

A Comprehensive Review on Anti-Viral Drugs

Kalyani Narendra Deshpande, Dr. Aijaz Sheikh, Dr. Kailash R. Biyani

Anuradha Collage Of Pharmacy, Anuradha Nagar, Sakegaon Road, Chikhli, Dist Buldana ,Maharashtra, India 443201

Corresponding Author

Kalyani Narendra Deshpande,

Master Of Pharmacy (Quality Assurance)

Anuradha Collage Of Pharmacy, Anuradha Nagar, Sakegaon Road, Chikhli, Dist Buldana ,Maharashtra, India 443201

Email- kalyanid207@gmail.com

Abstract

Antiviral drugs constitute a vital and rapidly evolving class of medications specifically designed to treat viral infections by interfering with distinct stages of the viral life cycle, such as attachment, replication, or release, while minimizing harm to the host organism. Unlike broad-spectrum antibiotics, most antivirals exhibit high specificity for a single virus or family, reflecting the challenge of targeting intracellular pathogens. This review article provides a comprehensive overview of the current landscape of antiviral therapy, detailing classification based on mechanism of action—including entry inhibitors, polymerase/reverse transcriptase inhibitors (e.g., acyclovir, tenofovir), protease inhibitors (e.g., ritonavir, atazanavir), integrase inhibitors (e.g., dolutegravir), and neuraminidase inhibitors (e.g., oseltamivir). It highlights significant clinical successes, such as highly active antiretroviral therapy (HAART) for HIV/AIDS and direct-acting antivirals for Hepatitis C, which have transformed previously fatal diseases into manageable or curable conditions. Furthermore, the abstract addresses the primary challenges facing the field, notably the rapid emergence of drug resistance due to high viral mutation rates, the need for stringent patient adherence, and the ongoing demand for broad-spectrum agents capable of addressing emerging pandemics. The conclusion emphasizes the continuous scientific endeavor to develop more effective, less toxic, and durable antiviral strategies, underscoring their indispensable role in modern public health alongside vaccination efforts.

Keywords

Antiviral drugs, mechanism of action, viral life cycle, highly active antiretroviral therapy (HAART), HIV/AIDS, Hepatitis C virus (HCV), drug resistance, combination therapy, polymerase inhibitors, protease inhibitors, neuraminidase inhibitors, infectious diseases, pharmacology, public health, emerging viruses, treatment.

1. Introduction

Antiviral drugs constitute one of the most remarkable and rapidly evolving frontiers in modern pharmacology, representing a precise chemical arsenal engineered not to destroy microorganisms outright like many antibiotics do, but to subtly interfere with the intricate and often insidious life cycles of viruses themselves—microscopic entities that lack their own machinery for replication and must hijack the living cells of their hosts to propagate, making the development of selective inhibitors a monumental scientific hurdle that demands ingenious solutions to avoid harming the very patients they are meant to heal (1, 2).

The complexity arises from the fundamental nature of viruses, which blur the line between living entity and mere genetic information wrapped in a protein coat; they integrate themselves deeply into host cell functions, requiring

antivirals to exhibit exquisite specificity, targeting unique viral enzymes or structural proteins that are distinctly different from human cellular components (3, 4).

For instance, the revolutionary success of drugs designed to combat the human immunodeficiency virus (HIV) exemplifies this precision; highly active antiretroviral therapy (HAART) relies on a sophisticated cocktail approach, combining agents like nucleoside reverse transcriptase inhibitors (NRTIs) such as zidovudine, which mimic natural DNA building blocks to terminate the viral genome's construction, with protease inhibitors like lopinavir, which block the enzymatic cleavage necessary for assembling new, infectious viral particles, and integrase inhibitors like raltegravir, which prevent the viral DNA from merging with the host's chromosomes, thereby achieving durable suppression of viral load and transforming a once fatal diagnosis into a manageable chronic condition through relentless scientific innovation (5, 6).

