

A Comprehensive Review on Signal-Conditioning Subsystems Using 90nm CMOS Technology

Tavakalmastan Hasansab Kandgal, Samarth Kumar, Praveen Kumar, Sathvik

Department of Electronics and Communication Engineering
(ECE) Acharya Institute of Technology, Bengaluru,
Karnataka, India

Email: tavakalmastanm.22.beec@acharya.ac.in, samarthd.22.beec@aacharya.ac.in

Abstract—This paper reviews the signal-conditioning subsystems designed and implemented in 90nm CMOS technology, emphasizing the critical role of analog functional blocks in modern mixed-signal integrated systems. The review focuses on key components including operational amplifiers, buffers, sample-and hold circuits, comparators, and encoding interfaces, addressing primary design challenges: voltage headroom limitations, increased leakage currents, parasitic effects, and short-channel phenomena inherent to deep-submicron processes. Special attention is given to layout-aware design methodologies, pre-layout versus post-layout performance variations, and subsystem characterization using Cadence Virtuoso with gpdk090nm PDK. Performance metrics including gain, bandwidth, noise, linearity, speed, and power consumption are systematically evaluated across process-voltage temperature corners. The study emphasizes efficient design flow encompassing schematic simulation, comprehensive layout design with parasitic extraction, and post-layout verification to validate analog performance despite deep-submicron constraints. The comprehensive review will provide engineers and researchers with a unified reference for developing robust, power-efficient signal conditioning circuits suitable for sensor acquisition front-ends, low-power mixed-signal SoCs, and industrial sensing modules.

Index Terms—90nm CMOS, Signal-Conditioning Subsystems

Deep-submicron design, operational amplifiers, sample-and hold circuits, comparators, layout-aware design, post layout simulation, parasitic effects, mixed-signal integration.

I. INTRODUCTION

These signal-conditioning circuits constitute the critical interface between analog sensor signals and digital processing systems, and they carry out a number of very important functions: amplification, filtering, isolation, stabilization, and A/D conversion. The transition to deep-submicron technology nodes, particularly 90nm CMOS, creates unprecedented design challenges along with enabling higher integration density and improved digital processing capabilities. Analog designers face reduced voltage headroom (typically 1.0–1.2V), exponentially increased leakage currents, severe parasitic coupling effects, and degraded transistor intrinsic gain that fundamentally alter circuit design approaches at 90nm feature size [1], [2].

The 90nm CMOS process node is particularly a critical juncture for analog design where many of the traditional circuit topologies need to be revised to include physical constraints. Supply voltages in this node have scaled to 0.8–1.2V, which severely constrains voltage

headroom available for analog signal swing and greatly limits conventional stacking of transistor pairs in both amplifier designs. Short-channel effects, such as velocity saturation, channel-length modulation, and drain-induced barrier lowering, become increasingly prominent, reducing intrinsic transistor gain from 40–50dB in mature nodes to 15–25dB in 90nm, and require multistage amplifier topologies or novel gain-enhancement techniques [3].

Parasitic capacitances from gate-to-drain overlap, interconnect routing, and substrate coupling determine circuit bandwidth and frequency response. The scale factor of parasitic to intentional capacitance increases dramatically compared to 0.18μm and larger nodes; layout-aware design is mandatory rather than optional. Post-layout simulations show that performance degradation from schematic simulations is not uncommon in the range of 20–40%. Iterative design cycles are required and comprehensive analysis of the parasitics before the circuit tape-out are a must [4].

A systematic review is thus needed of signal conditioning circuits that are implemented in 90nm technology for establishing design methodologies, critical performance trade-offs, and documenting best practices that achieve specifications despite deep-submicron constraints. This review systematizes fundamental analog principles, practical design heuristics, device-level behavior, layout techniques, and verification strategies within a consistent framework.

The rest of the paper is organized in sections on basic 90nm technology features (Section II), design and analysis of operational amplifiers (Section III), comparator architectures (Section IV), sample-and-hold circuits (Section V), ADC subsystems (Section VI), layout design methodologies (Section VII), metrics of performance and characterization (Section VIII), use cases and applications (Section IX), power consumption and energy efficiency (Section X), practical design considerations (Section XI), emerging trends (Section XII), and concluding remarks (Section XIII).

