGD is far more cost-efficient in 

terms of the computation per itera- tion cost and thus is preferable 

for large-scale applications when memory and time constraints 

are critical. Though BGD is computationally heavier, it might be 

preferred for those applications where high precision or stability 

is more important than speed.  

3)Learning Rate Effect: Both the algorithms depend heavily on 

the learning rate. A constant learning rate might work well on 

some instances of problems but poorly on others, in particular on 

the case of SGD, and convergence is not even guaranteed. This 

adaptive learning rate prevents over-shooting in both the 

techniques and allows for a faster convergence towards the final 

stages of the latter. 

D. Future Scope 

Even though this paper has provided some idea about the 

performance and efficiency of SGD and BGD, the open scope 

for further research is many: 

Hybrid Optimization Algorithms: 

Hybrid Optimization Methods In the future, one could try to 

create hybrid optimization methods that combine the strength of 

both SGD and BGD. More specifically, such optimization 

methods could switch dynamically from one to the other 

according to the size of the dataset, the stage of training, or the 

complexity of the optimization landscape. For example, starting 

with mini-batch or stochastic updates in the early iteration of 

training and moving eventually to full- batch updates as 

optimization converges toward the minimum might balance 

speed and accuracy. Advanced Learning Rate Schedules That 

impact on the convergence of the learning rates is quite 

important as well, and further work in more advanced learning 

rate schedules could provide even greater gains in performance. 

Techniques even like cyclical learning rates or cosine annealing 

have even shown some promise in being able to speed up 

convergence without paying a penalty in precision. Looking at 

the use of reinforcement learning to achieve dynamic learning 

rate variations during training is likely an additional exciting 

avenue of study. Optimization for Non-Convex Problems 

Non-convex optimization is still one of the biggest chal- lenges, 

especially in deep learning. Further research into more robust 

methods to navigate such complex landscapes of non- convex 

problems might potentially lead to some optimization 

algorithms being far more efficient. Application and Scalabil- ity 

in Real Life: Techniques that should be studied for large- scale 

non-convex problems, including higher order methods like 

Newton’s methods or quasi-Newton methods like BFGS, might 

conceivably provide new insights into more efficient and precise 

optimization strategies. Finally, second direction for future work 

is testing the algorithms on specific large-scale problems in real-

world ma- chine learning. Scaling optimization methods to 

distributed computing environments, such as cloud or edge 

computing, and analyzing how they perform in federated 

learning would be very valuable. 5.4 Final Words In conclusion, 

optimization is indeed an important part of machine learning and 

is only set to increase as datasets become larger and models begin 

to get more complex. This paper has put under the light some 

trade- offs between computational efficiency, convergence 

speed, and stability that appear in SGD and BGD. Although 

SGD is an immensely effective approach for large-scale machine 

learning, in particular when combined with adaptive learning 

rates, BGD still remains a safe and reliable choice for small- 

scale, high-precision tasks. Mini-batch methods seem the most 

promising middle ground, especially when deep learning is 

concerned. Further advancement in hybrid optimization tech- 

niques as well as more advanced learning rate scheduling 

strategies would directly enable the professional machine 

learning expert to still further optimize the performance and 

scalability of his models in the future. 

E. CONCLUSION 

This paper brings in an all-round analysis of two of the most 

widely used optimisation algorithms applied to huge scale ma- 

chine learning applications, which are SGD and BGD. Indeed, 

the increasing size of data and their complexity increasingly 

require scalable and efficient optimization techniques. This 

article aims to analyze the strengths and weaknesses and 

relative effectiveness of SGD and BGD in terms of their 

computation efficiency, speed, and convergence stability in 

solving large datasets. 

A thorough comparative analysis of the large-scale machine 

learning optimization setting of SGD and BGD is shown. It is 

established that although BGD converges stably and 

accurately, it has computation impracticality with growing data 

at each step owing to processing the entire dataset at each step. 

Whereas SGD is computationally efficient for updating model 

parameters with individual samples or small batches, it has a 

erratic behavior near the optimum since it is based on some 

inherent randomness due to its subjectiveness. 

Adaptive learning rates proved effective, with time-variant 

rates, accelerating convergence while inhibiting overshooting 

past the optimal point. Overall, SGD will be preferred for such 

large-scale applications where the computational requirement 

is the most critical one, whereas BGD remains useful for 

smaller scales and high stability requiring situations. Further 

work can be on developing hybrid methods combining the 

efficiency of SGD with stability of BGD; further advanced 

learning rate techniques can be evaluated to boost convergence 

on larger complex datasets. 
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