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Abstract 

 

This paper presents a comprehensive review and derivation of various formulas used to calculate lift in aerodynamic 

applications, synthesizing classical and modern theories from existing literature. It investigates the fundamental 

mathematical theories of coefficients of lift and various methods for calculating it, using Navier-Stokes equations, 

Euler's inviscid flow equations, and the Kutta-Joukowski theorem to explore how different theories explain and 

predict lift generation. By examining research papers on subsonic and supersonic airflows, thin airfoil theory, and 

computational fluid dynamics (CFD), we derive key equations governing lift production. The study highlights the 

impact of variables such as angle of attack, Reynolds number, and airfoil geometry on lift, offering a comparison 

of traditional analytical methods and contemporary computational techniques. Additionally, the paper addresses 

common misconceptions about lift, particularly the Equal Transit Time theory and Coanda Effect, while proposing 

a comprehensive analysis of the most accurate and effective approaches for calculating and optimizing lift. The 

findings provide a deeper understanding of the theoretical foundations of lift, supporting further advancements in 

aerodynamic research and engineering applications. 

 

Keywords: Lift Calculations, Airfoil Theory, Lift Coefficient, Classical Aerodynamics, Modern Lift Formulas. 

 

1. Introduction 

 

Aerodynamic lift is a fundamental force that makes flight possible, yet there are several approaches and 

explanations for lift that are subject to ongoing debate. This paper aims to clarify the most accepted mathematical 

theories of lift and assess the tools for calculating lift in both two-dimensional and three-dimensional flows. The 

accurate calculation of lift is essential for optimizing wing design, enhancing performance, and ensuring stability 

in various flight regimes. Over the years, numerous methods and theories have been developed, ranging from 

classical approaches such as potential flow theory and thin airfoil theory to more advanced techniques like 

computational fluid dynamics (CFD). Each method offers a unique perspective on how lift is generated, influenced 

by factors such as airfoil geometry, angle of attack, Reynolds number, and flow conditions. This paper provides an 

in-depth review of the various formulas and derivations used in the calculation of lift, compiling and analyzing 

methods from existing literature to bridge the gap between theoretical and practical aspects of aerodynamics. 

Special attention is given to the evolution of lift prediction methods, as well as addressing misconceptions and 

controversies regarding lift explanations, ultimately proposing optimal methods for lift calculation and 

improvement in aircraft design. 

 

Nomenclature 

𝑎∞ free stream sonic speed 

b wing span 

c chord length of the airfoil 

𝐶𝐿 coefficient of lift 

ds differential element of airfoil surafce 

F total force 

h plunge of airfoil 

k local turbulent kinetic energy 
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𝐿′ lift per unit span 

�̅� time-averaged pressure 

S body surface 

𝑇𝑛 stress vector 

�̂�𝑡 eddy viscosity 

𝑉∞ free stream velocity 

𝛼 angle of attack of airfoil 

𝜌 air density 

𝛾 heat capacity ratio 

𝜏 reynolds stress 

𝜏𝑥𝑦 shear stress in boundary layer 

 

2.Methodology 

 

The methodology of this paper encompasses a comprehensive literature review and mathematical derivation of lift 

equations. A thorough literature review was conducted to synthesize existing research on lift calculations, focusing 

on both classical theories and modern computational methods. Key studies addressing potential flow theory and 

thin airfoil theory were analyzed to identify common methodologies and derivations. Following this, the 

fundamental mathematical theories of lift were derived and presented, including the Navier-Stokes equations, which 

describe viscous flow around an airfoil and emphasize their applicability in complex flow scenarios; Euler's 

equations, which model inviscid flow to derive lift calculations under the assumption of negligible viscosity, 

particularly relevant in high-speed applications; and the Kutta-Joukowski theorem, which illustrates the relationship 

between circulation and lift coefficient. Additionally, common misconceptions regarding lift, such as the Equal 

Transit Time theory and the Coanda Effect, were critically examined through theoretical analysis and empirical 

evidence. 

 

3. Theories and Mathematical Models of Lift 

 

3.1 Navier-Stokes (NS) Equations 

 

The Navier-Stokes equations describe the motion of fluid substances like air, providing a comprehensive model for 

fluid dynamics, including lift. These nonlinear partial differential equations account for viscosity and turbulence 

but are computationally intensive. 