This multi-pronged strategy is crucial because the rapid mutation rates of viruses, particularly RNA viruses like HIV and influenza, mean that monotherapy inevitably leads to the swift emergence of drug-resistant strains, a constant game of cat-and-mouse between viral evolution and human ingenuity that dictates the need for ongoing research into novel targets and combination therapies. We see similar triumphs and challenges in the treatment of Hepatitis C virus (HCV), where direct-acting antiviral agents (DAAs) have essentially achieved functional cures for millions globally in just a few short years, fundamentally altering the epidemiology of liver disease, again through a suite of drugs (protease, polymerase, and assembly inhibitors) that work in concert to dismantle the virus's operations with breathtaking efficiency and relatively minimal side effects compared to older, interferon-based regimens. The story is different for influenza; neuraminidase inhibitors such as oseltamivir (Tamiflu) act by preventing new virus particles from budding off from the surface of infected cells, effectively halting the spread within the host but requiring administration within the first 48 hours of symptoms to offer meaningful benefits, a window often missed in the real world of clinical practice, highlighting operational challenges that exist alongside pharmacological ones (7, 8).

More recently, the global battle against SARS-CoV-2 brought antivirals into the everyday conversation; Paxlovid, a co-packaged combination of nirmatrelvir (a protease inhibitor targeting a key viral enzyme, 3CLpro) and ritonavir (a pharmacokinetic booster that slows the breakdown of nirmatrelvir in the body, allowing it to reach therapeutic levels), has become a cornerstone of outpatient treatment for high-risk individuals, significantly reducing the likelihood of hospitalization and death, a testament to rapid drug development spurred by global crisis. The intravenous drug remdesivir, an adenosine nucleotide analog, also plays a role in inpatient settings, interfering with the viral RNA-dependent RNA polymerase to stop genome replication, illustrating the varied approaches tailored to different clinical scenarios. The persistent challenge across the board remains balancing efficacy with toxicity; since viruses are intracellular parasites, targeting their processes without collateral damage to the host remains the central dogma and the ultimate limitation of the entire class of drugs. However, the future holds promise with research focusing on pan-viral or broad-spectrum antivirals, exploring host-targeted approaches that interfere with general cellular pathways the virus needs, rather than specific viral proteins that are prone to mutation, potentially offering a more durable defense against future pandemics. Ultimately, the review of antiviral drugs reveals a fascinating tale of scientific pursuit—a continuous, critical effort to interrupt microscopic pirates with elegant chemistry, a triumph of selective targeting, combination strategies, and relentless adaptation in the face of an ever-evolving biological threat, representing an indispensable pillar of modern public health strategy that saves countless lives and continually pushes the boundaries of medical possibility (9, 10).

2. Highly Active Anti Retroviral Therapy (HAART)

Highly Active Antiretroviral Therapy (HAART), now more frequently termed simply Antiretroviral Therapy (ART) or combination ART (cART), stands as one of the most pivotal breakthroughs in modern medicine, fundamentally altering the trajectory of the HIV epidemic by transforming what was once a rapidly terminal diagnosis into a manageable chronic health condition, thereby extending and improving the lives of millions globally (Figure 1) (11, 12).

HAART Regimens	
Two or more Nucleoside Reverse Transcriptase Inhibitors (NRTI) in combination with:	<u>Regimen Type</u>
(1) A Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI)	NNRTI
(2) Ritonavir plus one or more Protease Inhibitor (PI)	Boosted PI
(3) A Protease Inhibitor (PI)	Unboosted PI
(4) An Integrase Inhibitor (II)	II
(5) Three or more NRTI containing abacavir and not including an II, PI, or NNRTI	3NRTI
(6) Three or more antiretroviral medications from at least two different categories (NRTI, PI, NNRTI, II) not meeting any other criteria	Other

Abbreviations: HAART, highly active antiretroviral therapy

Figure 1: Highly Active Antiretroviral Therapy (HAART)

