
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 1

A Comprehensive Guide to Generating SDTM Demographic Datasets

Using R in Clinical Trials

Arvind Uttiramerur

Programmer Analyst at Thermofisher Scientific, USA

ABSTRACT

R is a programming language widely used for statistical analysis and data visualization, offering a flexible and

interactive environment supported by various packages for data cleaning, tidying, and analysis. It is particularly

relevant for professionals in mathematics and statistics, including biostatisticians and programmers in the

pharmaceutical and biotech industries. R provides a robust array of user-developed packages that can efficiently

manipulate complex datasets, such as those based on the Study Data Tabulation Model (SDTM). The popularity of R

in data-related fields has surged exponentially over the past decade due to its open-source nature, powerful statistical

capabilities, and advanced visualization tools.

In this paper, we demonstrate a step-by-step approach to generating an SDTM Demographic (DM) dataset using R.

The process leverages R packages such as sas7bdat, tidyverse, haven, parsedate, dplyr, tidyr, and Hmisc. We also

provide a detailed procedure for setting up the R environment required for this process. While R has been extensively

used for exploratory analysis in the pharmaceutical and biotech industries, its application in creating and analyzing

clinical trial datasets, such as SDTM, has been limited. Traditionally, SAS® has been the preferred tool for generating

clinical trial datasets. This paper explores R’s potential as a viable alternative, offering enhanced flexibility and cost-

effectiveness in clinical trial.

INTRODUCTION

R is increasingly being used across various industries for data analysis and visualization, offering critical insights

through its powerful capabilities. Although R has been employed for exploratory analysis within the pharmaceutical

and biotech industries for many years, it has not yet been widely adopted for the creation and analysis of clinical

trial datasets. In the highly regulated Pharma/Biotech sector, validated systems that have undergone the rigor of the

Software Development Life Cycle (SDLC) are typically recommended. While open-source tools like R are often

utilized for checking the quality of clinical trial datasets, they have not traditionally been used for analyzing clinical

trial data, particularly for regulatory submissions.

Despite the existence of some user-developed R packages that have not gone through a formal SDLC process, this

paper investigates the technical feasibility of using R to generate SDTM (Study Data Tabulation Model) and ADaM

(Analysis Data Model) datasets. We explore how the functionalities offered by this cost-effective and open-source

software can be leveraged in the context of clinical trial data management.

R is a language and environment designed for statistical computing and graphics, making it a viable alternative to

SAS for generating specialized clinical trial datasets, tables, listings, and figures. Freely available and supported by

the R Foundation for Statistical Computing, R offers a broad range of specific packages for the design, monitoring,

and analysis of clinical trial datasets. These packages include sas7bdat for reading SAS files, dplyr for data

manipulation, tidyr for data tidying, and Hmisc for attaching labels to variables, among others.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 2

STUDY DATA TABULATION MODEL (SDTM) OVERVIEW

The Study Data Tabulation Model (SDTM) is a standardized framework developed by the Clinical Data Interchange

Standards Consortium (CDISC) for organizing and formatting data collected during clinical trials. SDTM is designed

to facilitate the submission of clinical data to regulatory authorities, such as the U.S. Food and Drug Administration

(FDA) and the European Medicines Agency (EMA). The model ensures that data is presented in a consistent format,

making it easier for regulatory reviewers to understand and analyze the data.

The SDTM standard is divided into various domains, each corresponding to different types of data collected during

a clinical trial. These domains include, but are not limited to, Demographics (DM), Adverse Events (AE), Laboratory

Test Results (LB), and Medical History (MH). Each domain is represented by a dataset, where variables are organized

into columns, and observations (data points) are organized into rows.

DEMOGRAPHICS (DM)

Importance of the Demographic (DM) Dataset

The Demographic (DM) dataset is a core component of the SDTM standard. It contains key demographic information

about the subjects who participated in the clinical trial, such as their age, sex, race, and ethnicity. This dataset serves

as the foundation for analyzing and interpreting other clinical data collected during the trial, as demographic

variables often influence the outcomes and interpretations of the study.