 

The force coefficients associated with the stress vector are obtained by integrating the stress vector over the body 

surface. Let 𝐹 = 𝑖𝐶𝐴 + 𝑗𝐶𝑁 be the total force acting on the body and let 𝑇𝑛 = 𝑖(𝑇𝑛)1 + 𝑗(𝑇𝑛)2 be the stress vector 

on the body surface having outward unit normal n. Then,  

𝐹 = ∫𝑇𝑛𝑑𝑆
𝑆

 
(1.1) 

The stress vector components (𝑇𝑛)1 and (𝑇𝑛)2 may be expressedin terms of the primitive variables as 

(𝑇𝑛)1 = −2𝑝𝑛1 + 4(𝑉1)𝑥
𝑛1
𝑅
+ 2[(𝑉1)𝑦 + (𝑉2)𝑥]

𝑛2
𝑅

 

 

(1.2) 

(𝑇𝑛)2 = −2𝑝𝑛2 + 2[(𝑉2)𝑥 + (𝑉1)𝑦]
𝑛1
𝑅
+ 4(𝑉2)𝑦

𝑛2
𝑅

 

 

(1.3) 

where 𝑛1 and 𝑛2 are the x- and y-components of the normal to the body surface n. 

The lift coefficient may be calculated by means of the conventional wind-axis transformation as follows: 
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𝐶𝐿 = −2∫ [cos 𝜃 (𝐶𝑃
∗𝑥𝜉 −

𝑦𝜉𝜔

𝑅
) + sin 𝜃 (𝐶𝑃

∗𝑦𝜉 −
𝑥𝜉𝜔

𝑅
)]

𝜉𝑚𝑎𝑥

𝜉𝑚𝑖𝑛

𝑑𝜉  

 

(1.4) 

The integral equation is referred to as the lift coefficient and is denoted by 𝐶𝐿.  

The 𝜉-derivatives are approximated with second-order central-difference expressions. 

 

3.2 Reynolds-Averaged Navier-Stokes (RANS) Equations 

 

The RANS equations are obtained by time-averaging the Navier-Stokes equations to simulate turbulent flow. They 

enable computational analysis of complex fluid flows over airfoils, with turbulence modeling simplified through 

closures such as the k−ϵ model. 

 

The equation of state is: 

 

�̅� = (𝛾 − 1) [�̅��̂� −
1

2
�̅�(�̂�2�̂�2�̂�2) − �̅�𝑘] 

(2.1) 

where, k is the kinetic energy of the fluctuating field, 

 

𝑘 =
[(�̂�𝑖

′′)2 + (𝑣𝑖
′′)2 + (�̂�𝑖

′′)2]

2
 

 

(2.2) 

            𝛾 is heat capacity ratio, typically taken as constant at 1.4 for air 

 

Most turbulence modeling focuses on the Reynolds stress terms (𝜏𝑖𝑗). These are either solved directly (as in full 

second-moment Reynolds stress models) or defined via a constitutive relation for simpler models. For example, the 

common Boussinesq approximation is: 

 

𝜏𝑖𝑗 = 2�̂�𝑡 (�̂�𝑖𝑗 −
1

3

𝜕�̂�𝑘

𝜕𝑥𝑘
) −

2

3
�̅�𝑘𝛿𝑖𝑗  

(2.3) 

Where, 

            �̂�𝑖𝑗 =
(
𝜕�̂�𝑖
𝜕𝑥𝑗

+
𝜕�̂�𝑗

𝜕𝑥𝑖
)

2
 

 

           �̂�𝑡 is obtained by the turbulence model.  

 

           
2

3
�̅�𝑘𝛿𝑖𝑗 term is sometimes ignored for non-supersonic speed flows, and the second    

           term in parentheses is identically zero for incompressible flows. 

In order to simplify the notation the so-called sumffix notation is used. The convention of this notation is that i or 

j=1 corresponds to the x-direction, i or j=2  the y-direction and i or j=3  the z-direction. So, 

 

𝜏12 = 𝜏𝑥𝑦 = 2�̂�𝑡 (�̂�12 −
1

3

𝜕�̂�𝑘
𝜕𝑥𝑘

) −
2

3
�̅�𝑘𝛿12 = 2�̂�𝑡 (�̂�𝑥𝑦 −

1

3

𝜕�̂�𝑘
𝜕𝑥𝑘

) −
2

3
�̅�𝑘𝛿𝑥𝑦 

 

(2.4) 

𝐿′ is calculated as an integral of the pressure and shear stress distributions over the surface of the airfoil, 

𝐿′ = ∮ (−�̅�. 𝑛𝑦 + 𝜏𝑥𝑦. 𝑛𝑥)𝑑𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

 

(2.5) 
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Where,  �̅� is obtained from solving RANS, 

        𝑛𝑥 and 𝑛𝑦 are the components of the surface normal vector. 