I. PRINCIPLES OF 90NM CMOS TECHNOLOGY AND DESIGN CONSTRAINTS

A. Technology Characteristics and Process Parameters

The 90nm node uses gate lengths of about 90nm, but actual effective channel lengths are usually below 70nm due to effects from lateral diffusion. This technology typically features STI, copper interconnects using low-k dielectrics, multiple metal levels—usually 6 to 9 layers—enabling complex wiring and trying to control parasitic capacitances in various ways. The gpdk090nm PDK [5] provides accurate device models, design rules, and parasitic extraction capabilities critical for analog circuit simulation and verification.

Transistor threshold voltages are scaled down to 0.3–0.4V in 90nm processes to enable operation at 1.2V supplies, which directly causes an increase in subthreshold leakage and a decrease in noise margins. The intrinsic gain gm_{ro} of individual transistors deteriorates substantially to 15–25dB compared to 40–50dB in 180nm technology, and high open-loop gains required by precision sensor interfaces [4], [6] can only be realized using multi-stage amplifier topologies or gain-enhancement techniques.

The physical channel length variations, oxide thickness non-uniformities, and random dopant fluctuations produce threshold voltage variations of 20–40mV even with careful layout. These directly affect the performance of analog circuits, especially for precision comparators and operational amplifiers requiring offset voltages below 5mV. The statistical variation analysis by Monte Carlo simulation becomes mandatory for yield prediction and design robustness [3].

B. Voltage Headroom Limitations and Signal Swing Constraints

State-of-the-art signal-conditioning circuits in 90nm technology suffer from severe voltage headroom constraints, which fundamentally limit operation flexibility. Given a 1.2V supply and transistor saturation voltages ($V_{DS,sat}$) of 150–200mV, only 800–900mV remains available for signal swing. This critical limitation influences the design of operational amplifier output stages, sample-and-hold acquisition ranges, and comparator input common-mode ranges. In order to maximize usable dynamic range within reduced voltage windows, designers use rail-to-rail input stages, class-AB output buffers and bootstrapped switches [4], [7].

Supply voltage limitation severely restricts voltage stacking of cascaded stages, which are the basic means of achieving high gain in analog circuits. Traditional cascode amplifiers, which require two series-transistors and two additional gain stages, become impractical at 1.2V supplies. Designers instead use folded cascode, telescopic cascode or gain-boosted architectures that make the most of the available voltage supply while providing sufficient gain. This architectural limitation constitutes a fundamental paradigm shift in design methodologies suitable for the $0.18\mu\text{m}$ node and upwards [2].

C. Parasitic Effects and Deep-Submicron Coupling

At 90nm, performance is dominated by parasitic capacitances, often having values larger than the intentional capacitances. The Miller multiplication effect of the gate-to-drain overlap capacitance, C_{gd} is particularly damaging to amplifier bandwidth.

In this way, a typical 5pF intentional compensating capacitor becomes an effective capacitance of 10–15pF via the Miller effect from 2–4pF of gate-to-drain parasitic capacitance [5], [8].

Interconnect coupling capacitances introduce crosstalk between adjacent signal paths. In particular, this is troublesome between differential signal routes and reference networks. Substrate coupling and bulk coupling effects also create parasitic paths between circuit blocks allowing digital switching noise to inject into sensitive analog nodes. The substrate isolation may be provided by guard rings and deep nwell structures. However, complete decoupling is impossible at high switching frequencies [6], [9].

II. OPERATIONAL AMPLIFIER DESIGN FOR SIGNAL CONDITIONING IN 90NM

A. Two-Stage Op-Amp Structure and Design Trade-Offs

The two-stage CMOS operational amplifier remains a topology of choice for signal-conditioning applications in 90nm technology offering high gain via cascaded stages while maintaining design simplicity and compatibility with reduced supply voltages [2], [4].

Achieving 70–80dB open-loop gain in 90nm requires careful optimization since individual transistor gain is fundamentally limited. First stage designs employ differential pairs with cascode current mirror loads to maximize gain while maintaining adequate output voltage swing. The tail current source has to provide high output impedance through cascode configuration or regulated cascode structure, though voltage headroom constraints prohibit traditional cascode stacking at 1.2V supplies very often [5], [7].

Miller compensation with a capacitor across the second stage provides a dominant pole that guarantees stability with phase margins of 55–70°. The value of the compensation capacitor is 10–30% of load capacitance and it requires careful choice as stability must be balanced against bandwidth and slew rate. In a 90nm process, internal node parasitic capacitances are sufficient to significantly affect pole-zero positions so post-layout resimulation and any consequential recompensation will be needed to ensure specification compliance after parasitic extraction [4], [8].