The DM dataset typically includes variables such as:

• STUDYID: Unique identifier for the study.

• USUBJID: Unique subject identifier.

• SUBJID: Subject identifier for the study.

• RFSTDTC: Reference start date/time of the study.

• RFENDTC: Reference end date/time of the study.

• BRTHDTC: Date of birth.

• AGE: Age of the subject at the time of informed consent.

• AGEU: Unit of age (e.g., years, months).

• SEX: Sex of the subject.

• RACE: Race of the subject.

• ETHNIC: Ethnicity of the subject.

• ARM: Description of the subject's treatment group.

Relevance of the DM Dataset in Clinical Trial Analysis

The DM dataset is essential for stratifying subjects into relevant subgroups during the analysis of clinical trial data.

This stratification helps in identifying trends, differences, and potential biases within the study population. For

example, differences in treatment efficacy or safety across different age groups, sexes, or ethnicities can be explored

using the DM dataset.

Additionally, demographic data are often used to ensure that the study population is representative of the target

population, which is crucial for the generalizability of the study results.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 3

R PACKAGES AND R SYNTAX

R can be used for clinical trial data manipulation and creation of CDISC: SDTM/ADaM data sets. The following R

packages and syntax were used during this evaluation.

R- Packages R-syntax

Base : Base R functions Select

Dplyr : Designed for data transformation and merge dataset Mutate

Tidyr: Transpose dataset group by

Lubridate : Date functions filter

Haven : Loads and exports SAS files arrange

Sas7bdat : Loads and exports SAS files summarize

Hmisc: Check attributes spread/gather

Hmisc: Attach Label left/right/inner/full joins

Bridge: Generates infile SAS® program and CSV file for a data set bind_cols/bind_rows

R CODE FOR GENERATING DATASET

R packages and libraries are installed, the R-environment is ready to read and process the input dataset's used to

generate.

Read sas dataset files:

DM<- read.sas.7bdat (“c:/sdtm/dm.sas7bdat”)

Supdm<- read.sas.7bdat (“c:/sdtm/suppdm.sas7bdat”)

Ds<- read.sas.7bdat (“c:/sdtm/ds.sas7bdat”)

Suppds<- read.sas.7bdat (“c:/sdtm/suppds.sas7bdat”)

Ex<- read.sas.7bdat (“c:/sdtm/ex.sas7bdat”)

Suppex<- read.sas.7bdat (“c:/sdtm/suppex.sas7bdat”)

Dm <- dm[order(subjid,]

Suppdm<- suppdm[order(subjid,]

Library setup:

sdtm <- "//product/study/analysis/data/sdtm" # assign dir to object named sdtm

out <- "//product/study/analysis/data/adam"

GENERATION OF THE DM DATASET USING R

In the context of this paper, we will demonstrate the generation of an SDTM-compliant DM dataset using R, a

powerful open-source software environment. We will leverage various R packages such as sas7bdat, tidyverse, haven,

parsedate, dplyr, tidyr, and Hmisc to import, clean, and organize the raw data into the standardized SDTM format.

The step-by-step approach will highlight how these packages can be effectively utilized to create a compliant DM

dataset, offering a viable alternative to traditional tools like SAS.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 4

Create a SDTM Demographics (DM) domain program in R:

Load Libraries: Use dplyr for data manipulation, tidyr for tidying, and lubridate for date operations.

Install the packages if not already installed

 install.packages("dplyr")

 install.packages("tidyr")

install.packages("lubridate")

Load the libraries

library(dplyr)

library(tidyr)

library(lubridate)

Load Data: Import raw data from a CSV file. Modify this according to your data format. To import raw data from a

CSV file in R, you can use the read.csv() function. This function reads the contents of a CSV file into a data frame,

which is a type of table structure commonly used for storing and manipulating data in R.

