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Abstract: 

 

Digital twin (DT) technologies have rapidly evolved as a cornerstone of modern cyber-physical systems, enabling real-time 

monitoring, simulation, and optimization of physical assets through their virtual counterparts. The integration of Artificial 

Intelligence (AI) into digital twins has further enhanced their capabilities, transforming them from passive replicas into intelligent, 

adaptive systems capable of decision-making and predictive analytics. This review provides a comprehensive examination of AI-

powered digital twin technologies, covering their foundational concepts, system architectures, enabling AI techniques (e.g., 

machine learning, deep learning, reinforcement learning), and diverse applications across industries such as manufacturing, 

healthcare, energy, and smart cities. The paper also highlights the key benefits of AI integration, including improved accuracy, 

autonomy, and scalability, while addressing current challenges such as data quality, interoperability, model complexity, and real-

time responsiveness. Finally, we outline emerging trends and propose future research directions aimed at advancing intelligent 

digital twin systems for next-generation applications. This review serves as a valuable resource for researchers, practitioners, and 

stakeholders seeking to understand and leverage AI-driven digital twin innovations. 
 

 

 

1. Introduction 

 

Digital twins are virtual replicas of real-world systems that accurately reflect the system’s behavior, with the goal of achieving 

functionalities like automatic fault diagnosis or run-time monitoring. A Digital Twin (DT) can represent an object, such as a smart building, or 

a process, such as a production process. Following the definition of Jones et al. [1], a DT is characterized by a physical-to- virtual connection, 

the data stream that replicates the real-world system. Additionally, the inverse, a virtual-to-physical connection, closes the loop between 

virtual and physical space, allowing the physical system to benefit from the output of the digital twin. A digital twin should have the ability to 

process various kinds of data, including real-time data, for providing real-time monitoring of the physical system it represents - this is essential 

for immediate detection of the original system’s behavior, its critical events or anomalies, and response to them. 

Artificial Intelligence (AI) and Machine Learning (ML) solutions have become an important part of research in many disciplines in recent 

years. AI has been shown to outperform humans in several different tasks, such as reconstructing brain circuits [2], playing strategy games [3], 

and predicting protein structure [4]. Due to the wide applicability of AI solutions, different systems can benefit from the integration of an AI 

component for predictive functionality. 

Since both AI and DT systems require data to function, it is a logical step to integrate them. Integrations of AI and DT, creating an AI-DT 

system, have been proposed in different application domains, where the AI component makes predictions based on data stemming from the 

DT. As some examples, Fahim et al. [5] describe a digital twin of a wind turbine using machine learning to forecast the system’s 

energy production. Xiong et al. [6] propose a solution for predictive maintenance of an aircraft engine, 

 

combining a DT of the engine with an LSTM model [7] serving as the ML component. In all such contributions, the Digital Twin derives 

significant advantages from the application of ML techniques, and through the utilization of vast historical data and pertinent AI algorithms, 

attains the capability to enhance the accuracy of its predictions. This is achieved by making use of the analytical power of ML, which in turn 

leverages information and patterns embedded in the historical data to refine predictions, leading to more precise and reliable DT outputs. 

This study systematically searches and investigates the literature on the intersection of digital twins and artificial intelligence. After the 

search, relevant studies are referred to give an overview of the state of the art. The results provide researchers with a summary of the related 

work, serving as foundational knowledge for future work in the field. Based on this, we identify a number of relevant insights and gaps 

within current research, suggesting directions for future work. 

In recent research, some literature reviews on artificial intelligence and digital twins have been conducted [8–10]. However, although 

similar in the overarching topic, the focus, search scope of these reviews, and thereby identified research gaps, differ substantially from our 

review. 

Kritzinger et al. [11] define three levels of integration for digital twins: Digital models, which have a manual information flow between the 

physical and the virtual system in both directions; Digital shadows, which automate the physical-to-virtual data flow, but still have a manual 

virtual-to-physical feedback loop; Digital twins are the most advanced level of system integration, providing a bidirectional automated data 

flow between real-world system and digital twin. In this paper, we follow these definitions for digital model, digital shadow, and digital twin. 

http://www.ijsrem.com/
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This paper is structured as follows: Section 2 provides the background for this work and characterizes related literature reviews. Section 3 

describes the methodology employed for our literature review, describing the search process and the research questions investigated. Section 4 

presents the results of the literature search, characterizing the state of the art, and general findings regarding past research in the field of AI in 

digital twins. Further, results specific to the research questions are presented. Section 5 identifies research gaps and discusses the findings. 

Lastly, Section 6 concludes the paper, summarizing the contributions. 

 

2. Background 

Jones et al. [1] have conducted a systematic literature review on digital twins, identifying characteristics of a digital twin and highlighting 

gaps in the research field. The authors do not explicitly mention machine learning or artificial intelligence, however, concepts such as 

predictive maintenance and advanced control systems are emphasized as components of a digital twin. Semeraro et al. [12] have performed a 

review on the paradigm of digital twins, with a focus on the definition of a digital twin and its application domains, based on text mining 

techniques. While their research focuses on the components of a digital twin, artificial intelligence is not acknowledged in the article. 

Schmid and Winkler [8] have performed a literature review on the combination of AI methods and digital twins of production systems. 