B. Noise Performance in Deep-Submicron Implementation

Input-referred noise in 90nm operational amplifiers consists of thermal noise from channel resistance and flicker (1/f) noise from carrier trapping at the Si-SiO interface. Achieving sub100nV/Hz noise requires large device widths ($W \gtrsim 100\mu\text{m}$) and increased bias currents ($I_{bias} \gtrsim 50\mu\text{A}$), creating direct trade-offs with power consumption and area critical in battery-powered applications [3] [5].

Flicker noise dominates below 1–10kHz. This makes it potentially problematic for sensor signal conditioning, as sensor signals usually change very slowly. Mitigation strategies include PMOS input devices, with 5–10× lower flicker noise than NMOS, increasing device area to reduce the normalized noise, or chopper

stabilization/aut-zeroing techniques that modulate low-frequency noise to higher frequencies where it can be filtered [4], [6].

C. Layout-dependent performance variations and parasitic impact

Post-layout simulations of 90nm operational amplifiers normally show 15–30% bandwidth reduction compared to schematic simulations due to accumulation of parasitic capacitances at high-impedance nodes. The Miller compensation node connecting first and second stages accumulates the parasitic capacitance from interconnect routing and device parasitics, usually amounting to 2–4pF in addition to the intentional compensation capacitance [5], [8].

Common-mode rejection ratio deteriorates post-layout because of the mismatch in the parasitic capacitances between differential signal paths. Symmetrical layout including common centroid structures, identical routing lengths, and symmetric dummy devices maintain CMRR above 80dB by preserving matched differential characteristics [3], [6].

Power supply rejection ratio PSRR suffers from substrate coupling and supply routing resistance. Measured PSRR achieves 60–70dB at DC but degrades to 30–40dB for frequencies over 1MHz due to parasitic coupling paths. Local decoupling capacitors on analog supply nodes and separate analog supply domains mitigate this degradation very effectively [4].

III. COMPARATOR DESIGN FOR HIGH-SPEED SAMPLING APPLICATIONS

A. Dynamic Comparator Architectures & StrongARM Implementation

High-speed comparators for flash ADC applications in 90nm technology are mostly of dynamic (clocked) architectures that consume zero static power except during the evaluation phase. The StrongARM latch topology uses regenerative positive feedback during evaluation to amplify small input differences quickly to full-rail digital outputs. With proper sizing, comparators achieve propagation delays below 500 picoseconds while consuming only dynamic switching power [6], [7], [10].

StrongARM comparator has two different phases: reset and regeneration. In the reset phase, output nodes are pre charged to VDD, while cross-coupled inverter pair is not active and draws zero current. At the rising edge of a clock, input differential pair introduces current imbalance that is exponentially amplified by crosscoupled PMOS and NMOS transistors, until outputs are pulled to VDD and ground [4], [7].

B. Offset and Mismatch Management Through Layout Techniques

Threshold voltage (VT) and geometry mismatch (W/L) of the differential input pair and regenerative latch transistors are responsible for input-referred offset voltage in 90nm comparators. In short channel devices, random dopant fluctuations become serious leading to around 20–40mV threshold voltage variations, even with careful layout [3, 5].

Layout techniques such as common-centroid placement, interdigitated finger structures, and large device areas reduce both systematic and random mismatch. Multi-finger layout structures, with dummy devices on the periphery, further enhance matching by reducing edge effects and lithography gradient effects. In precision flash-ADC applications, requiring offset less than 1 to 2mV, these techniques become essential [4], [8].

C. Propagation Delay Optimization and Timing Characteristics

Comparator propagation delay directly limits ADC sampling rates, making delay minimization critical for high-speed converters. In 90nm technology delays below 300ps can be achieved using aggressive transistor sizing and minimizing of node capacitances. The regeneration time constant C/gm is determining for the delay, where C is the total node capacitance and gm is the transconductance of the cross-coupled devices [7], [10].

Layout parasitic capacitances dramatically raise the effective C and thus degrade the speed. Postlayout extraction shows that delay increases by 30–50% compared to schematic simulations due to routing capacitance, interconnect parasitics, and via resistance [5], [8].

IV.