Sample Code to Load Data from a CSV File

Load the necessary libraries (dplyr, tidyr, lubridate)

Load the raw data from a CSV file

raw_data <- read.csv("path_to_your_file/raw_data.csv", stringsAsFactors = FALSE)

View the first few rows of the loaded data

head(raw_data)

If your CSV file uses a different delimiter (e.g., a semicolon ; instead of a comma ,), you can use the read.delim()

function or specify the delimiter using the sep argument in read.csv() like so:

raw_data <- read.csv("path_to_your_file/raw_data.csv", sep = ";", stringsAsFactors = FALSE)

If your file has a header row (the first row with column names), read.csv() will automatically recognize it. If your

CSV file does not have a header, you can specify header = FALSE and provide custom column names.

Convert Dates: Ensure dates are properly formatted using as.Date.

To ensure that dates are properly formatted in your dataset, you can use the as.Date() function in R. This function

converts character vectors to Date objects. Here’s how you can convert dates in your data frame:

If your data also includes time (e.g., 2024-09-01 14:30:00), you can use the lubridate package functions like

ymd_hms():

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 5

raw_data <- raw_data %>%

 mutate(

 DateTimeColumn = ymd_hms(DateTimeColumn)

)

Derive Age: Calculate age in years based on the difference between start_date and birth_date.

To calculate age in years based on the difference between a start date and a birth date, you can use the lubridate

package in R. The interval() function can help you compute the difference between two dates, and as.period() can

convert this difference into years.

Here's how you can derive age in years:

Assuming your raw data has columns named 'start_date' and 'birth_date'

Replace these names with the actual column names in your data

Convert date columns to Date type if not already done

raw_data <- raw_data %>%

mutate(start_date = as.Date(start_date, format = "%Y-%m-%d"),

birth_date = as.Date(birth_date, format = "%Y-%m-%d"))

Calculate age in years

raw_data <- raw_data %>%

mutate(age = as.numeric(interval(birth_date, start_date) / years(1)))

View the first few rows of the data to check the new age column head(raw_data)

raw_data <- raw_data %>%

 mutate(

 age = interval(birth_date, start_date) %/% years(1) +

 as.numeric(interval(birth_date, start_date) %% years(1) / months(1)) / 12

)

Select and Rename Columns: Align columns with the SDTM DM standard and rename as needed.

To align columns with the SDTM Demographic (DM) dataset standard and rename them in R, you can use the dplyr

package's select() and rename() functions. Here's a step-by-step guide:

Load package and Assuming you've already loaded your data. Example of loading data from a CSV file

raw_data <- read.csv("path/to/your/data.csv")

Define file paths for existing SDTM datasets

sdtm_dm_path <- "path/to/DM.sas7bdat" # Update this path

Read in the available SDTM DM dataset

sdtm_dm <- read_sas(sdtm

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 6

Code for DM using R Programming: Main program using R

dm <- sdtm_dm %>%

Mutate (STUDYID = "STUDY123", # Simulated Study Identifier

DOMAIN = "DM", # Domain Abbreviation

SITEID = as.character(substr(SUBJID,1,3)),

SUBJID1 = as.character(SUBJID),

USUBJID = paste(STUDYID, SITEID, SUBJID, sep="-"),

RFSTDTC = as.Date("2023-01-01"), # Simulated Reference Start Date

BRTHDTC = format_iso_8601(parse_iso_8601(BIRTHDT)),

BRTHDTC = substr(BRTHDTC, 1, regexpr("\\T", BRTHDTC)-1),# Simulated Birth Date

AGE = as.integer((as.Date("2023-01-01") - BRTHDTC)/365.25), # Calculated Age

AGEU = "YEARS", # Age Units

SEX1 = ifelse(SEX=="FEMALE","F",ifelse(SEX=="MALE","M","")), # Sex Male female

RACE1 = ifelse(RACE=="BLACK","BLACK OR AFRICAN AMERICAN",

ifelse(RACE=="CAUCASIAN","CAUCASIAN",ifelse(RACE=="ASIAN","ASIAN",""))), # Simulated Race