They review common challenges encountered in related work and propose a framework combining human interaction and automated 

components utilizing AI in a production system. A systematic literature review on the role of artificial intelligence, machine learning, and big 

data within digital twins has been carried out by Rathore et al. [9]. The authors group the existing literature by application domain, 

characterizing the use-case of the analyzed studies, as well as the machine learning solution employed. Further, they focus on tools supporting 

the creation of digital twins, providing a reference architecture of their design. While Rathore et al. [9] focus on application domains and the 

tools supporting digital twin development, this paper is focused on the tasks of artificial intelligence within digital twins as well as the 

modeling approaches pursued in existing work. 

Lim et al. [13] survey state-of-the-art digital twin techniques, sampling exclusively journal articles. Their review focuses on the lifecycle 

stages of a DT system, positioning past research work by lifecycle stage. Further, the authors identify the integration of big data and digital 

twins as a future perspective for DT research, stating that the combination can improve decision-making support and improve the quality of 

simulations within the DT. Bartsch et al. [10] have conducted a literature review on the application of artificial intelligence methods in 

digital twins for additive manufacturing. They survey a small set of papers specific to digital twins in additive manufacturing as well as a 

separate set of papers focusing on artificial intelligence in additive manufacturing. The authors state that there is a need for the integration of 

AI methods with digital twins, however, their analysis does not connect the two research areas. 

The previously given definition of a digital twin by Kritzinger et al. [11] is aligned with the definition by Grieves [14], who first 

mentioned digital twins. Grieves states that a digital twin requires a physical system, a virtual counterpart, and a two-way connection between 

them. Additionally, his definition highlights the real-time application scenario as paramount, as digital twins provide the most value when 

applied in a real environment, making an impact on a live system, rather than being applied in a lab setting on synthetic data. Fig. 1 shows a 

schematic model of a digital twin, adapted from Grieves [15], with the addition of an AI component, showing the bidirectional information 

flow between the DT and the real-world system. The real-world system, which is the physical representation, contains sensors such as a 

temperature sensor and actors, which are active components that the DT can control, such as a ventilation system. The AI component is a part 

of the digital twin, which is a virtual representation of the physical system. The AI component fulfills predictive tasks, such as performing a 

forecast based on real-time temperature data. The digital twin has additional capabilities, such as data analysis, decision-making, and scenario 

simulation, which depend on the use case and are summarized in the figure as DT Capabilities. The physical and virtual representations are 

bidirectionally connected, where the virtual-to-physical connection represents a feedback loop from the digital twin, which sends feedback to 

the physical system based on its internal processing and decision-making, while the physical-to-virtual connection is the data stream supplying 

the DT based on measurements from the real-world system. 

 

 

 

/ig. 1. Schematic model of a digital twin with an AI component. 

 

 

/ig. 2. Literature search process. 
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In this paper, AI is used as an overarching term describing the research field, which encapsulates machine learning and deep 

learning (DL). Deep learning is a subfield of artificial intelligence, where, following the definition of LeCun et al. [16], computational models 

learn representations of data with multiple levels of abstraction. In practice, deep learning uses different types of neural networks in 

combination with non-linear activation functions to pursue different tasks, such as regression or classification. Reinforcement learning (RL) is 

a process where an agent learns to solve a problem by trial-and-error [17], which is typically encountered in optimization scenarios. AI 

algorithms are often black-box models which are not inherently understandable for the user. The field of explainable AI is concerned with the 

interpretation of AI models for human users. 

Feedforward neural networks are the foundational model architecture of deep learning. They have been used in practice since the inception 

of the backpropagation algorithm [18], allowing them to learn complex, nonlinear problems. Convolutional neural networks (CNNs) [19] are a 

special type of neural networks, that subsample the input data with spatial or temporal convolutions, allowing them to capture more complex 

relations in, e.g., images. Long short-term memory networks (LSTMs) [7] correspond to recurrent neural network architectures, able to capture 

temporal dependencies within data, often used for forecasting tasks. 

Traditional machine learning techniques rely on different techniques, that depend on the task to be solved. Random forest [20] is an 

approach that combines decision trees with bagging and random subspace sampling for classification or regression. The support vector 

machine (SVM) [21] is a traditional machine learning method relying on maximum-margin hyperplanes for classification, which can also be 

used for regression. 

Reinforcement learning tackles optimization problems, where an agent that interacts with a defined environment must find an optimal 

solution to the given problem based on a cost function. RL can be combined with deep learning, which is called deep reinforcement learning 

(DRL). Deep Q Learning [22] is an approach used in deep reinforcement learning where a deep neural network receiving high dimensional 

data is used to train an RL agent. 

 

3. Methodology 

 

This paper follows the systematic literature review methodology, as specified in the guidelines by Kitchenham et al. [23]. The search 

process followed is visualized in Fig. 2. The literature search was conducted in the scientific databases IEEEXplore,1 Scopus,2 and Web of 

Science.3 Scopus and Web of Science were selected, as they provide a large collection of articles from the field of computer and systems 

sciences. Both Scopus and Web of Science index the publishers Springer, ACM, Wiley, and Taylor & Francis; Due to this, the publishers have 

not been queried separately. IEEEXplore was included in the search since it is a more specific database focused on technology and 

engineering. Google Scholar was excluded from our search, as it indexes articles that are not peer-reviewed. Each database was searched with 

the same parameters, limiting the field to computer science, the publication year between 2002 and 2022 as well as the publication type to 

journal and conference papers. The publication year was limited until 2022 to guarantee that no newly published papers were indexed 

anymore, as the literature search was conducted in August 2023. 