The genius of HAART lies in its multi-pronged pharmacological strategy, which strategically employs a synergistic combination of several different drugs—typically three or more from various classes—each targeting a unique step in the complex, insidious life cycle of the human immunodeficiency virus within the host T-cells. This aggressive, simultaneous targeting is absolutely essential because HIV is notorious for its incredibly high mutation rate; single-drug therapies (monotherapy) invariably fail rapidly as drug-resistant viral strains quickly emerge and proliferate, rendering the treatment ineffective in short order. By hitting the virus with multiple agents at once, such as using a combination of a nucleoside reverse transcriptase inhibitor (NRTI), a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI), and often an integrase strand transfer inhibitor (INSTI), the treatment creates a much higher genetic barrier to resistance, making it astronomically difficult for the virus to spontaneously mutate enough times to evade all drugs simultaneously. The clinical success of this approach is measured primarily by achieving viral suppression, specifically reducing the viral load in the patient's bloodstream to an "undetectable" level—a crucial benchmark that not only protects the patient's immune system, allowing their CD4+ T-cell counts to rebound and restore immune function to prevent opportunistic infections, but also drastically reduces the risk of transmission to others, embodying the powerful public health mantra "Undetectable = Untransmittable" (U=U). Despite its phenomenal efficacy, HAART is not without its challenges; it is a lifelong commitment requiring strict, near-perfect adherence to the prescribed daily regimen to prevent viral rebound and the development of resistance, and while modern drug formulations are far better tolerated than earlier versions, side effects ranging from gastrointestinal discomfort and fatigue to long-term risks like bone density issues, liver toxicity, or metabolic changes can still occur and must be carefully managed through ongoing medical supervision and patient education. In essence, HAART represents a scientific triumph of strategic combination therapy over a formidable biological adversary, a cornerstone of global HIV management that has rewritten the narrative of a devastating disease, offering a blueprint for managing complex viral infections and continually striving toward simpler, safer, and ultimately, curative treatment strategies (13-15).

2.1 Drugs used in HAART

Highly Active Antiretroviral Therapy (HAART), also known as Antiretroviral Therapy (ART), is an advanced treatment strategy for HIV infection characterized by the use of multiple drug classes to effectively suppress the virus and prevent drug resistance. Each treatment regimen is carefully formulated based on specific patient criteria, including viral load, potential adverse effects, and any existing health conditions. HAART typically incorporates at least two Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and a third agent from a different drug class such as an Integrase Strand Transfer Inhibitor (INSTI), a Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI), or a Protease Inhibitor (PI) (16-17). The primary drug classes used in HAART are:

NRTIs/NtRTIs:

Serving as the cornerstone of most HAART regimens, these drugs inhibit reverse transcriptase, an enzyme crucial for HIV replication. Notable examples include abacavir, emtricitabine, lamivudine, tenofovir disoproxil fumarate, tenofovir alafenamide, and zidovudine.

INSTIs

These agents inhibit integrase, the enzyme HIV utilizes to integrate its genetic material into host DNA. INSTIs, recognized for their favorable tolerance, are often a part of first-line treatment. Examples are bictegravir, dolutegravir, elvitegravir, and raltegravir.

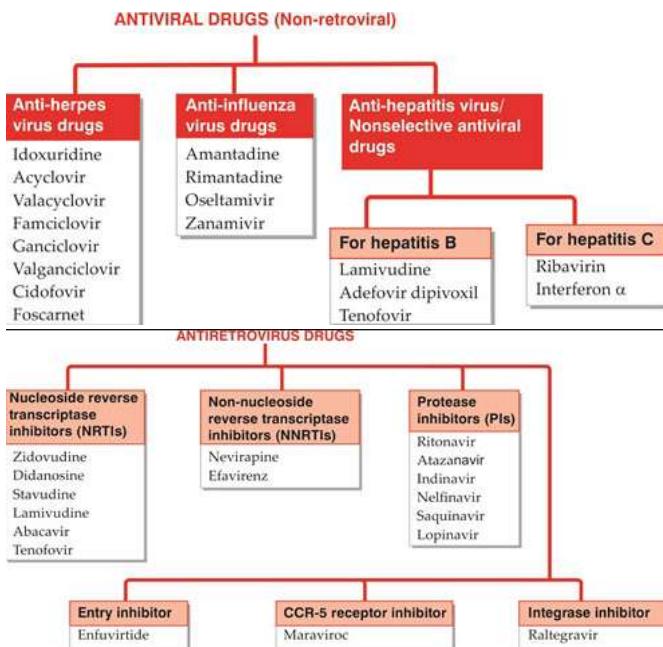
NNRTIs:

Targeting reverse transcriptase through a distinct mechanism compared to NRTIs, these medications block specific sites on the enzyme to halt its activity. Key drugs in this class are doravirine, efavirenz, etravirine, nevirapine, and rilpivirine.