SAMPLE-AND-HOLD CIRCUITS FOR TEMPORAL SIGNAL CAPTURE

A. Switched-Capacitor Implementation and Acquisition Process
Sample-and-hold (S/H) circuits, when implemented using switched-capacitor techniques in deep-submicron 90nm technology, present special challenges due to reduced supply voltage and increased switch resistance. Transmission gate switches, comprising parallel NMOS-PMOS pairs, exhibit on-resistances of 1-5k at 1.2V supplies; however, charge injection and clock feedthrough errors comprise substantial fractions of the sampled signal in precision applications [2]-[3].

The basic S/H operation involves charging a hold capacitor Ch to the input voltage during the acquisition time window. The RC time constant set by the switch resistance Ron and capacitance Ch determines the settling speed as $Ron \times Ch \cdot Ts/10$ where Ts denotes the sampling period. In 90nm processes, the parasitic bottom-plate capacitance of metal-insulator-metal (MIM) capacitors reduces the effective sampling efficiency by 20–30% [4], [6].

B. Charge injection mitigation and error correction techniques
Bottom-plate sampling techniques decrease charge injection sensitivity by turning on the switch that is connected to the hold capacitor slightly before the input switch, which sends most of the injected charge back to the source rather than into the held voltage. Dummy switches placed in parallel with the main switch, clocked on complementary phases, subtract feedthrough charge, recovering 8–10 bits of accuracy in practical 12–14 bit ADC implementations despite 90nm parasitics [3], [5].

C. Hold Mode Performance and Leakage Current Effects

Starting from the moment when the switch is turned off, the S/H circuit needs to hold the signal with minimal voltage drift over the

period of conversion. Both the switch and capacitor are subject to leakage currents, the results of which are exponential voltage decay over time, often referred to as droop. Droop becomes particularly problematic in slowly converting ADCs or systems with long hold times.[4], [6].

The subthreshold leakage in the sampling switch increases exponentially with temperature roughly doubling every 5° C. While at room temperature (27° C) switch leakage may be 10pA at 125° C junction temperature the same switch exhibits 500pA–1nA leakage. This temperature dependence makes droop highly temperature dependent, requiring design margins that account for worst-case high-temperature operation [3], [5].

V. ANALOG-TO-DIGITAL CONVERTER ARCHITECTURES IN 90NM

A. Flash ADC Design and Comparator Array Optimization

Of all ADC architectures, flash ADCs are the fastest in converting a signal in one clock cycle, usually 1–3ns. They find valuable applications in systems where the sampling rate exceeds 100 MS/s. Flash ADCs are conceptually simple: a reference ladder generates multiple threshold voltages and a bank of comparators determines the input with respect to all thresholds in parallel. The output is a thermometer code that gets encoded to binary output [6], [10].

For an n-bit flash ADC, $2^n - 1$ comparators are needed. A 5-bit converter needs 31 comparators while an 8-bit flash converter requires 255 comparators. This exponential hardware complexity severely constrains resolution. For 90 nm technology, 5–6 bit flash ADCs are feasible, dissipating 100 - 500 μ W at 1 MHz sampling [4], [7].

B. Reference voltage generation and noise immunity

Flash ADCs require reference ladders generating equally spaced voltages insensitive to temperature, supply variations, and digital switching noise from adjacent processor circuits. Any reference voltage drift leads to a wrong comparator decision and systematic INL/DNL degradation. Reference stability represents one of the most critical design aspects of flash ADCs in 90nm mixed-signal systems [5], [8].

Bandgap voltage references supply temperature-stable output voltages by summing PTAT and CTAT voltage components that cancel temperature variations. For this reason, bandgap circuits can generally accomplish temperature coefficients below 20 ppm/°C over industrial temperature ranges. Buffer amplifiers driven by bandgap references supply clean, low-impedance reference nodes to resistor ladders [3], [7].

C. Implementation of Priority Encoder and Logic Depth Reduction

The priority encoder receives the thermometer code from the comparator array and it has to find the highest active comparator output to generate the binary result. Direct implementation of multi-level logic tree creates propagation delays that may limit the speed of conversion. Advanced encoders use parallel prefix

networks in order to reduce the logic depth from O(n) to O(log n) levels. [6], [10].

VI. LAYOUT DESIGN METHODOLOGIES AND PARASITIC EXTRACTION

A. Cadence Virtuoso design flow for 90 nm

Schematic capture for the complete signal-conditioning flow in 90nm technology is done in Cadence Virtuoso using gpdk090nm device libraries. Initial simulations with the Spectre simulator characterize performance at nominal conditions: DC operating points, AC frequency response, transient behavior, and noise analysis. Corner simulations across process variations (fast-fast, typical-typical, slow-slow), voltage variations $\pm 10\%$, and temperature variations from -40°C to 125°C ensure robustness.[2], [8].