Table 1 

Inclusion criteria. 

Criterion Description

 

Publication year: 2002–2022 To limit publications between the year of the initial proposal of DT and the last 

full year 

Language: English To ensure comprehension 

Journal or conference paper To include high quality, peer-reviewed publications 

Publication available as a pdf To review the contents of the publication 

Primary study To restrict the search to original work 

Main focus on the use of AI/ML 

methods within a digital twin 

To limit the search to papers focusing on digital twins that employ 

AI/ML methods 

http://www.ijsrem.com/


          
 International Journal of Scientific Research in Engineering and Management (IJSREM) 

               Volume: 09 Issue: 05 | May - 2025                              SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                                       |        Page 4  
 

Study depth Completed research work 

 

 

Table 2 

Characteristics extracted from each relevant paper. 

Characteristic Exemplary values 

 

ML algorithm LSTM, kNN, CNN, SVM 

Algorithm tested Yes, No 

ML task Classification, Regression, Forecasting 

Explainable Yes, No 

Feedback loop Yes, No 

DT represents Object(s) or process(es) represented 

Application domain Manufacturing, Energy, Healthcare 

Task of the AI-DT system Defect detection, process optimization 

Data source of the DT Theoretical, Synthetic data, Real data 

Conceptualization of the DT Conceptual model, Workflow, Framework 

Human in the loop Yes (including responsibility), No 

 

 

The choice of search parameters is elaborated in the description of the inclusion criteria in Table 1. The search string used for the query over 

title, abstract, and keywords is the following: 

(‘‘Machine Learning’’ OR ‘‘Artificial Intelligence’’ OR ‘‘Deep Learning’’) AND 

(‘‘Digital Twin’’ OR ‘‘Digital Shadow’’) 

The string consists of two parts, which are linked with a logical AND operation. The first part ensures that a keyword related to artificial 

intelligence is present, which can be machine learning, artificial intelligence, or deep learning. The second part of the query limits the search to 

papers also containing either digital twin or digital shadow. This ensures that articles terming their solution a digital shadow are included in 

the analysis. Overall, the query employed is broad, including papers from any domain, that mention artificial intelligence and digital twins. 

The search resulted in a total of 2421 papers from the combined search of the databases, which was reduced to 1708 studies after removing 

duplicates. These articles were filtered based on the inclusion criteria listed in Table 1, with two authors assessing each paper to increase 

objectivity. The paper inclusion process was done in an iterative way until reaching consensus among the authors. Studies that were 

considered immature by the authors were excluded, as we are focusing on completed research work. This resulted in a final set of 149 

articles, which fulfilled the inclusion criteria and are therefore relevant to the topic of artificial intelligence in digital twins. 

This paper investigates the following research questions: 

• RQ1: How can an artificial intelligence component improve the processing functionality of a digital twin regarding its tasks? 

• RQ2: Which modeling approaches are used for digital twins employing artificial intelligence in the literature? 

• RQ3: Are digital twins with artificial intelligence components demonstrating a bidirectional connection between physical and virtual 

representations? 

The first research question (RQ1) is concerned with the overall integration of AI within digital twins regarding the functionality of the 

twin. The goal of this question is to investigate, which tasks the AI component fulfills and which types of algorithms are commonly 

implemented to improve the processing functionality. (RQ2) focuses on the modeling approach of digital twins with an AI component, aiming 

to extract which model-based representations are typically chosen. The last research question (RQ3) examines whether the proposed digital 

twins implement the characteristic bidirectional connections between virtual and physical systems. 

To address the research questions, multiple characteristics were extracted from each of the relevant articles, as shown in Table 2. The 

characteristics are divided into two categories, one focusing on the AI component and its ML algorithms, the second describing the digital 

twin and its properties. Table 2 describes each characteristic with example values, while an exhaustive list of values is presented in Section 4. 

ML algorithm describes the algorithm or a set of algorithms that were used in a paper. In the case of neural networks, different 

architectures of the same network type were summarized with the network type, such as LSTM, CNN, or Neural Network. The characteristic 

Algorithm tested can take the values Yes and No, describing whether the paper demonstrated an evaluation of the method, meaning that its 

performance was tested on a dataset. The ML task is divided into the elementary problem types that are 
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Fig. 3. Histogram of publication years. 

 

 

 

encountered in machine learning, such as classification, numeric regression, forecasting of sequential data, or outlier detection. We further 

categorize each ML algorithm as either Explainable or Non-Explainable based on its inherent explainability. 

The characteristic Feedback loop states whether a given research study demonstrates that its proposal for a digital twin has a feedback loop 

to the physical system. This characteristic takes the value No for the studies that only show a visionary concept of a feedback loop. The object 

or process that is represented by the digital twin is described with the characteristic DT represents, which can also take multiple values when a 

paper proposes DTs of multiple objects or processes. The Application domain characterizes the business domain that the digital twin was 

applied in. The characteristic Task of the AI-DT system shows which task the system was built for, which could be, for example, automatic 

path planning or anomaly detection. This characteristic is based on the application domain and provides detail from a business-oriented point 

of view, different from the technically-focused ML task. The type of data that the system is using is described by Data source of the DT, which 

can take the values Theoretical, where the proposed AI-DT system is not tested with any data, Synthetic data, which is artificially generated 

data, Real data, which is historic data stemming from a real system, or Live data, which is streamed, real-time data from a real system. 