 

𝐶𝐿 which normalizes the lift force to non-dimensional form, is given by: 

 

𝐶𝐿 =
𝐿′

1
2
𝜌𝑉∞

2𝑐
 

(2.6) 

 

where,   𝑉∞is upstream velocity, before the fluid is disturbed by the airfoil. 

 

Thus, the final lift formula in the context of RANS, when the results are numerically computed is, 

𝐶𝐿 =
∮ (𝜏𝑥𝑦. 𝑛𝑥 − �̅�. 𝑛𝑦)𝑠𝑢𝑟𝑓𝑎𝑐𝑒

1
2𝜌𝑉∞

2𝑐
 

 

(2.7) 

This is the generalized lift coefficient that is obtained after solving the RANS equations numerically. 

 

3.3 Inviscid-Flow Equations (Euler or Potential Flow) 

 

When viscosity is negligible, Euler’s equations or potential flow theory can be used. These equations disregard 

shear stress effects, making them suitable for analyzing high-speed, inviscid flows. Potential flow models offer an 

efficient way to approximate lift in many scenarios. 

Euler equations in the non-dimensional form can be written as 

 

𝜕𝑈

𝜕𝑡
+ ∆. �̅� = 0 

 

(3.1) 

where,𝑈 = [𝜌𝜌𝑢𝜌𝑣𝑒]𝑇 denotes vector of considered variables 

             �̅� = [𝑓𝑔]𝑇 denotes the flux vector 

            𝑓 = [𝜌𝑢𝑝𝑢2 + 𝜌𝑢𝜌𝑣(𝑒 + 𝑝)𝑢]𝑇 

            𝑔 =  [𝜌𝑢𝜌𝑢𝑣𝑝𝑣2 + 𝜌(𝑒 + 𝑝)𝑣]𝑇 

 

𝜌, 𝑢, 𝑣, 𝑝 stand for non-dimensional fluid density, x-velocity, y-velocity and pressure respectively,  

𝑒 =
𝑝

(𝛾−1)
+

1

2
𝜌(𝑢2 + 𝑣2)  stand for non-dimensional total energy per unit volume with 𝛾. Integrating equation 3.1 

over a finite volume (t) bounded by surface Г(t), we get, 

 

∫ (
𝜕𝑢

𝜕𝑡
+ ∆. �̅�) 𝑑Ω

Ω(t)

= 0 

 

(3.2) 

Consider the identity 

 

𝜕

𝜕𝑡
∫ 𝑈𝑑Ω = ∫

𝜕𝑈

𝜕𝑡
𝑑Ω +∫ 𝑈𝑋𝑑Г̅

Г(t)Ω(t)Ω(t)

 

 

(3.3) 

With 

�̅� =
1

Ω(t)
∫ 𝑈𝑑Ω
Ω(t)

 

 

(3.4) 
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Using Gauss divergence theorem and replacing the surface integral by sum over factor J, equation 3.2 can be written 

as 

 

𝑑

𝑑𝑡
(�̅�Ω) +∑(�̅�𝐽−𝑋𝑗𝑈). 𝑛𝑗∆𝑆𝑗 = 0

𝐽

 

 

(3.5) 

The flux (�̅�𝐽−𝑋𝑗𝑈). 𝑛𝑗∆𝑆𝑗 = 0 passing through the finite volume interface J can be computed using a suitable 

upwind scheme. Equation 3.5 is an ordinary differential equation which can be integrated in time using suitable 

time integration procedure. 