Layout design is done after schematic validation by using hierarchical cell-based methodology. Key analog blocks comprising differential pairs, current mirrors, and compensation networks have symmetric placement of critical devices carefully handcrafted with common-centroid structures and matched routing [3], [5].

B. Parasitic Extraction and Post-Layout Simulation

Parasitic extraction with tools like Calibre or Assura produces netlist views comprising resistances and capacitances from metal interconnect, via contacts, and device junctions. A typical extracted view comprises 5–10 \times more elements than the schematic and provides an accurate model of signal degradation [4], [8].

Post-layout simulations using extracted parasitics reveal actual circuit performance, often showing bandwidth, gain, and speed metrics reduced by 20–40%. Iterative optimization cycles between layout modification and post-layout simulation converge on designs meeting specifications despite parasitic effects [2], [5].

VII. PERFORMANCE METRICS AND CHARACTERIZATION IN 90NM

A. DC Performance Parameters and Operating Point Analysis

The performance of signal-conditioning subsystems in 90nm is unique and very different from mature nodes. Open-loop gains of operational amplifiers are in the range of 60–80dB, well below the 80–100dB possible in 0.18 μ m processes. Measured DC gains usually exhibit a 5–10dB drop post-layout when compared to schematic simulations [4], [6], [7].

Input-referred offset voltage in 90nm circuits ranges from 2–15mV depending on device sizing and layout quality with random dopant fluctuations being the dominant mismatch source. Temperature coefficients of offset measure 10–50 μ V/°C, which requires careful bias design using PTAT/CTAT compensation [3], [5].

B. Frequency response and transient performance

In the 90nm range, the gain-bandwidth products for two-stage operational amplifiers lie between 5–50MHz, based on power budget and load capacitance. The intrinsic gain reduction necessarily makes designers use a higher bias current to meet bandwidth requirements. Measured GBW post-layout usually displays a shrink of 20–35% due to parasitic capacitance [5], [8].

Phase margins of 55–70° ensure stable feedback operation with Miller compensation. However, the parasitic poles from layout decrease the margins by 8–15° and often require post layout recompensation. Slew rates in low-power 90nm op-amps lie in the range of 1–20V/μs and are limited by the tail current and compensation capacitor values [2], [4].

C. Noise Performance and Dynamic Range

Input-referred noise in 90nm operational amplifiers shows thermal noise floors of 10–100nV/Hz as a function of transconductance and bias current. Flicker noise corners fall within the range of 1–10kHz, well above that of more mature processes because of larger trap densities in thin gate oxides. The total integrated noise over a 10kHz bandwidth reaches 5–50μVrms, thus determining the minimum detectable signal limits [4], [6].

D. Pre-Layout Versus Post-Layout Performance Degradation

Systematic characterization of 90nm signal-conditioning blocks reveals consistent degradation patterns after layout implementation. The operational amplifier GBW reduces by 20–35%, DC gain decreases by 5–10dB, and phase margin drops by 8–15°. In comparators, parasitic capacitances result in 30–50% longer propagation delays. Sample-and-hold acquisition times increase by 25–40% [3], [5], [8].

These predictable degradation patterns are used for initial schematic design decision-making. Experienced designers typically use 50% performance margin at nominal schematic conditions due to layout parasitics to ensure that post layout performance meets specifications [4].

VIII. USE CASES AND APPLICATIONS

A. Sensor Signal Acquisition Front-Ends

Analog signal-conditioning front-ends in 90nm CMOS act as key interfaces for various sensor modalities for industrial, automotive and consumer applications. Temperature sensors based on precision amplifiers and bandgap references achieve an accuracy of 0.1–0.5°C within -40 to 125°C ranges well suited for thermal management applications in embedded platforms [5], [8].

For industrial process control, pressure sensor conditioning using instrumentation amplifiers with 60–80 dB CMRR rejects the Wheatstone bridge common-mode voltages. Monolithic integration of the signal-conditioning, calibration algorithms, and

digital communication makes the smart sensor SoCs for pressure ranges from 0–1000 PSI with accuracy as good as 0.1% [2]–[9].