Conceptualization of the DT describes the modeling approach that was used to present the proposed digital twin, and it includes the 

following approaches: Schematic model, a high-level schematic diagram of the DT system, which does not follow any modeling languages; 

Workflow, a textual or graphical description of a temporally ordered procedure for the usage of the model; Framework, a combination of a 

workflow and a schematic model; System architecture, an overview of the components of the system showing their interactions and structure; 

Conceptual model, a structured diagram of system concepts with clear relations and cardinalities between them following a modeling language 

such as Unified Modeling Language (UML), Business Process Modeling Notation (BPMN), or other. To extract this characteristic, the 

proposed models were classified based on the definitions given in this paragraph. When differing definitions for modeling approaches are used 

in the papers, we follow the definitions given in this paragraph. Lastly, the characteristic Human in the loop states whether a human plays an 

active role within the AI-DT system, and if there is one, which role the human takes on. 

 

4. Results 

 

This section outlines the results of the literature search, aggregating the extracted characteristics from the final set of 149 relevant articles. 

For characteristics that can take multiple values for a single study, namely ML algorithm, ML Task, and DT represents, studies were counted 

once for each of the values, leading to a higher absolute number of occurrences than the total number of relevant papers when evaluating these 

characteristics. Fig. 3 shows the distribution of publication years of the found studies. The first relevant paper about AI-DT included in our 

analysis was published in 2018 [24], with the subsequent years showing an increase in popularity. In 2022, 88 relevant papers were published, 

more than double compared to 2021. 

Fig. 4 highlights the imbalance in the distributions of the three Yes/No characteristics that we extracted from each paper. 133 papers 

(89.3%) evaluate their algorithms, while 16 papers only conduct theoretical research, not evaluating their proposals. This shows that research 

on AI in DTs is typically evaluated in practice and not only proposed on a theoretical basis, while theoretical papers proposing new concepts 

represent a smaller portion of the overall research. 

141 studies (94.6%) do not describe a DT architecture that includes a human as a component of the system. Of the studies that include a 

human, different roles are taken on: in the domain of healthcare, Tai et al. [25] and Gupta et al. [26] propose a DT that has a doctor in the 

loop, which is a common use-case where expert knowledge is beneficial for system performance. Latif et al. [27] introduce a framework 

where a production manager receives recommendations from the DT to improve an assembly process.  

 

http://www.ijsrem.com/
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/ig. 4. Imbalanced distribution of studies that tested their algorithms, had a human in the loop, and demonstrated a feedback loop 

from the virtual system to the physical system. 

 

 

/ig. 5. Histogram of algorithm types. 

 

 

 

et al. [28] propose a theoretical model where a human operator collaborates with a robot in a production process. A similar proposal is made by 

Gallala et al. [29] where an operator works with a robot in a digital twin environment. Pires et al. [30] also introduce a model where an 

operator interacts with a digital twin of an assembly line with the goal of optimizing productivity. Barricelli et al. [31] propose a fitness 

digital twin, where a fitness coach, acting as a rule editor, interacts with the DT environment to support the decision-making process. Um et al. 

[24] utilize smart glasses, integrating the user with a virtual reality environment, serving as the DT. 

A total of 138 articles (92.6%) do not clearly demonstrate a feedback loop from the virtual system to the physical system. Overall, only a 

few papers [32–34] clearly show the effect of their feedback loop, while some papers [35–37] show a visionary feedback loop but do not 

demonstrate a concrete application of their feedback loop. This highlights that many papers propose a digital twin that does not integrate a 

virtual-to-physical feedback loop. In these cases, the proposed models do not fulfill a key criterion of a digital twin. 

 

4.1. Machine learning methods used in digital twins 

 

To categorize the ML methods used by the relevant studies, every algorithm was labeled as either Deep Learning, Reinforcement Learning 

or Traditional. The histogram in Fig. 5 shows the number of publications utilizing each of the techniques. Studies that utilized algorithms from 

multiple categories were counted once for each category that was used. 3 studies (2.01%) only used preprocessing techniques such as PCA, 

which were classified as None. Deep learning is the most popular machine learning technique, with 79 papers (53.0%) integrating DL with a 

DT. 44 papers (29.5%) used an AI component based on reinforcement learning, while 41 papers (27.5%) employed traditional machine 

learning methods. This confirms the popularity of using deep learning approaches to solve complex problems, which has recently been seen in 

multiple domains [16]. Despite the popularity of deep learning, a considerable number of papers base their research on reinforcement learning 

and traditional ML methods. Reinforcement learning is designed to tackle different problems than deep learning, which is a possible 

explanation for their co-existence. Traditional ML methods are often [38–40] used alongside deep learning approaches to compare their 

performance for the given task of the AI component. 

In the 149 studies, a total of 217 ML algorithms were employed, with an average of 1.46 and a median of 1.0 algorithms per article. A total 

of 36 studies used more than one algorithm, showing that most articles do not make a comparison of different ML 
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/ig. 6. Histogram of ML algorithms. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

/ig. 7. AI algorithms by testing rate. 

