
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27200 | Page 1

A COMPREHENSIVE STUDY FOR DEVELOPING A FRAMEWORK

FOR MICROSERVICES ARCHITECTURE MIGRATION

Sonal Dhomne1, Tellaboina Upendar2 ,Dr. Goldi Soni3

1Amity School of Engineering and Technology , Amity University Chhattisgarh , Raipur.

 2Amity School of Engineering and Technology , Amity University Chhattisgarh , Raipur.

 3 Amity School of Engineering and Technology , Amity University Chhattisgarh , Raipur.

---***---
Abstract - Building scalable and resilient systems has

become a common practice using microservices

architecture. Large and complex programs may be split up

into manageable components that can be created and

deployed separately. Migrating from a monolithic to a

microservices architecture is a challenging process that

needs careful planning and execution. In this article, we

provide a method for migration to a microservices

architecture that is based on accepted best practices and

industry standards. Three essential phases make up our

framework: assessment, design, and execution or

Implementation. The assessment stage involves analyzing

the existing monolithic application to identify potential

microservices candidates. In the design stage, we create a

high-level architecture and define microservices

boundaries. The implementation stage focuses on building

and deploying microservices, along with the necessary

infrastructure and tooling. Additionally, we discuss best

practices and lessons learned from practical

microservices migration projects. Our framework offers a

structured approach to organizations seeking to migrate

to microservices architecture.

Key Words: Monolithic Architecture, Microservices

Architecture, Migration Framework

1.INTRODUCTION

Monolithic applications have dominated the architectural

environment for a while. They have intrinsic restrictions even

if they are quite simple to design and use. Applications

typically have development constraints as they expand,

making them harder to scale and manage. By separating

programs into smaller, independent components that can be

created and deployed individually, a revolutionary method to

application development known as microservices

architecture seeks to overcome the drawbacks of monolithic

design. Microservices design has a number of benefits,

including increased scalability, robustness, and agility. But

making the switch from a monolithic to a microservices

design might be challenging. In this paper, we provide a

migration plan to get through this change.

2. BACKGROUND

Microservices architecture is a design pattern that
decomposes an application into smaller, independent
components, each running in its own process or container.
Each microservice handles a specific task or business
capability and communicates with other microservices
through APIs. Microservices architecture offers benefits such
as enhanced scalability, resilience, and agility. It empowers
autonomous service development and supports horizontal
scaling as needed (Fowler, 2014).

Fig - 1. Monolithic Architecture vs Microservices Architecture

In contrast, monolithic architecture represents an
application as a single, standalone component. Although it
comprises various modules, they are tightly coupled and
share the same codebase. While monolithic applications are
straightforward to develop and deploy, they suffer from
scalability and maintenance challenges as they grow (Fowler,
2014).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27200 | Page 2

3. PROPOSED FRAMEWORK

Our proposed framework for migrating to a microservices
architecture comprises three primary phases: assessment,
design, and implementation. These phases are crucial for a
successful transition.

Fig - 2. Migration from Monolith to Microservices phases

3.1 Assessment

In the assessment phase, the existing monolithic
application is examined to identify potential microservices
candidates. This phase serves as the foundation for the entire
migration process. The assessment stage includes the
following steps:

Step 1: Determine Business Capabilities - Identify the
fundamental business capabilities supported by the
application and assess its functionality.

Step 2: Determine the Modules - Examine the codebase
to identify modules responsible for each business capability.

Step 3: Assess Module Dependencies - Analyze
dependencies between modules to distinguish independent and
interdependent modules.

Step 4: Identify Microservices Candidates - Select
components suitable for separate microservices based on their
independence, minimal dependencies, and distinct business
responsibilities.

3.2 Design

The design phase involves creating a high-level
architecture and defining microservices boundaries. This
phase is critical as it sets the foundation for implementation.
The design phase includes the following steps:

Step 1: Define Service Boundaries - Establish boundaries
for each microservice, defining the services it offers and the
APIs it exposes.

Step 2: Manage Design Data - Develop a data
management plan, addressing data sharing and consistency
maintenance among microservices.

Step 3: Design Communication Protocols - Determine
communication protocols for inter- microservice
communication.

Step 4: Determine Infrastructure Needs - Specify the
infrastructure needs, such as the platforms for deployment,
the containerization tools, and the monitoring programs.

Step 5: Build a high level architecture - The creation of a
high-level architecture that incorporates the microservices,
their dependencies, and their APIs is the last phase. This
design ought to give a clear picture of how the microservices
will communicate with one another and deliver the necessary
business capabilities.

3.3 Implementation

The implementation phase involves building and
deploying microservices, along with the necessary
infrastructure and tools. This phase is critical as it paves the
way for production deployment. The implementation phase
includes the following steps:

Step 1: Build the Microservices - Develop microservices
by writing code, conducting testing, and deploying them in a
development environment.