 

The two degrees of freedom structural dynamic equations, written in the non-dimensional vector-matrix form are 

as follows: 

 

𝑀
𝑑2𝐻

𝑑𝑡2
+

4𝛾𝑀2∞

𝜇𝑉𝑓
2 𝐻𝐾 = 

4𝛾𝑀2∞

𝜋𝜇
 Force (3.6) 

 

where,  𝐻 = [ℎ𝛼]𝑇, 

 

            𝑀 = [
1 𝑥𝛼
𝑥𝛼 𝑟𝛼

2], 

 

𝐾 = [
(
𝜔ℎ

𝜔𝛼
)2 0

0 𝑟𝛼
2
], 

 

𝐹𝑜𝑟𝑐𝑒 = [−𝐶12𝐶𝑚𝑒𝑎
]𝑇 

𝑡 =
𝑡𝑑𝑖𝑚𝑎∞
𝑐√𝛾

 

 

𝐶𝐿 =
𝐿

1
2𝜌∞𝑞∞

2 𝑐2
 

 

𝑥𝛼 is the distance between the elastic axis and centre of mass of airfoil, 

𝑟𝛼 demotes radius of gyration about elastic axis, 

𝑊ℎ denotes the uncoupled natural frequency of structure in plung, 

𝑊𝛼 denotes the uncoupled natural frequency of structure in pitch, 

 

3.4 Circulation and Kutta-Joukowski Theorem 

 

The Kutta-Joukowski theorem relates the circulation of airflow around an airfoil to the lift force generated. It is a 

core concept in explaining lift from a circulation perspective. 

 

For reference we begin by repeating some well-know results of the two-dimensional airfoil theory. The skeleton 

line being given by 𝑧(𝑥) between 0 < 𝑥 < 𝑐 we obtain the local downwash 
𝑤

𝑈
=

𝑑𝑧

𝑑𝑥
 from the integral 

 

𝑤

𝑈
(𝑥) =

−1

4𝜋
∫

𝑙(𝑥′)𝑑𝑥′

𝑥−𝑥′

𝑐

0

 

 

(4.1) 
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It has been useful to introduce the angular co-ordinate 

 

𝜑 = 𝑐𝑜𝑠−1 (1 − 2
𝑥

𝑐
) (4.2) 

Assessing the lift distribution as 

 

𝑙 = 𝑎0 cot
𝜑

2
+∑𝑎𝑛 sin𝑛𝜑

∞

1

 
(4.3) 

we obtain for the local downwash by working out equation 4.1 

 

𝛼 (
𝑥

𝑐
) = −

𝑤

𝑈
=
𝑎0
4
−
1

4
∑𝑎𝑛 cos𝑛𝜑

∞

1

 

 

(4.4) 

Lift about the quarter-chord point is given as, 

 

𝐶𝐿 =
𝜋

2
(𝑎0 +

𝑎1
2
) (4.5) 

 

This result is fairly well know from the classical analysis of the thin airfoil in two-dimensional flow by Birnbaum, 

Munk and Glauert. If we express 𝑎0, 𝑎1 and 𝑎2 by Fourier analysis from equation 4.4 we obtain the well-known 

Munk’s integrals for lift. 

 

3.5 Linearized Potential Flow 

Linearized potential flow simplifies the potential flow equations for small disturbances. It provides useful 

approximations for lift in certain regimes and is particularly useful in supersonic flow applications. 

 

This approach is essential for deriving 𝐶𝐿. Thin airfoil theory employs linearized potential flow to examine the flow 

around thin airfoils, resulting in a linear relationship between the lift coefficient and the angle of attack. 

 

Consider the scenario with only one chordwise station. Since the moment is determined by the curvature of the 

skeleton line, the incidence at a single station alone is insufficient to obtain it. However, it can be required that, 

 

𝐶𝐿 = 𝐾𝛼 (
𝑥1
𝐶
) (5.1) 

 

should be fulfilled as best possible; comparing equations 4.5 and 5.1 we see that for, 

 

                                             𝐾 = 2𝜋 

 

and                                       
𝑥1

𝑐
= 0.75     (cos𝜑 = −0.5𝑜𝑟𝜑 =

2

3
𝜋) 

 

equation 5.1 holds if 𝜑(𝜋) is given by the first two terms of equation 4.4 

 

These steps regarding the three-quarter-chord point indicate that measuring the incidence at a single chordwise 

station should be done at the three-quarter chord to ensure the most accurate value for the lift coefficient. 

Alternatively, measuring the downward flow at the three-quarter chord implies that the method used to evaluate the 

lift distribution is not significant.Whether using only the cot 𝜑/2-term, only the sin 𝜑/2-term, or any linear 

combination of both to represent total lift, the downward flow at three-quarter chord remains unchanged in every 
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scenario. Consequently, when the chordwise lift distribution is represented by the first term, the second term is 

implicitly incorporated. 