 

 

 

solutions. Fig. 6 shows the distribution of ML algorithms, colored by algorithm type. All algorithms that had less than 5 occurrences across all 

papers were grouped and labeled as Other to avoid a long-tailed distribution. Most of the algorithms in Other belong to traditional ML 

methods, with only a small number of other RL and DL methods. The most popular methods are three deep learning methods, namely 

convolutional neural networks (CNNs) (29 papers, 13.4%), feedforward neural networks (26 papers, 12.0%), and long short-term memory 

networks (LSTM) (23 papers, 10.6%). These are popular neural network architectures suited for different machine learning tasks. Multiple 

papers utilize deep reinforcement learning (DRL) (21 papers, 9.68%) and deep Q learning (11 papers, 5.07%). The two most popular 

traditional ML algorithms are random forest (10 papers, 4.61%), and the support vector machine (SVM) (10 papers, 4.61%). Fig. 7 gives 

detailed insights on the correlation between AI algorithms and their testing rate on a by-algorithm basis. All algorithms have a testing rate of 

80.00% or above, with gradient boosting having the lowest testing rate. Further, Deep Q learning, GRU networks, genetic algorithms, 

XGBoost, and kNN have a testing rate of 100%. All other algorithms range between 85.71% and 92.31% testing rate. This confirms the 

statement that the majority of papers test their algorithms. When grouping and normalizing by ML algorithm type, all three groups (DL, RL, 

traditional) show a high percentage of papers that tested their approaches, between 90.00 and 93.33%. This demonstrates that most researchers 

proposing an AI-DT system also test their solution and show the performance of the AI component regarding its task with a quantitative 

analysis. Performance evaluation is task-dependent and individual to each study, therefore, a comparative analysis of algorithmic performance 

between studies is not conducted. 

4.2. Objects represented by digital twins 

 

The extracted characteristic DT represents demonstrates which object or process was virtually represented by a digital twin for each 

publication. As shown in Fig. 8, which does not differentiate between object and process, the majority of papers modeled a single 

unique type of object (145 studies, 97.3%). Two studies (1.34%) modeled two types of object: Li et al. [41] propose a digital twin 

system of vehicles and infrastructure for resource optimization. Miao and Zhang [42] use a DT of an unmanned aerial vehicle with a DT of a 

simulation environment to optimize path planning. Two articles modeled three types of objects: Li et al. [43] model an edge network that 

consists of mobile terminal users, an unmanned aerial vehicle, and resource devices. Wang et al. [44] model digital twins of humans, cars, and 

traffic with the goal of vehicle trajectory optimization. Overall, Fig. 8 underlines that most research in the field is focused on applying a digital 

twin of a single object type, which is not part of a larger system of systems where digital twins of multiple types of objects interact. 

Aggregating multiple digital twins, with communication between them, would allow for modeling more complex systems, than by modeling a 

single object. 

Fig. 9 shows that 127 publications (85.2%) model an object or multiple objects, while only 22 publications (14.8%) represent a process 

with their proposed digital twin. None of the publications model both a process and an object. Process modeling is common in the domain of 

manufacturing, which is highlighted in Fig. 10, which correlates the application domain and the represented object or process. 

Manufacturing models processes in 39.22% of the publications, while all other domains have either no publications modeling processes or 

8.33%, in the case of healthcare and robotics, demonstrating that most domains focus on modeling objects. In healthcare, Chen et al. [45] 

model COVID-19 disease progression as a process, while in robotics Shi et al. [28] model a human– robot-collaboration process. A possible 

reason for this is that processes in these domains are typically not formally modeled and are, therefore, difficult to translate into a digital twin. 

In manufacturing, on the other hand, production processes, such as an assembly process, are well structured and have underlying process 

models, making a digital twin of such a process more feasible. 

http://www.ijsrem.com/
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/ig. 8. Number of unique objects represented in each DT. 

 

 

/ig. 9. Number of publications modeling objects and processes. 

 

 

/ig. 10. Publications modeling objects and processes by domain. 

 

 

 

4.3. Tasks of AI-DT systems 

 

The tasks of the AI component, and with it, the ML method, can differ depending on the use-case of the DT. Fig. 11 shows the underlying 

ML tasks that were identified based on the results of the literature search. Papers that pursued multiple tasks within their DT, such as Fahim 

et al. [5] and Chhetri et al. [46], were counted once for each task, leading to a total of 155 tasks from 149 unique papers. The most 

common tasks are optimization (51 times, 32.9%), classification (49 times, 31.6%), and regression (34 times, 21.9%). Less common are 

forecasting (15 times, 9.7%), outlier detection (3 times, 1.9%), and clustering (2 times, 1.3%). Additionally, one article [47], which is not 

included in the histogram, did not pursue any specific ML task and instead proposed a theoretical architecture for a network digital twin 

in which multiple different ML tasks can be carried out. It can be argued that clustering and outlier detection are uncommonly seen tasks 

as they belong to the domain of unsupervised learning, while the other tasks belong to supervised learning and reinforcement learning. This 

shows that most applications of AI within DT work on 
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/ig. 11. Distribution of ML tasks. 

 

 

/ig. 12. Types of ML algorithms implemented by application domain. 

 

 

 

supervised learning with labeled data or reinforcement learning in an agent-environment scenario. Most optimization tasks are solved with 

reinforcement learning, while classification, regression, and forecasting belong to supervised learning. The task classification was assigned to 

studies that performed classification on tabular data, images, text, or temporal data, regardless of the input data type, which offers an 

explanation for the high number of studies working on classification. 

The task of the ML component is connected to the overall task of the AI-DT system. This overall task varies depending on the use case, 

and the domain. In the relevant papers, a total of 98 unique tasks were identified, with the most common being anomaly detection (12 papers, 

8.05%), network performance optimization (9 papers, 6.04%), and production process optimization (7 papers, 4.70%). These findings prove 

that digital twin systems that integrate an AI component have a wide range of application cases in different scenarios. 