Step 2: Containerize the Microservices – Microservices
can be containerized by building docker containers and
defining their dependencies.

Step 3: Deploy the Microservices –The required
infrastructure components needs to be installed, including as
load balancers, service discovery, and monitoring tools,
before deploying the microservices in the production
environment.

Step 4: Monitor and manage the microservices - By
putting monitoring and management tools in place to deal
with upgrades, failures, and to keep track of their
performance and general well-being, Microservices can be
improved.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27200 | Page 3

4 OPTIMAL TECHNIQUES AND LESSONS

LEARNED

Real-world microservices migration projects have revealed
several best practices and lessons:

1. Start with a Pilot Project: Begin with a small pilot project

to validate the microservices architecture and identify

potential issues (Wooten & Reeves, 2017).

2. Automate Deployment: Implement continuous

integration and deployment (CI/CD) pipelines to automate

microservices creation and deployment (Balalaie et al.,

2016).

3. Ensure Fault Tolerance and Resilience: Incorporate

fault tolerance and resilience mechanisms into the

microservices architecture to ensure high availability

(Balalaie et al., 2016).

4. Use Service Registry and Discovery: Manage inter-

service communication and dependencies using a service

registry and discovery tool (Pautasso et al., 2016).

5. Implement Security Measures: Establish security

measures, including access control, encryption, and

authentication, to protect microservices from unauthorized

access (Balalaie et al., 2016).

5. CONCLUSIONS

In conclusion, converting to a microservices architecture

is a difficult but worthwhile process that may improve the
scalability, resilience, and agility of a business. Our
methodology offers a methodical strategy for migrating
microservices, guided by best practices and insights from
actual projects. It allows businesses to take use of this
architecture's advantages while minimizing the risks and
difficulties of the changeover.

One major benefit of the microservices approach is its
capacity to break down large, complex programs into
manageable, smaller components. This enables more
autonomous development and faster feature rollout,
enhancing organizational agility and innovation.
However, migrating to microservices requires careful
planning and execution. Our framework offers a structured
path, guided by best practices and practical insights, to assist
organizations on this journey.

REFERENCES

1. 1 Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016).

Microservices architecture enables devops: Migration to a

cloud-native architecture. IEEE Software, 33(3), 42- 52.

2. Fowler, M. (2014). Microservices: a definition of

this new architectural term. Retrieved from

https://martinfowler.com/articles/microservices.

html

3. Newman, S. (2015). Building microservices:

designing fine-grained systems. " O'Reilly Media,

Inc.".

4. Pautasso, C., Zimmermann, O., & Leymann, F. (2016).

Microservices in practice. In Service Oriented and Cloud

Computing (pp. 149-160). Springer, Cham.

5. Richardson, C. (2014). Microservices

architecture pattern. Retrieved from

https://microservices.io/patterns/microservic

es.html

6. Vogels, W. (2006). Amazon.com's approach to cloud

computing. Communications of the ACM, 51(11), 29-31.

7. Wooten, I., & Reeves, J. (2017). From monolith to

microservices: lessons learned on an agile journey. In

Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management (pp. 2453-2456).

8. Fowler, M. (2014). Microservices: a

definition of this new architectural term.

Retrieved from

https://martinfowler.com/articles/microserv

ices.html

9. Lewis, J., & Fowler, M. (2014). Microservices: a

practitioner's guide. Retrieved from

https://www.martinfowler.com/microservices/

10. Newman, S. (2015). Building microservices: designing

fine-grained systems. O'Reilly Media, Inc.

11. Wampler, J. (2016). Migrating to

microservice databases. Retrieved from

https://www.oreilly.com/content/migrat

ing-to-microservice-databases/

12. Balalaie, A., Heydarnoori, A., & Jamshidi, P.

(2016). Microservices architecture enables devOps:

Migration to a cloud-native architecture. IEEE

software, 33(3), 42- 52.

13. Bucchiarone, A., Dragoni, N., Mazzara, M., &

Pistore, M. (2018). Microservices: migrating

from theory to practice. IEEE software, 35(3),

56-64.

14. Chatterjee, K., Ray, A., & Mandal, T. (2019). A

comparative study of monolithic and microservices

architecture. Procedia Computer Science, 165, 706-

713.

15. Dragoni, N., Mazzara, M., & Pistore, M. (2017).

Microservices migration patterns and antipatterns. In

Proceedings of the 2nd International Workshop on

Software Engineering for Microservices (pp. 1-6).

16. Richardson, C. (2020). Microservices patterns:

with examples in Java. Manning Publications

Co.

17. Schäfer, T., & Hasselbring, W. (2017). Software

engineering for microservices: a systematic

mapping study. IEEE Transactions on Software

Engineering, 44(11), 1032-1056.

http://www.ijsrem.com/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.martinfowler.com/microservices/
https://www.oreilly.com/content/migrating-to-microservice-databases/
https://www.oreilly.com/content/migrating-to-microservice-databases/