 

3.6 Pressure Integration 

 

Lift can also be determined by integrating the pressure distribution over the surface of the wing, 

∫ 𝑙(𝑥0, 𝑦0) {1 +
𝑥 − 𝑥0

√[(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2]
} 𝑑𝑥0

𝑥0𝑡

𝑥0𝑙

 
 

 

where, 𝑥0𝑙 𝑖𝑠𝑡ℎ𝑒𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑒𝑑𝑔𝑒, 

            𝑥0𝑡 is the trailing edge of inducing wing section, 

𝑦0 is constant. 

 

For further convenience, auxiliary non- dimensional co-ordinates X,Y are introduced, 

 

𝑋 =
𝑥−𝑥0𝑙

𝑐(𝑦0)
 ,  𝑌 =

𝑦−𝑦0

𝑐(𝑦0)
  and  𝑋0 =

𝑥0−𝑥0𝑙

𝑐(𝑦0)
 

 

The fist chordwise load distribution which we are going to consider is 

 

𝑙0 = 𝑎0 cot
𝜑
2⁄  

with 

𝜑 = 𝑐𝑜𝑠−1(1 − 2𝑋0) 

which gives the lift, 

𝐶𝐿 = 𝑎0.
𝜋
2⁄  

 

This method is often used in both experimental and computational studies. 

 

3.7 Bernoulli’s Principle 

 

The pressure coefficients at any point in the field may be obtained from the velocity via the Bernoulli equation, 

which in the present non-dimensional variables is  

 

𝐶𝑝 = 1 − |𝑣|2 

 

On the body surface, this is expressed through the use of the equation, 

∵𝑉𝑡
(𝜂1) =

√𝛾𝜓𝜂

𝐽
 

𝐶𝑝 = 1 −
𝛾

𝐽2
𝜓𝜂

2

 

 

with the derivative evaluated using a second-order, one-sided difference expression. The non-dimensional force 

acting on the body is represented by, 

 

𝐹 = −∮𝐶𝑝𝑛𝑑𝑆 

where n is the unit outward normal to the surface, and 𝑑𝑆is an increment of arc length along the surface. The lift 

coefficient is, 
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          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                       Volume: 08 Issue: 10 | Oct - 2024                           SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37860                |        Page 8 

𝐶𝐿 = −∮𝐶𝑝(−𝑥𝜉 cos 𝜃 − 𝑦 sin𝜃)𝑑𝜉  

 

The integral was computed using numerical quadrature through the trapezoidal rule. 

 

3.8 Thin Airfoil Theory 

Thin Airfoil Theory is a key aerodynamic model that offers insights into airfoil behavior, especially in 

incompressible, inviscid (non-viscous) flows at low angles of attack. Developed by Max Munk and later refined by 

Ludwig Prandtl in the early 20th century, this theory provides a simplified approach to analyzing the aerodynamic 

properties of airfoils, assuming both thin airfoil geometry and ideal flow conditions. 

 

Thin airfoil theory provides a linearized solution for the lift produced by thin airfoils, based on the assumptions of 

small angles of attack and ideal flow conditions. 

 

The circulation around an airfoil is given by, 

Г = 𝜋𝐶𝑈𝑠𝑖𝑛𝛼 (8.1) 

The lift force, 

𝐹𝐿 = 𝐶𝐿 (
𝜌𝑈2

2
)𝐴 

(8.2) 

 

Here 𝐶𝐿, whose values depends on the shape of the airfoil and angle of attack 𝛼. Flow Reynolds number, surface 

roughness of the airfoil section, air turbulence etc. also are factors affecting lift. 

Since the chord length of an airfoil section is not constant through the span length but keeps changing aspect ratio 

is convenient to define the area of an airfoil at any point on the span . aspect ratio also helps in achieving uniformity 

while comparing different wing sections. 

 

Since 𝐶𝐿 the coefficient of lift = 
𝐹𝐿

(
𝜌𝑈2

2
)
𝐴 

 

(8.3) 


𝐶𝐿
𝐹𝐿

=
1

(
𝜌𝑈2

2 )
 

 

By equating the lift force equation 8.1 and circulation equation 8.2 it can be shown that the coefficient of lift depends 

on the angle of attack. 