B. Low-Power Mixed-Signal System-on-Chip Integration

Battery-powered and energy-harvesting applications require mixed signal SoCs that minimize power without sacrificing signal fidelity. Optimal balance is achieved in the 90nm node: reasonable analog performance can be achieved in the power range of 10–100μW while digital logic operates efficiently down to nano-watt standby consumption levels [4], [6].

Biomedical signal acquisition - ECG, EEG & EMG - uses 90nm signal conditioning front-ends with low-noise amplifiers (10–50nV/Hz), programmable gain stages (40–80dB range), and anti-aliasing filters. Multi-channel integration (4–32 channels) with ADCs and digital signal processing support wearable health monitoring systems [3], [7].

C. IoT and Edge Computing Sensor Nodes

In general, IoT edge nodes need signal-conditioning front-ends that minimize power consumption while retaining accuracy. 90nm SoCs integrating analog interfaces with low-power processors enable sensor nodes operating from coin-cell batteries or energy harvesting for multi-year lifetime [2], [8].

Smart agriculture applications employing 90nm sensor SoCs monitor the soil moisture, temperature, and humidity of fields using very minimal power. By allowing event-driven operation and adopting low-power ADC architectures, intermittent sampling at 1–10 minute intervals extends battery lifetime to 2–5 years using AA batteries [4].

IX. POWER CONSUMPTION AND ENERGY EFFICIENCY

A. Power Dissipation Mechanisms and Efficiency Metrics

Signal conditioning circuits in 90nm have a power consumption dominated by three components: static bias current, dynamic switching power, and leakage current. In general, an op-amp consumes between 50–500μW depending on performance requirements, of which 70–85% goes to the bias currents and 15–30% is taken by the switching of the output stage and leakage [3], [5].

Static power in amplifiers is proportional to the required GBW: a 10MHz GBW op-amp consumes between 100–200μW at 1.2V supply. Amplifiers with 1MHz designs run at 20–50μW. The basic relation $I_{bias} = (GBW \times CL)/gm$ sets the lower limit in power consumption for a given bandwidth. In 90nm, the lower transconductance efficiency than mature processes increases power dissipation for equal performance [4], [7].

B. Leakage Power and Temperature Effects

For 90nm CMOS, the subthreshold leakage grows exponentially with temperature, increasing 10× from -40°C to 125°C. This strong temperature dependence complicates industrial applications that

need the circuits to function properly over extreme conditions. Unlike digital blocks, power gating is not applicable in analog circuits, and hence leakage mitigation using device sizing and substrate biasing is indispensable [3], [5].

The gate tunneling leakage through the 2nm gate oxide contributes 10–30% of total leakage at room temperature. Ultra-low input current designs use larger gate oxide “IO” devices that trade speed for lower leakage [4], [5].

C. Power Optimisation Techniques

Bias current scaling adjusts the power dynamically according to the instantaneous requirements. During the idle periods or low-frequency signals, the circuits operate at minimum bias (5–10% of peak) and reduce power by 90%. When fast transients are detected, bias temporarily increases to maintain performance, as in [1, 6]. Architecture selection significantly influences energy efficiency. Two-stage op-amps consume less power than folded-cascode designs for equivalent GBW at low voltages. Flash ADCs trade power with speed, consuming milliwatts for giga sample rates, while SAR converters achieve moderate speeds-1-100 MS/s-at microampere currents [2], [4], [8].

X. PRACTICAL CONSIDERATIONS AND DESIGN EXAMPLES

A. Complete Sensor Interface Design Flow

Practical implementation of signal-conditioning subsystems in 90nm starts with specification definition. The target gain, bandwidth, noise, power, and area are defined depending on the application. Those specifications set the road for topology selection, between two-stage vs single-stage amplifiers, and appropriate ADC architectures [1], [2].

Corner analysis simulates performance across process-voltage-temperature variations: fast-fast, typical-typical, and slow-slow process corners combined with supply variation of $\pm 10\%$ and temperatures of -40°C , 27°C , and 125°C .

Worst-case variations of designs meeting specifications across all corners typically require 30–40% performance margin at nominal conditions [2,8].

B. Layout Design Best Practices

Critical analog blocks require custom hand-crafted layout applying matching and symmetry principles. Differential pairs use common-centroid configurations with interleaved finger structures and center-of symmetry precisely aligned. Current mirror arrays use identical unit devices arranged symmetrically, often with dummy devices surrounding to mimic edge effects [3], [5], [8].