 

4.4. Application cases of deep learning, reinforcement learning, and traditional machine learning 

 

Fig. 12 shows the relation between algorithm type and application domain. The heatmap shows percentages that are normalized by the 

number of papers per application domain. Reinforcement learning methods are primarily applied in a subset of all domains, namely 

automotive, networking, transportation, robotics, manufacturing, and physics. This demonstrates that different domains are facing different 

problem types, which require different types of ML algorithms. Aeronautics and agriculture are some of the domains where none of the 

articles applied reinforcement learning. The applicability of reinforcement learning highly depends on the problem being tackled and the cost 

of negative outcomes. Both automotive and networking commonly employ reinforcement learning, with over 40% of the papers relying on the 

technique. This can be explained by the simulation capabilities of a digital twin, which allow for solving complex optimization problems such 

as automatic path planning for cars or network resource optimization. In agriculture, manufacturing, and physics, traditional ML approaches 

are the most dominant solutions, while deep learning is more common for most other domains. 

Fig. 13 visualizes the differences between deep learning, reinforcement learning, and traditional approaches, regarding the data source of 

the DT. The graph shows percentages of publications normalized by the ML algorithm type. Both traditional approaches and DL show a similar 

distribution, with data stemming from a real system being the most common data source, followed by synthetic data, and a small percentage 

of theoretical approaches and approaches relying on live data. RL shows different results,  
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/ig. 13. Types of AI algorithms and data source of the DT. 

 

 

/ig. 14. Relation of the data source of the DT and presence of a feedback loop. 

 

 

 

papers utilizing live data, a lower percentage of papers using real data, and a higher percentage using synthetic data. This can be attributed to 

the fact that RL does not rely on datasets, but requires an environment to operate, which is often synthetically created, rather than using the 

specification of a real system. Overall, RL relies on less real-world data than DL and traditional approaches, showing that the application cases 

of RL in digital twins are less mature. 

Of the 149 relevant papers, only one paper [48] proposes a digital twin operating with live data that shows both a physical- to-virtual 

and a virtual-to-physical connection, demonstrating a clear feedback loop. The authors propose a digital twin for iron reverse flotation, a 

chemical production process. They train their AI component based on historical data and integrate their model with real-time data from a live 

system, observing changes in productivity after switching to the digital twin-based system. Their feedback loop dynamically adapts the dosage 

used in the production system, optimizing real-time productivity. In total, 7.38% of the studies (11 papers) present a feedback loop from the 

digital twin to the physical system. Additionally, only 2.68% (4 papers) of the analyzed publications work with live data stemming from a real 

system, which allows for online training of an AI component and decision-making based on real-time data. Recalling the criteria that define a 

digital twin, as given by Grieves [14], real-time data, and a bidirectional data flow between virtual and physical systems are essential parts of a 

digital twin. Fig. 14 clearly demonstrates a gap in current research where solutions are termed ‘‘digital twin’’, but do not fulfill the 

requirements for a digital twin. 

 

4.5. Conceptualization approaches for digital twins 

 

Every paper included in our analysis was categorized by the conceptualization approach of the digital twin proposed. When no clear model 

was shown, this category takes the value None, which was the case for 3 studies (2.01%), as shown in Fig. 15. 53 articles (35.6%) show a 

schematic model of a digital twin, which is a model on a high abstraction level. The second most common approach is a framework, which 

was used by 51 papers (34.2%). System architectures, which are more detailed models, were proposed in 30 publications (20.1%), while 12 

papers (8.05%) conceptualized their DT with a workflow. In the criteria we used, conceptual model was another possibility for 

conceptualization approaches, however, none of the found papers showed a conceptual model. Overall, it can be stated that most of the 

models shown in the literature on AI-DT systems are immature, providing a shallow overview of the system, often only schematically 

describing the proposed solution. 

Fig. 16 presents the relation between algorithm types and the conceptualization approach of the digital twin. The plot is normalized by the 

conceptualization approach to show the relative differences between them. Deep learning is the most common approach, with between 50.85% 

and 53.33% for all types of conceptualization except for system architectures. System architectures 
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/ig. 16. Conceptualization of digital twins relating to types of AI algorithms. 

 

 

 

show the highest percentage of studies utilizing reinforcement learning, with 43.33%. Workflows show a significantly lower percentage of 

papers using reinforcement learning, with only 13.33%. A possible reason is that reinforcement learning requires a clear specification of 

an environment, an actor, and a reward system, which aligns with the requirements to design a system architecture, while a workflow can be 

less specific. Workflows show considerably more usage of traditional ML algorithms (33.33%) than the other approaches of conceptualization 

(23.33%–25.45%), which can be attributed to the fact that workflows have a relatively lower number of papers implementing reinforcement 

learning. 

 

4.6. Explainability of an AI-DT system 

 

Model explainability in the context of AI-DT systems refers to the self-explanatory nature of a digital twin model, where more detailed 

models are more explainable, and higher-level models are less explainable. As seen in Fig. 15, most papers use high- level modeling 

approaches, that only provide little explainability. This aligns with the results regarding algorithmic explainability, showing that overall, most 

AI-DT systems do not consider explainability, either by model explainability or algorithmic explainability. Algorithmic explainability refers 

to an ML algorithm being a white-box algorithm, where predictions can be understood by a domain expert, while non-explainable 

algorithms, such as neural networks, are black-box solutions. Some algorithms can potentially be explainable, depending on the use case. 