 

𝐶𝐿 =
(2𝜋𝜌𝐶𝑈2𝐹𝐿 sin𝛼)

(𝜌𝐶𝑈2𝐹𝐿)
= 2𝜋 sin𝛼  

(8.4) 

 

𝐶𝐿 = 2𝜋 sin𝛼 

Lift Coefficients for an airfoil section are obtained from the graph of angle of attack versus lift coefficients. 
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4. Three-Dimensional Flow: Wing Tips and Spanwise Distribution 

 

4.1 Wingtip Vortices and Spanwise Flow 

 

In real-world applications, three-dimensional flow around an airfoil or wing is influenced by wingtip vortices, which 

create induced drag. These vortices are a result of high-pressure air beneath the wing flowing toward the lower-

pressure region above, around the wingtips. The spanwise distribution of lift is affected by these vortices. 

 

The coefficient of lift 𝐶𝐿 for a finite wing can be influenced by the distribution of lift across the span of the wing, 

which is often referred to as the spanwise lift distribution. To derive the coefficient of lift from the spanwise 

distribution, we consider the total lift generated by the wing and how it is distributed along the span from wingtip 

to wingtip. 

 

The lift per unit span of a wing can vary from root to tip. If we denote the spanwise coordinate as y, the local lift 

per unit span L′(y) is a function of y. 

For symmetric wings, the spanwise distribution is often symmetric about the centerline (i.e., y=0), Thus, it is 

possible to analyze only half of the wing and then double the results. 

 

The total lift L is the integral of the local lift per unit span over the entire span of the wing, 

𝐿 = 2∫ 𝐿′(𝑦)𝑑𝑦

𝑏
2⁄

0

 

The lift coefficient 𝐶𝐿 is defined as, 

𝐶𝐿 =
𝐿

1
2
(𝜌𝑉2𝑆)

 

Where, V is the freestream velocity, 

       S is the wing area. 

The wing area S can be related to the span b and the average chord 𝑐𝑎𝑣𝑔 as 𝑆 = 𝑏. 𝑐𝑎𝑣𝑔. 
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For an ideal elliptical spanwise lift distribution, which minimizes induced drag, the local lift distribution L′(y) 

follows an elliptical pattern along the span, 

 

𝐿′(𝑦) = 𝐿0√1 − (
2𝑦

𝑏
)
2

 

 

where, 𝐿0 is the lift at the center of the wing (at y=0). 

By integrating this distribution and applying it to the lift coefficient formula, we can derive the coefficient of lift 

for an elliptical distribution. 

 

For any spanwise distribution, the coefficient of lift can be calculated by integrating the spanwise lift distribution 

and normalizing it by the dynamic pressure and wing area, 

 

𝐶𝐿 =
2

𝜌𝑉2𝑆
∫ 𝐿′(𝑦)𝑑𝑦

𝑏
2⁄

0

 

 

The coefficient of lift is influenced by the spanwise distribution of lift L′(y), while the wing's efficiency is affected 

by induced drag, which is determined by the distribution at the wingtips. An elliptical distribution produces the 

most efficient lift generation with minimal induced drag, making it a commonly used ideal case in wing design. 

 

4.2 Horseshoe Vortex System 

 

The horseshoe vortex model is used to describe the trailing vortex system from the wingtips. It accounts for the 

influence of the entire span of the wing on the lift distribution. 

 

 
Winglets are short, aerodynamically contoured wings set perpendicular to the wing at the tip. Like the endplate, the 

winglet reduces the strength of the trailing vortex system and the induced drag. The winglet also produces a small 

component of force in the flight direction, which has the effect of further reducing the overall drag of the aircraft.  

 

An aircraft can be fitted with low-drag airfoils to give excellent performance at cruise conditions. However, since 

the maximum lift coefficient is low for thin airfoils, additional effort must be expended to obtain acceptably low 

landing speeds. In steady-state flight conditions, lift must equal aircraft weight. Thus, 

 

𝑊 = 𝐹𝐿 = 𝐶𝐿
1

2
𝜌𝑉2𝐴 

 

Minimum flight speed is therefore obtained when 𝐶𝐿 = 𝐶𝐿𝑚𝑎𝑥. Solving for 𝑉𝑚𝑖𝑛, 
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𝑉𝑚𝑖𝑛 = √
2𝑊

𝜌𝐶𝐿𝑚𝑎𝑥𝐴
 

 

∴  𝐶𝐿𝑚𝑎𝑥 =
2𝑊

𝑉𝑚𝑖𝑛
2 𝜌𝐴

 

 

According to this equation, 𝐶𝐿𝑚𝑎𝑥 can be increased by reducing either wing area or minimum landing speed.  