PIs

By blocking the protease enzyme necessary for synthesizing new infectious viral particles, PIs are frequently administered alongside a booster like ritonavir or cobicistat to enhance their effectiveness. Examples include atazanavir, darunavir, and lopinavir/ritonavir.

Entry/Fusion Inhibitors


These drugs disrupt the early stages of the HIV life cycle by obstructing the virus's ability to attach to or permeate host cells, with key representatives being enfuvirtide and maraviroc.

Other Classes

Newer classes such as attachment inhibitors (e.g., fostemsavir) and capsid inhibitors (e.g., lenacapavir) have been introduced more recently. To facilitate treatment adherence and lessen the pill burden, many antiretroviral drugs are available in fixed-dose combinations, leading to popular regimens like Biktarvy (bictegravir, emtricitabine, and tenofovir alafenamide), Dovato (dolutegravir and lamivudine), Triumeq (dolutegravir, abacavir, and lamivudine), and Genvoya/Stribild (elvitegravir with a booster, emtricitabine, and tenofovir). The selection of HAART drugs is tailored to individual patient needs and conducted by specialized healthcare providers to ensure maximized efficacy, minimized side effects, and the management of potential drug interactions.

3. Classification of Anti Viral Drugs

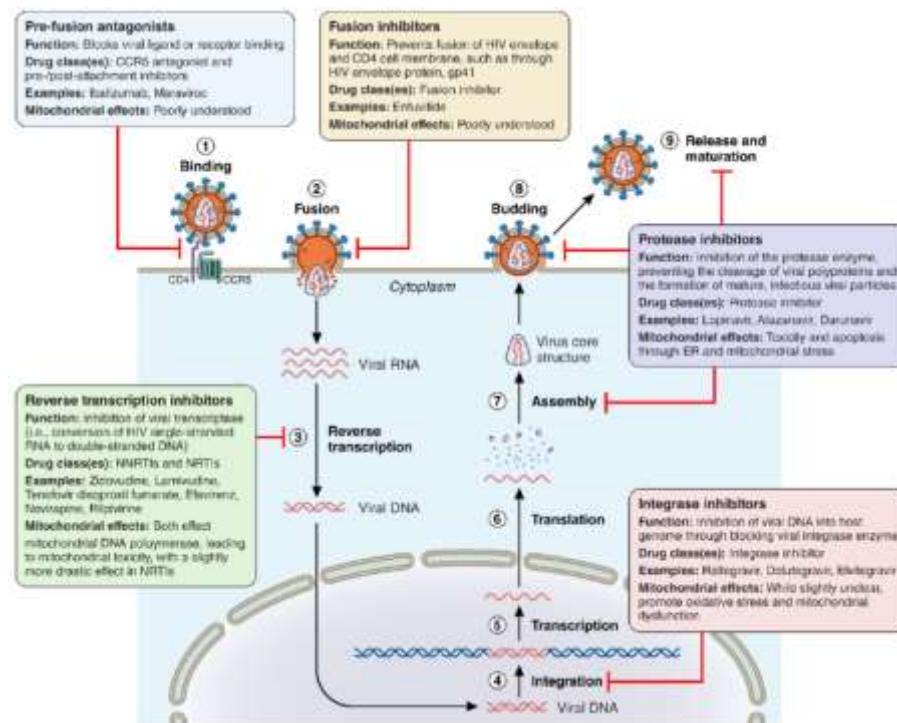

Antiviral drugs are a specialized class of medications primarily classified based on their specific mechanism of action—the precise stage of the viral life cycle they disrupt—and the type of virus they are engineered to combat. This targeted approach is vital because viruses rely heavily on host cell machinery for replication, making drug development challenging as therapies must be selective enough to inhibit viral processes without causing significant harm to the patient's cells. The largest and arguably most successful group consists of genome replication inhibitors, which essentially act as fake building blocks to prematurely terminate the synthesis of new viral DNA or RNA chains. Additionally, protease inhibitors block essential viral enzymes from cutting large polyproteins into functional components for assembly. Finally, neuraminidase inhibitors prevent new viruses from escaping the infected cell to spread further. This classification framework allows medical professionals to strategically combine agents that interfere with distinct viral operations, thus providing a highly effective, multifaceted defense against diverse viral pathogens like HIV, influenza, and herpesviruses (Figure 2) (18-20).