ETHNIC = ifelse(RACE=="HISPANIC","HISPANIC OR LATINO",""), # Simulated Ethnicity

ARMCD = ifelse(TRTGROUP=="Placebo","PBO",ifelse(TRTGROUP=="Active","ACT","")),

ARM = TRTGROUP,

ACTARMCD = ARMCD,

ACTARM = TRTGROUP,

ARMNRS = "",

ACTARMUD = "",

COUNTRY = "",

DMDTC = "",

DMDY = "") %>%

select (STUDYID, DOMAIN, USUBJID, SUBJID, SUBJID1, SITEID, RFICDTC, BRTHDTC, AGE, AGEU,

SEX1, RACE1, ETHNIC, TRTGROUP, ARMCD, ARM, ACTARMCD, ACTARM, ARMNRS, ACTARMUD,

COUNTRY, DMDTC, DMDY) %>%

arrange (SUBJID)

Create variables as per the spec from rawdata DRUG

Drugtrt1 <- drug %>%

mutate(DOSEDTC = format_iso_8601(parse_iso_8601(DOSEDT)),

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 7

 DOSEDTC = substr(DOSEDTC, 1, regexpr("\\+", DOSEDTC)-1)) %>%

 select(SUBJID, DOSEDT, DOSEDTC) %>%

 arrange(SUBJID, DOSEDTC)

Get first observation from data DOSEDTC

ft_dosedtc <- Drugtrt1 %>%

 filter(!is.na(DOSEDTC)) %>% #For non-missing values

 group_by(SUBJID) %>%

 slice_min(order_by = DOSEDT) %>% #For 1st observation

 mutate(RFSTDTC = DOSEDTC, RFXSTDTC = DOSEDTC)%>%

 select(SUBJID, RFSTDTC, RFXSTDTC)

Unique returns a data table with duplicated rows removed

ft_dosedtc1 <- unique(ft_dosedtc, incomparables=FALSE)

Get last observation from data DOSEDTC

lt_dosedtc <- Drugtrt1 %>%

 filter(!is.na(DOSEDTC)) %>%

 group_by(SUBJID) %>%

 slice_max(order_by = DOSEDT) %>%

 mutate(RFENDTC = DOSEDTC, RFXENDTC = DOSEDTC) %>%

 select(SUBJID, RFENDTC, RFXENDTC)

lt_dosedtc1 <- unique(lt_dosedtc, incomparables=FALSE)

Create variables as per the spec from rawdata DRUG

term1 <- term %>%

 mutate(RFPENDTC = format_iso_8601(parse_iso_8601(TERMDT)),

 RFPENDTC = substr(RFPENDTC, 1, regexpr("\\T", RFPENDTC)-1)) %>%

 select(SUBJID, RFPENDTC) %>%

 arrange(SUBJID)

Create variables as per the spec from rawdata DIED

died1 <- died %>%

 mutate(DTHDTC = format_iso_8601(parse_iso_8601(DEATHDT)),

 DTHDTC = substr(DTHDTC, 1, regexpr("\\T", DTHDTC)-1),

 DTHFL="Y") %>%

select(SUBJID, DTHDTC, DTHFL) %>%

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 8

 arrange(SUBJID)

Merge all the datasets to create DM

dmfinall <- left_join(left_join(left_join(left_join(dm1, ft_dosedtc1, by="SUBJID"),

 lt_dosedtc1, by="SUBJID"),

 term1, by="SUBJID"),

 died1, by="SUBJID")

Dropping a variable SUBJID

dmfinal<- within(dmfinal, rm(SUBJID))

Rename variables

dmfinal <- dmfinal %>%

 rename(SUBJID=SUBJID1, SEX=SEX1, RACE=RACE1) #new_name = old_name

Order and keep only required variables in final DM

dm <- dmfinal %>%

 select(STUDYID, DOMAIN, USUBJID, SUBJID, RFSTDTC, RFENDTC, RFXSTDTC, RFXENDTC,

 RFICDTC, RFPENDTC, DTHDTC, DTHFL, SITEID, BRTHDTC, AGE, AGEU, SEX, RACE, ETHNIC,

 ARMCD, ARM, ACTARMCD, ACTARM, ARMNRS, ACTARMUD, COUNTRY, DMDTC, DMDY)