 

5. Alternative Explanations, Misconceptions, and Controversies 

 

5.1 Equal Transit-Time Theory 

 

One common misconception is the "Equal Transit-Time" explanation of lift, which incorrectly asserts that air 

particles above and below the wing must meet at the same time, creating lift solely due to different travel distances. 

This is widely debunked as oversimplified and inaccurate. 

 

Using complex variables the transit time difference can be expressed as 

 

𝑡𝑡𝑡𝑑 = −∮
𝑑𝑧

�̅�𝐶𝐵
    (1.1) 

where 𝐶𝐵 is the contour of the airfoil directed in the anti-clockwise direction,  

𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦, and 𝜐 = 𝑢 + 𝑖𝑣 is the conjugate of complex velocity. The complex velocity is related to the 

complex potential 𝑊(𝑧) = ∅ + 𝑖𝜓(𝜙) is the potential function and 𝜓 is the stream function by 

 

𝜐 =
𝑑𝑊(𝑧)

𝑑𝑧
= 𝑉∞𝑒

−𝑖𝑥 +
Г

2𝜋𝑖
.
1

𝑧
+
𝐴1
𝑧2

+
𝐴2
𝑧3

+⋯ 
(1.2) 

 

where 𝐴1,  𝐴2, are parameters that only depend on the shape of the airfoil. On the body surface, 𝜓 is constant 

so𝑑�̅�(𝑧) = 𝑑𝑊(𝑧) and �̅� = 𝜐
𝑑𝑧

𝑑�̅�
, thus equation 1.1 becomes 

 

𝑡𝑡𝑡𝑑 = −∮
𝑑�̅�

�̅�𝐶𝐵
    (1.3) 

Under thin airfoil assumption, 𝑑𝑦 ≈ 0 on the airfoil and 𝛼 ≈ 0°, i.e., 𝑑𝑧̅ ≈ 𝑑𝑧, 𝑒−𝑖𝑥 ≈ 1 

the transit time difference is given by 

 

𝑡𝑡𝑡𝑑 ≈
Г

𝑉∞
2 ≈ −

2𝑐𝐴𝐶𝐿
𝑉∞

 
(1.4) 

 

and the lift coefficient is given by half of the number of chord travelled during the transit time difference, i.e. 

 

𝑡𝑡𝑡𝑑 ≈
Г

𝑉∞
2 ≈ −

2𝑐𝐴𝐶𝐿
𝑉∞

 
(1.5) 

 

𝐶𝐿 ≈
𝑉∞𝑡𝑡𝑡𝑑
2𝑐𝐴

 

 

This Equal Transit-time Theory is a commonly cited but incorrect explanation of how lift is generated on an 

airplane wing.  
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However, this explanation is false for several reasons: 

1. No Physical Law Requires Equal Transit Time: There is no physical principle that dictates that air 

particles split at the front of the wing must meet at the trailing edge at the same time. In reality, the air over 

the top surface moves significantly faster and does not meet the air underneath at the same time. 

2. Ignores Downwash: The Equal Transit-time theory neglects the fact that lift is also produced by the 

downward deflection of airflow, called downwash. This is consistent with Newton’s third law of motion—

air is pushed downward, and the wing experiences an upward reaction. 

3. Misrepresents Bernoulli's Principle: While Bernoulli's principle is correctly involved in the creation of 

lift, the equal transit-time theory incorrectly applies it. Faster-moving air over the top of the wing does 

create lower pressure, but this is due to the shape and angle of attack of the wing, not because the air must 

travel faster to meet the air from below at the trailing edge. 

 

5.2 Controversy Regarding the Coanda Effect 

 

The Coandă Effect, named after Romanian inventor and aerodynamics pioneer Henri Coandă, describes the 

tendency of a fluid jet, such as air, to remain attached to a convex surface. Coandă discovered this phenomenon in 

1910 while experimenting with jet-powered aircraft, noting that the hot gases emitted from the engine tended to 

follow the surface of his aircraft rather than moving in a straight line. This effect has significant implications in 

aerodynamics, particularly in how air flows over surfaces like wings, influencing lift generation. However, deriving 

the lift coefficient from the Coandă Effect requires a careful balance of fluid dynamics and empirical results, as this 

effect is not the sole contributor to lift. The Coandă Effect is especially relevant when the surface curves away from 

the fluid flow, as seen with curved surfaces like wings or fuselages, where the interaction between the fluid's 

viscosity and the surface boundary plays a crucial role. 