Fig. 17 provides a histogram of the number of studies that have used explainable algorithms. We classified the algorithms as either 

Explainable or Non-explainable. Examples of explainable algorithms are decision 

. 
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/ig. 17. Histogram of algorithm explainability across the proposed DTs. 

 

 

 

 

 

trees or linear regression models, while non-explainable networks are for convolutional neural networks or recurrent neural networks. 59 

(27.19%) of the used algorithms are explainable, while 157 (72.4%) are less explainable. This demonstrates that algorithmic explainability is 

an often overlooked factor which is crucial for a human operator to understand the predictions of the AI component. 

 

5. Discussion 

 

Low number of studies clearly demonstrating a feedback loop and using live data 

We identified multiple gaps in the literature at the intersection of artificial intelligence and digital twins based on the results of this 

literature review. Firstly, most papers in the field do not define nor demonstrate a feedback loop, i.e. the virtual-to-physical connection, that 

utilizes the output of the digital twin. This is one of the main criteria that define a digital twin [14] since it allows the virtual system to not only 

simulate but also influence the real-world system. Additionally, most studies that were included in our search did not base their system on real-

time data, which is another key capability of a digital twin. This is aligned with the findings of a recent systematic literature review by Wooley 

et al. [49], who investigate the difference between simulations and digital twins, while not specifically searching only for studies in the field of 

AI-DT. The authors state that an issue common to many studies is that traditional simulations are termed digital twins, despite not defining or 

demonstrating real-time data synchronization between virtual and physical systems. We made similar observations, with many articles 

showing a feedback loop in schematic diagrams, but not providing details on it. In our results, only one paper presents a digital twin with an 

AI component, that operates with live data and clearly demonstrates a feedback loop [48]. 

Low number of proposed digital twins with a human in the loop 

A small subset of the analyzed papers integrated a human as a key part of the AI-DT system. It has been shown that human-in-the- loop 

machine learning can improve both model performance and explainability [50], two desirable traits for an AI-DT system. This is a possibility 

for future research work to expand upon, by either improving past research or proposing new model architectures that integrate a human. In 

the set of papers found in the literature search where a human interacted with the DT system, the human took different roles, such as operator, 

doctor, rule editor, or production manager. The current state of the art lacks a clear definition of possible roles for humans within an AI-DT 

system, which is applicable across different domains, providing human knowledge at different points in the system. Human-in-the-loop 

systems are key for Industry 5.0, which is often characterized as human-centric in the literature [51]. 

Lack of digital twins modeling multiple objects 

The majority of papers included in our review propose a digital twin for a single type of object. We found a research gap, with only 

a small minority of analyzed studies combining digital twins of multiple object types. The next logical step is connecting multiple digital twins 

in a system of systems-based approach. Tao et al. [52] have suggested hierarchical levels of digital twins in manufacturing, where a system of 

systems is the highest level of abstraction. On top of the requirements for building digital twins, interoperability, data synchronicity, and 

communication [53] between the DTs need to be considered to design a system of systems with multiple DTs. 

Processes are modeled almost exclusively in manufacturing 

The digital twins in the surveyed papers typically model objects, with a smaller portion modeling processes. We found that processes are 

almost exclusively modeled in the domain of manufacturing. This is related to the emergence of Industry 4.0, which has accelerated the 

adoption of digital twins in the manufacturing sector. By modeling processes in other application domains with an AI-DT system, future work 

can address this gap. Some domains, however, may naturally be based on fewer processes and more objects and are, therefore, more inclined 

to replicate these objects. A prime example of this is construction, where the objects of interest are tunnels [54], buildings [55], or wind 

turbines [36]. Modeling the process of constructing a structure is less common, which also reflects in our data, although digital twins of the 
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construction phase, that do not employ ML techniques, have been proposed [56]. 

Reinforcement learning is not used in some application domains 

Reinforcement learning in digital twins has seen considerable attention in some domains, such as automotive, networking, and 

transportation, where the digital twin is used as a simulation environment for the RL agent. However, in other domains, namely aeronautics, 

agriculture, construction, and healthcare, none of the studies analyzed in our review make use of reinforcement learning. Due to its nature, 

reinforcement learning is suited to solve optimization problems that have different problem settings from classification or regression tasks. A 

digital twin can support a reinforcement learning solution by providing an accurate, low-cost simulation environment, while the RL benefits 

the DT by learning to solve an optimization problem. 

Reinforcement learning-based studies do not work with live data 

We found that none of the papers applying reinforcement learning within digital twins use real-time data for their digital twin. 

Additionally, past work based on RL methods uses synthetic data more often than real data. This confirms that digital twins using RL are often 

proposed in a lab setting with synthetic data. Considering the definitions of digital twin, digital shadow, and digital model given by Jones et 

al. [1], a digital twin without live data should instead be termed a digital model. A direction for future research is to investigate how well 

digital twins using RL integrate with a real-world, real-time data setting compared to the synthetic lab setting. 

Most modeling approaches are high-level and do not follow modeling languages 

Digital twins in the field of AI-DT are often modeled with schematic models, without following conventional modeling approaches. The 

majority of proposed models display a high-level overview of the digital twin, i.e., providing a shallow level of detail. More detailed models, 

such as a system architecture, are shown less commonly, while none of the found papers describe a conceptual model following a modeling 

language. This showcases the need for more detailed modeling approaches in the AI-DT community, by moving away from schematic models 

to detailed, in-depth models of the proposed system, which would contribute to a better understanding of the AI-DT system and the ability to 

increase the efficiency of its design, development, and maintenance. 