Figure 2: Classification of Anti Viral Drugs

4. Mechanism of Action of Anti viral Drugs

Antiviral drugs operate through highly selective mechanisms designed to exploit the unique processes of viral replication while minimizing harm to the host's cells; essentially, they disrupt the microscopic life cycle of the virus at various critical junctures. The viral life cycle provides specific windows of vulnerability, starting with the initial attachment and entry phase. Some antivirals, known as entry or fusion inhibitors, block the virus from physically binding to or merging with the host cell membrane, effectively locking it out. Once the virus successfully penetrates the cell and uncoats its genetic material, the next critical step is genome replication (Figure 3) (21).

Figure 3: Mechanism of Action of Anti viral Drugs

This is where a large proportion of successful antivirals function. Nucleoside and nucleotide analogs, such as acyclovir for herpesviruses or tenofovir for HIV and Hepatitis B, act as decoy DNA or RNA building blocks. They are incorporated into the growing viral genetic chain by the viral polymerase enzyme, but because they are structurally flawed, they halt further chain elongation, thus stopping replication in its tracks. Other inhibitors, like the COVID-19

treatment remdesivir or the HIV drug efavirenz, bind directly to the polymerase enzyme itself, changing its function (22). For retroviruses like HIV, integrase inhibitors prevent the viral DNA from inserting itself into the host's own genome. Following the creation of new viral components, the final stages involve assembly and release. Protease inhibitors interfere with the final processing and cutting of viral proteins needed for assembly into mature, infectious particles (23). Lastly, drugs like oseltamivir for influenza function as neuraminidase inhibitors, physically preventing newly formed viruses from budding off and escaping the infected cell to spread the infection further throughout the body. By targeting these distinct steps, antivirals manage to suppress viral load effectively and help the host's immune system regain control (24, 25).

4. Conclusion

In conclusion, antiviral drugs represent a critical and sophisticated pillar of modern medicine, fundamentally distinct from antibiotics in their targeted approach to disrupting specific, vulnerable points within the complex life cycles of intracellular parasites. From the revolutionary success of highly active antiretroviral therapies (HAART) that transformed HIV from a death sentence into a manageable chronic condition, to the development of direct-acting antivirals that can effectively cure Hepatitis C, these medications have proven their profound impact on global health and life expectancy. The ongoing development cycle highlights both the ingenuity of pharmaceutical science and the persistent challenge posed by viral mutation and the narrow therapeutic window—the constant necessity to balance efficacy against potential host cell toxicity. The future of the field points toward promising research into broad-spectrum antivirals, new host-targeted therapies, and leveraging advanced computational biology to rapidly respond to emerging viral threats, as demonstrated during the COVID-19 pandemic response. Ultimately, while vaccination remains the primary preventative tool, antiviral drugs stand as essential, ever-evolving agents that provide the necessary therapeutic backbone for treating established infections, continually pushing the boundaries of what is medically possible in the ongoing battle against infectious diseases and offering hope for better control over current and future pandemics.

5. Conflict of Interest

None

6. References

1. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. *International journal of biological macromolecules*. 2021 Mar 1;172:524-41.
2. Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, Hamid Khan A, Saleem I, Shamim S, Malik A. A review: Mechanism of action of antiviral drugs. *International journal of immunopathology and pharmacology*. 2021 Mar;35:20587384211002621.
3. Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral drugs in influenza. *International journal of environmental research and public health*. 2022 Mar 4;19(5):3018.
4. Nannou C, Ofrydopoulou A, Evgenidou E, Heath D, Heath E, Lambropoulou D. Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. *Science of the Total Environment*. 2020 Jan 10;699:134322.
5. Wiltink EH, Janknegt R. Antiviral drugs. *Pharmaceutisch Weekblad*. 2021 Apr;13(2):58-69.
6. Shiraki K. Antiviral drugs against alphaherpesvirus. *Human Herpesviruses*. 2018 Jun 13:103-22.
7. D'Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. The use of antimalarial drugs against viral infection. *Microorganisms*. 2020 Jan 8;8(1):85.
8. Cantini F, Goletti D, Petrone L, Najafi Fard S, Niccoli L, Foti R. Immune therapy, or antiviral therapy, or both for COVID-19: a systematic review. *Drugs*. 2020 Dec;80(18):1929-46.
9. Mei M, Tan X. Current strategies of antiviral drug discovery for COVID-19. *Frontiers in Molecular Biosciences*. 2021 May 13;8:671263.
10. Von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. *Nature Reviews Drug Discovery*. 2023 Jul;22(7):585-603.

11. Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, Rouse BT. Host-directed antiviral therapy. *Clinical microbiology reviews*. 2020 Jun 17;33(3):10-128.
12. Adamson CS, Chibale K, Goss RJ, Jaspars M, Newman DJ, Dorrington RA. Antiviral drug discovery: preparing for the next pandemic. *Chemical Society Reviews*. 2021;50(6):3647-55.
13. Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. *Microorganisms*. 2023 Feb 28;11(3):629.
14. Ford N, Vitoria M, Rangaraj A, Norris SL, Calmy A, Doherty M. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: initial assessment. *Journal of the International AIDS Society*. 2020 Apr;23(4):e25489.
15. Cojocaru FD, Botezat D, Gardikiotis I, Uritu CM, Dodi G, Trandafir L, Rezus C, Rezus E, Tamba BI, Mihai CT. Nanomaterials designed for antiviral drug delivery transport across biological barriers. *Pharmaceutics*. 2020 Feb;12(2):171.
16. Gao Y, Zhao Y, Liu M, Luo S, Chen Y, Chen X, Zheng Q, Xu J, Shen Y, Zhao W, Li Z. Antiviral medications for treatment of nonsevere influenza: a systematic review and network meta-analysis. *JAMA Internal Medicine*. 2025 Mar 1.
17. Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. *Journal of Drug Targeting*. 2021 Apr 21;29(4):403-19.
18. Nuwagaba J, Li JA, Ngo B, Sutton RE. 30 years of HIV therapy: Current and future antiviral drug targets. *Virology*. 2025 Feb 1;603:110362.
19. Akhigbe RE, Akhigbe TM, Oyedokun PA, Famurewa AC. Molecular mechanisms underpinning the protection against antiretroviral drug-induced sperm-endocrine aberrations and testicular toxicity: A review. *Reproductive Toxicology*. 2024 Sep 1;128:108629.
20. Foka FE, Mufhandu HT. Current ARTs, virologic failure, and implications for AIDS management: a systematic review. *Viruses*. 2023 Aug 13;15(8):1732.
21. Lokpo SY, Ofori-Attah PJ, Ameke LS, Obirikorang C, Orish VN, Kpene GE, Agboli E, Kye-Duodu G, Deku JG, Awadzi BK, Noagbe M. Viral suppression and its associated factors in HIV patients on highly active antiretroviral therapy (HAART): a retrospective study in the HO municipality, Ghana. *AIDS Research and Treatment*. 2020;2020(1):9247451.
22. Sibiya T, Ghazi T, Chuturgoon A. The potential of *Spirulina platensis* to ameliorate the adverse effects of highly active antiretroviral therapy (HAART). *Nutrients*. 2022 Jul 27;14(15):3076.
23. Gbinigie O, Ogburn E, Allen J, Dorward J, Dobson M, Madden TA, Yu LM, Lowe DM, Rahman N, Petrou S, Richards D. Platform adaptive trial of novel antivirals for early treatment of COVID-19 In the community (PANORAMIC): protocol for a randomised, controlled, open-label, adaptive platform trial of community novel antiviral treatment of COVID-19 in people at increased risk of more severe disease. *BMJ open*. 2023 Aug 1;13(8):e069176.
24. De Clercq E. Antiviral drugs in current clinical use. *Journal of clinical virology*. 2004 Jun 1;30(2):115-33.
25. Rommasi F, Nasiri MJ, Mirsaeidi M. Antiviral drugs proposed for COVID-19: action mechanism and pharmacological data. *European Review for Medical & Pharmacological Sciences*. 2021 Jun 1;25(11).