Metal routing has strict symmetry for differential signals, keeping the trace lengths equal within $1\text{--}2\mu\text{m}$, using the same number of vias. Sensitive high-impedance nodes make use of wide upper layers of metal to minimize parasitic capacitances. Guard rings around analog blocks provide substrate isolation [4], [8].

C. Post-Layout Verification and Measurement

Parasitic extraction produces R-C networks that model interconnect and device parasitics. The extracted netlist includes 5–10 \times more nodes than the schematic, increasing simulation time substantially yet accurately predicting performance degradation [3], [8].

Designers compare pre- and post-layout results in order to quantify the effect of parasitic: expecting 20–30% GBW reduction, 10–20% noise increase, and 30–50% comparator delay increase. If degradation is greater than expectation, iterative layout optimization reduces the critical parasitics through device relocation or circuit modification [2], [5], [8].

XI. EMERGING TRENDS AND FUTURE DIRECTIONS

A. Mixed-technology integration and chip let architecture

Future signal-conditioning systems will rely heavily on heterogeneous integration, integrating 90nm analog circuits with advanced-node digital processors. 2.5D and 3D integration through silicon interposers or TSVs are used to connect analog die in optimized 90nm to 7nm digital cores to maximize each domain performance [4], [8].

Chip let architectures partition a mixed-signal system into distinct optimized die, which are connected using high-bandwidth interfaces. This analog front-end chiplet focuses exclusively on sensor conditioning and conversion, isolated from digital processing.

This modular approach improves the yield by isolating the fabrication of analog, enables mix-and-match configurations, and reduces cost overall [3], [4], [8].

B. Digital-Assisted Calibration and Self-Correction

Digital-assisted analog design relies increasingly on background calibration to correct process variations and environmental drift. Offset cancellation using auxiliary ADCs measures the circuit offset, then injects corrective currents through trim DACs. It achieves sub-millivolt accuracy despite 90nm mismatch.

Gain calibration measures the transfer function periodically against precise references and applies digital correction factors to maintain accuracy across temperature. These self-correcting techniques extend the functionality of circuits despite the reduced controllability in the scaled technologies [1], [6].

C. Ultra-Low-Power and Energy Harvesting Design

Next-generation sensor nodes target operation from ambient energy harvesting (1–100 μW average power). The signal conditioning circuits must reduce power through duty-cycling, subthreshold operation, and event-driven architectures. 90nm technology supports these approaches through mature ultralow-power design libraries [3], [4], [5].

D. Integration of Machine Learning at the Edge

Resampling and signal-conditioning front-ends increasingly integrate with on-chip ML accelerators for edge inference. The

90nm node provides sufficient density for small neural networks (1000–10000 parameters) while preserving sensor interface quality [4], [8].

Feature extraction in the analog domain, via programmable filter banks or compressive sensing, reduces the amount of data before digital processing and decreases power and bandwidth requirements [3], [6].

XII. CONCLUSION

The paper systematically organizes principles, both fundamental and advanced, in the design of robust signal-conditioning subsystems using 90nm CMOS technology. Operational amplifiers, comparators, sample-and-hold circuits, and ADC architectures were thoroughly addressed to point out the importance of optimized analog front-ends in achieving accurate signal acquisition, efficient power consumption, and reliable mixed-signal integration despite deep-submicron constraints.

This review emphasizes proper circuit topologies selection, mitigation of coupling parasitic effects, and power-aware design for high-performance implementation of 90nm SoCs. The layout-aware design methodology, comprehensive parasitic extraction, and rigorous post-layout verification were identified as essential practices for translating schematic designs into functional silicon-proven implementations.

Power efficiency, analog/digital co-design, and systematic verification via PVT corner analysis are critical design considerations for practical 90nm mixed-signal systems.

The emerging directions of digital-assisted calibration, ultra-low-power operation, and edge machine learning integration demonstrate continued evolution in analog front-end design within next-generation IoT, biomedical, industrial, and autonomous applications.

The insights herein present a holistic design perspective to engineers and researchers in the development of signal conditioning subsystems in 90nm CMOS technology, balancing the performance-power-area-reliability constraints inherent in deep-submicron analog circuit design.