Lack of model explainability and algorithmic explainability 

Most of the articles taken into account in this review do not focus on explainability, both on a model level regarding the digital 

twin and on the algorithmic level of the AI component. Since digital twins are systems that are designed for real-world scenarios, making both 

explainability on a model level and on an algorithm level highly desirable properties. To achieve model-level explainability, more detailed, in-

depth modeling approaches can be used to describe the proposed digital twins. As deep learning models are inherently not explainable, using 

post-hoc explainability methods in combination with them can provide algorithmic explanations while also maintaining predictive 

performance. Alternatively, white-box algorithms, such as decision trees, can be integrated with a DT to achieve the same goal. However, the 

explanations from post-hoc methods differ from white-box explanations, often adding uncertainty [57]. 

Variety of tasks and machine learning algorithms used in digital twins 

In the analyzed studies, deep learning, reinforcement learning, and traditional machine learning algorithms see consistent usage. This 

highlights that the problems tackled by digital twins are diverse and require the use of different ML algorithms. From our analysis, it becomes 

clear that most digital twins are proposed for a unique type of problem, while only a few problems are common across multiple studies. The 

diversity of problems that digital twins are designed for is aligned with the fact that the AI component in digital twins pursues different tasks, 

such as optimization, classification, or regression. Overall, AI in digital twins typically works with supervised learning or reinforcement 

learning, and only rarely with unsupervised learning. A possible reason for this is that digital twins mainly work with labeled data while being 

less like to perform exploratory tasks on unlabeled data. Additionally, most publications in the field test their algorithms’ performance, 

providing concrete evidence of their predictive power. 

RQ1: How can an artificial intelligence component improve the processing functionality of a digital twin regarding its 

tasks? 

In this review, we found that AI components can fulfill a variety of tasks within a digital twin. On the algorithmic level, tasks such as 

optimization, classification, and regression are commonly seen. Digital twins with an AI component can tackle a broader range of problems, 

which require predictive functionality, with most proposed twins focusing on a unique problem. An example of a problem that can be tackled 

by integrating AI with the DT is the forecast of temperatures in a building, allowing adaptive control of heating and ventilation. Depending 

on the task of the DT, the AI component fulfills its role as a predictive algorithm, relying on the data of the DT to make predictions. 

Further, without an AI component, certain tasks, such as forecasting of temporal data streams, could not be tackled by a DT on its own, 

showing that the integration of AI with DT opens the possibility to approach new problem types. It became clear that in the literature, a 

number of different ML approaches are used for the AI component. This demonstrates that different ML approaches are suited for different 

tasks, and due to the given variety of tasks, a similar variety in algorithms can be observed. 

RQ2: Which modeling approaches are used for digital twins employing artificial intelligence in the literature? 

AI-DT systems are commonly modeled with high-level schematic models. Most research work in the field focuses on the implementation 

and evaluation of the AI component, with little focus being given to the modeling part of the DT. Conceptual models are not present in the 

literature analyzed in this review, which proves that the field is in need of more detailed, in-depth models for 

digital twins integrating an AI component. Overall, about 20% of the studies provide a system architecture for the proposed digital twin, which 

is modeling the DT at a lower level, giving more attention to detail and more clearly specifying the functionality of the system. 

RQ3: Are digital twins with artificial intelligence components demonstrating a bidirectional connection between 

physical and virtual representations? 

The bidirectional connection between physical and virtual representation consists of two parts: Firstly, the physical-to-virtual connection, 

which is the data stream that supplies the digital twin; Secondly, the virtual-to-physical connection, which is the feedback loop from the DT to 

the physical system. Most publications in the field work with historical data stemming from a real system, while only a small fraction works 

with live data, providing an automated data flow between physical and virtual systems. This illustrates that, although most proposed DTs are 
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based on real data, the physical-to-virtual connection still follows a manual procedure. The virtual-to-physical connection is demonstrated by a 

small number of papers, where a feedback loop to the real system is shown. Although articles commonly show a visionary feedback loop in 

schematic models, for most articles, this feedback loop is not implemented in practice, and a manual information flow between digital twin 

and real-world system is necessary. In summary, the majority of digital twins presented in the analyzed papers either lacked an implementation 

of the physical-to-virtual connection or did not demonstrate a virtual-to-physical connection. 

 

6. Conclusion 

 

The convergence of Artificial Intelligence and Digital Twin technologies represents a transformative shift in how physical systems are 

designed, monitored, and optimized across various domains. This review has explored the foundational principles, AI methodologies, and 

diverse application areas of AI-powered digital twins, emphasizing their potential to drive efficiency, resilience, and autonomy in complex 

systems. While significant progress has been made, key challenges remain—particularly in ensuring data integrity, managing computational 

complexity, achieving interoperability, and maintaining security and privacy. Addressing these challenges will require continued 

interdisciplinary collaboration and innovation in AI algorithms, system architectures, and data governance strategies. Looking ahead, the 

evolution of AI-powered digital twins will play a critical role in shaping the future of smart industries, personalized healthcare, sustainable 

cities, and beyond. As research in this field matures, AI-driven digital twins are poised to become central enablers of intelligent, adaptive, and 

context-aware systems in the digital era. 
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