#Apply Variables labels

label(DM)=as.list(Variables$Label)

#Apply Dataset label label(DM) = Datasets$Description

dm <- remove_all_labels(dm)

label(dm) <- "Demographics"

Save the simulated DM domain dataset

Write Output: Save the processed DM dataset to a CSV file and provide a summary to verify the output.

write.csv(dm, "path/to/Simulated_DM_Domain.csv", row.names = FALSE,col.names=TRUE)

Output DM.xpt

write.xport(dm, file = "xpt/dm.xpt")

Finally, check the structure of your new dataset to ensure that the columns have been correctly selected and renamed:

This will give you an overview of the new dataset structure, confirming that it aligns with the SDTM DM standard.

This will give you an overview of the new dataset structure, confirming that it aligns with the SDTM DM standard.

Filter Missing Values: Remove rows with missing values in required fields.

To remove rows with missing values in required fields from your dataset in R, you can use the filter() function from

the dplyr package along with !is.na() to identify and exclude rows where specific fields are NA (missing). Here's how

you can do it:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37308 | Page 9

Make sure you've already loaded the dplyr package and Assume you want to remove rows where any of the required

SDTM DM fields such as USUBJID, BRTHDTC, AGE, or SEX are missing. You can do it as follows:

dm_demo <- dm_demo %>%

 filter(!is.na(USUBJID) &

 !is.na(BRTHDTC) &

 !is.na(AGE) &

 !is.na(SEX))

CONCLUSION

This paper has demonstrated the viability of using R as an alternative to SAS for generating SDTM Demographics

(DM) datasets in the pharmaceutical and biotech industries. By leveraging a combination of R packages, including

sas7bdat, tidyverse, haven, parsedate, dplyr, tidyr, and Hmisc, we have shown that R can efficiently process raw

clinical trial data to produce standardized SDTM-compliant datasets.

Our approach highlights the flexibility and cost-effectiveness of using R, especially for organizations looking to

reduce dependence on proprietary software while still adhering to regulatory standards . The step-by-step guide

provided serves as a practical resource for professionals aiming to integrate R into their clinical trial data

management workflows.

However, the adoption of R for SDTM and ADaM dataset generation is still in its early stages, particularly in

regulated environments where validated systems are crucial. While R offers robust capabilities for data manipulation

and analysis , there are challenges related to its widespread adoption in clinical trial data management, including

the need for formal validation processes and greater industry acceptance .

Future work could focus on further validating the R packages used in this paper, as well as expanding the use of R

in other domains within the SDTM and ADaM frameworks . Additionally, developing user-friendly R packages

specifically designed for clinical trial data management could help accelerate the adoption of R in this space.

In conclusion, R presents a promising alternative to SAS for generating SDTM datasets, offering enhanced flexibility,

cost savings, and a broad range of statistical tools . As the pharmaceutical and biotech industries continue to evolve,

the role of open-source tools like R is likely to expand, contributing to more efficient and accessible data management

solutions in clinical research.

REFERENCE

1. https://sas-and-r.blogspot.com/p/simulation-examples.html

2. https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf

3. CRAN - PACKAGE

DMIRALONCO(RSTUDIO.COM)(HTTPS://CRAN.RSTUDIO.COM/WEB/PACKAGES/ADMIRALONCO)

4. SDTM IN R ASSET LIBRARY • ADMIRAL (PHARMAVERSE.GITHUB.IO)

5. SDTM IN BUSINESS INTELLIGENCE, COLLINSON, PHUSE 2014

6. 6.CLINICAL DATA IN BUSINESS INTELLIGENCE, COLLINSON, PHUSE 2016

http://www.ijsrem.com/
https://sas-and-r.blogspot.com/p/simulation-examples.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
https://cran.rstudio.com/web/packages/admiralonco
https://pharmaverse.github.io/admiral/