REFERENCES

- [1] B. Razavi, *Design of Analog CMOS Integrated Circuits*, 2nd ed., McGrawHill, pp. 125–167, 2001.
- [2] A. Pandya et al., “ASIC SoC design for signalconditioning in 90nm CMOS,” in Proc. Int. Conf. Signal Process. Integrated Netw., pp. 1–6, 2024.
- [3] A. Aqeel, M. S. Basha, and M. Rashid, “Design of high-gain two-stage op-amp using 90nm technology,” Int. J. Eng. Res. Technol., vol. 3, no. 5, pp. 1966–1970, May 2014.
- [4] J. Rabaey, *Low Power Design Essentials*, Springer, pp. 45–78, 2009.
- [5] M. Pelgrom et al., “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, 1989.
- [6] V. S. R. Bhagavatula and S. Gubbala, “Design of a single-tail comparator in 90nm CMOS technology,” Int. J. Eng. Res. Technol., vol. 4, no. 10, pp. 280–283, Oct. 2015.
- [7] J. L. McCreight et al., “Sample-and-hold circuits: Theory and design,” IEEE Trans. Circuits Syst., vol. 37, no. 5, pp. 612–625, 1990.
- [8] R. Schewchuk et al., “Low-noise CMOS amplifier design techniques,” Analog Integr. Circuits Signal Process., vol. 40, no. 1, pp. 45–68, 2004.
- [9] K. Laker and W. Sansen, *Design of Analog Integrated Circuits and Systems*, McGraw-Hill, pp. 567–612, 1994.
- [10] G. Van der Plas et al., “A 3.3-V, 130-mW rail-to-rail sigma-delta ADC for audio,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 927–936, 1999.
- [11] A. Hastings, *The Art of Analog Layout*, Prentice-Hall, pp. 89–134, 2001.
- [12] S. Lewis and P. Welch, “A 70-mW 300-MHz 1-V 3-bit ADC,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1934–1940, 1997.
- [13] P. Horowitz and W. Hill, *The Art of Electronics*, 3rd ed., Cambridge Univ. Press, pp. 456–512, 2015.
- [14] F. Rosenbaum et al., “Multitechnology-node mixed-signal ASIC design,” IEEE Trans. VLSI Syst., vol. 18, no. 9, pp. 1342–1355, 2010.
- [15] P. Gray et al., *Analysis and Design of Analog Integrated Circuits*, 5th ed., Wiley, pp. 234–289, 2009.
- [16] C. Michael and M. Ismail, *Statistical Modeling for CAD of MOS VLSI Circuits*, Kluwer, pp. 123–167, 1994.
- [17] D. Sander et al., “Device matching and process variation in analog circuits,” in Proc. ISCAS, pp. 1–4, 2006.
- [18] K. Bult and G. Geelen, “A fast settling CMOS op-amp for switchedcapacitor circuits with 90-dB DC gain,” IEEE J. Solid-State Circuits, vol. 25, no. 12, pp. 1379–1384, 1990.
- [19] B. Gilbert, “Low-voltage analog circuit design techniques,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 1029–1044, 1999.
- [20] J. Huijsing, *Operational Amplifiers: Theory and Design*, 3rd ed., Springer, pp. 156–203, 2011.
- [21] M. Steyaert et al., “CMOS operational amplifiers: A tutorial,” IEEE Trans. Circuits Syst. I, vol. 49, no. 9, pp. 1207–1221, 2002.
- [22] V. Hamaker et al., “Open-loop comparators with offset cancellation,” IEEE Trans. Circuits Syst., vol. 37, no. 8, pp. 987–995, 1990.
- [23] A. Cheng and M. Ismail, “CMOS multiplying D/A converters,” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 1018–1025, 1986.
- [24] A. Sedra and K. Smith, *Microelectronic Circuits*, 7th ed., Oxford Univ. Press, pp. 567–623, 2015.

- [25] A. Abidi, "Mixed-signal IC design," IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 6–8, 2006.
- [26] P. Kinget et al., "A mixed-signal low-voltage CMOS ADC," IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1983–1991, 1997.
- [27] A. Pandya et al., "precision instrumentation amplifiers for 90nm signal conditioning," IEEE Sensors J., vol. 24, no. 4, pp. 1089–1098, 2024.
- [28] L. Brooks and H. H. Lee, "A framework for architectural-level power analysis and optimization," IEEE Trans. VLSI Syst., vol. 14, no. 10, pp. 1047–1058, 2006.
- [29] V. Peluso et al., "A 5.4-mW portable multiple-electrode data acquisition system," IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2077–2084, 2003.
- [30] B. Razavi, "Design of low-noise oscillators," Proc. IEEE, vol. 94, no. 3, pp. 461–489, 2006.
- [31] V. Hamaker et al., "Circuit design for signal conditioning," IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1615–1628, 2010.