 

Derivation of the Lift Coefficient with Coandă Effect Influence 

1. Momentum and Flow Adherence: The Coandă Effect increases the velocity of airflow over the surface, 

which reduces pressure due to Bernoulli's principle. This lower pressure on the upper surface increases lift. 

The basic equation for lift, derived from Bernoulli’s principle is,  

𝐿 = 𝐶𝐿
1

2
(𝜌𝑉2𝑆) 

 

2. Mathematical Model Incorporation: In designs like circulation control wings, engineers use the Coandă 

Effect by blowing air over flaps or control surfaces. The increased circulation caused by the blown air 

modifies the lift coefficient, which can be expressed as, 

𝐶𝐿 = 𝐶𝐿
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + ∆𝐶𝐿

𝐶𝑜𝑎𝑛𝑑ă 

 

where, 𝐶𝐿
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the conventional lift coefficient without blown air, 

     ∆𝐶𝐿
𝐶𝑜𝑎𝑛𝑑ă is the additional lift due to the Coandă Effect, which is derived from      

experimental data. 

 

The Coandă Effect has sparked significant controversy in aerodynamics, particularly concerning its role in 

explaining lift on conventional aircraft wings. One major issue is the misapplication of the effect as the primary 

explanation for lift, leading critics to argue that while it may influence airflow over curved surfaces, lift generation 

is primarily driven by Bernoulli's principle and Newton's third law. This disagreement among experts reflects two 

perspectives: some researchers emphasize the Coandă Effect's importance in modern applications, such as blown 

flaps, while others caution that focusing on it can mislead students and obscure fundamental aerodynamic 

principles. Historically, confusion has arisen from conflating the Coandă Effect with the Venturi Effect or 

Bernoulli’s Principle, resulting in misunderstandings about its role in lift. Furthermore, the effect has been 

misrepresented in educational resources, where oversimplified explanations have attributed undue importance to it, 

drawing criticism from professionals in the field. Additionally, while Coandă's initial aircraft designs were 
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groundbreaking, they did not convincingly demonstrate the effect’s practical impact on flight, leading to skepticism 

about its true significance. Lastly, although some experimental aircraft utilize the Coandă Effect, their complexity 

and maintenance challenges have limited their adoption in commercial aviation. 

 

6. Results and Discussion 

 

The results of this study demonstrated that Reynolds-Averaged Navier-Stokes (RANS) equations provided more 

accurate predictions in turbulent flow regimes, while potential flow theory was effective for subsonic, laminar 

conditions. Analysis of spanwise flow and wingtip vortices revealed the significant impact of wing geometry on 

induced drag and lift efficiency. The horseshoe vortex model successfully predicted vortex-induced drag but 

required computational validation for accuracy. Furthermore, theoretical analysis confirmed the fallacies of the 

Equal Transit-Time theory, while also demonstrating the limited impact of the Coanda Effect in practical scenarios. 

The derivation of lift equations revealed that the lift coefficient (C_l) is significantly influenced by the angle of 

attack and airfoil geometry. The analytical expressions derived from the Kutta-Joukowski theorem closely aligned 

with traditional thin airfoil theory under low angles of attack, reaffirming its relevance in classical aerodynamics. 

The examination of misconceptions further confirmed that the Equal Transit-Time theory does not hold true in 

practical scenarios, as flow visualization results indicated differing flow paths and timings, and while the Coanda 

Effect was observed in specific flow configurations, its role in lift generation was found to be overstated within the 

context of conventional airfoil theory. 

 

7. Conclusion 

 

This study explored several mathematical methods for calculating the aerodynamic lift coefficient. It was found 

that Reynolds-Averaged Navier-Stokes (RANS) equations offer the most comprehensive approach for turbulent and 

complex flows, while inviscid flow methods, such as potential flow, provide useful insights in simpler cases. The 

analysis also revealed that alternative explanations, such as the Equal Transit-Time theory, are flawed and should 

not be relied upon. Future work will focus on optimization techniques to improve lift efficiency, particularly in 

three-dimensional flow scenarios. Additionally, this study aimed to develop methods for obtaining numerical 

solutions of the two-dimensional, incompressible, time-dependent Navier-Stokes equations around arbitrary bodies. 

Although the magnitude of the calculated force coefficients cannot be directly compared with experimental data 

due to a lack of existing measurements at this low Reynolds number, the time variation of these parameters showed 

good agreement with flow pattern development. 
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