A Conceptual Framework for Understanding the Influence of Automation on Maritime Workforce Management

Mr. Hare Ram Hare^a, Mr. C P Balaji^b, Capt. Parag Mehrotra^c

Assistant Professor^{abc}, Indian Maritime University, (A Central University, Govt of India,

Head Office: Chennai, Tamilnadu)

Abstract

This study investigates the impact of automation on workforce management within the maritime industry, focusing on its influence on labor dynamics, skills development, and operational efficiency. By analyzing peer-reviewed publications and industry reports, the research highlights how automation technologies, such as autonomous vessels and advanced navigation systems, are reshaping the sector. The findings suggest that while automation improves operational efficiency and safety, it also presents challenges, including job displacement and the need for retraining. The study emphasizes the importance of strategic interventions by industry stakeholders, such as targeted education and legislative frameworks, to ensure a seamless transition to an automated future. Furthermore, the research identifies gaps in existing literature and calls for longitudinal studies to explore the long-term effects of automation on maritime workforce management. The adoption of automation, if managed properly, offers significant potential for improving efficiency, safety, and sustainability within the maritime sector.

Keywords: Maritime Automation, Workforce Management, Skills Development, Technological Advancement

1. Introduction

The importance of automation in modernizing marine operations cannot be emphasized; it represents a watershed moment in how maritime companies negotiate the tricky seas of efficiency, safety, and This revolution is more than just sustainability. integrating sophisticated equipment and software into current frameworks; it involves a fundamental rethinking of marine logistics, vessel management, and the very essence of seafaring employment [1]. The introduction of automation technology ranging from improved navigation systems to autonomous ships and port operations has the potential to revolutionize the marine industry by increasing efficiency, eliminating human error, and even changing the global trading environment. Automation in the marine industry has been pushed by the persistent quest of operational efficiency, as well as the need to solve considerable obstacles given by human factors and environmental concerns [2]. The incorporation of automated technology is seen as a vital step towards improving safety by lowering the frequency of accidents caused by human error, which accounts for a substantial share of marine catastrophes [3]. Furthermore, automation has the potential to optimize fuel use and reduce greenhouse gas emissions, helping the marine sector achieve its environmental sustainability objectives.

However, the shift to a more automated marine sector is not without problems. The technical, legal, and human elements influencing this transformation are complex and multidimensional [4]. Technologically, the maritime industry must overcome the obstacles of integrating new equipment into a historically conservative sector while maintaining dependability and safety in extremely unpredictable and occasionally severe marine settings. From a regulatory standpoint, there is a need for international agreement and regulatory frameworks that can handle the unique needs of automation, such as responsibility in the case of autonomous ship accidents. The influence of automation on the marine workforce is perhaps the most serious and intricate issue [5]. While automation might reduce the stress of repetitive and dangerous activities, possibly increasing work satisfaction and safety for sailors, it also raises worries about job displacement and the need for retraining. The skills necessary in a highly automated marine industry will unavoidably change, prompting a reassessment of education and training programs to educate the next generation of maritime professionals [6]. Despite these limitations, the advantages of automation in marine operations are enormous. Improved operating efficiency, increased safety, and decreased environmental impact are achievable if players in the marine sector—from shipping corporations to regulatory agencies and

educational institutions—can manage the intricacies of this shift. To summaries, the use of automation in modernizing marine operations is an important area of research with the potential to alter the sector [7]. The effective incorporation of automation technology will need a collaborative effort to overcome technical, regulatory, and personnel issues [8]. As the marine industry continues to advance, it will be important to maintain a close watch on these trends, ensuring that the advantages of automation are realized while reducing its potential negatives.

Automation's Profound Impact on Workforce Dynamics and Transformation

The influence of automation on workforce dynamics represents a transformative shift in labor market structures globally, driven by the integration of advanced technologies such as automation and artificial intelligence (AI) [9]. This digital revolution is not merely a progression of technological capabilities but a complex intersection of challenges and opportunities that affect employment trends, skill requirements, and organizational strategies [10]. Automation functions as both a disruptor and an enabler within industrial ecosystems, reshaping the landscape of labor, with a significant impact on job creation, displacement, and workforce allocation. The ongoing integration of automation into various industries introduces substantial changes in labor force engagement, influencing participation rates and skill-demand evolution, especially in advanced economies ſ11**1**. macroeconomic implications of these shifts extend beyond the immediate sectoral changes, highlighting the societal and economic repercussions of automation on employment structures.

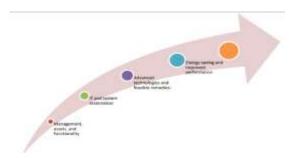


Fig 1: Automation Methodology

Historical perspectives on industrial relations underscore the long-term consequences of automation, particularly on labor utilization, workforce deployment, and the evolution of work practices across industrial sectors. In the realm of work design, the rise of

automation necessitates a reevaluation of job structuring and task allocation [12]. As digital technologies and algorithms redefine traditional work processes, there is a growing emphasis on optimizing work design to enhance productivity while maintaining job quality and employee welfare [13]. The application of automation in the workplace demands the development of new strategies to balance efficiency with human-centered considerations [14]. The transition towards automated workforce is a nuanced process, involving technological, economic, and human factors that must be carefully managed. For industries to successfully navigate this transformation, policies and practices must be adapted to foster a more inclusive and sustainable future of work. This requires a balanced approach that maximizes the benefits of automation while addressing its potential challenges, particularly in terms of job displacement, workforce retraining, and socio-economic equity [15].

Historical Perspective: Tracing the Development and Transformation of Automation in the Maritime Industry.

The marine sector has seen significant upheavals in recent decades, with automation emerging as a crucial driver in changing operating processes. The introduction of Industry 4.0 technology has hastened this change, bringing unprecedented levels of efficiency, safety, and sustainability to marine operations. This introduction describes the progress of automation in the marine industry, with an emphasis on key advances, problems, and the expected future trajectory of technological integration [16]. The combination of digitalization, the Internet of Things (IoT), and smart technologies has had a revolutionary impact on marine logistics, improving operating efficiency and increasing competitiveness. One area of innovation is the development of maritime autonomous surface ships (MASS), which has received attention for its potential to revolutionize seafaring. The continuing MASS study emphasizes the legislative, technological, and ethical issues required for its effective implementation, while also giving a forward-looking perspective for the future of maritime operations [17]. Technological improvements in marine transport have also highlighted the important link between innovation and sustainability, with an emphasis on propelling the sector forward in a manner that is consistent with environmental aims. One of the most promising advances is the use of digital twin technology, which decision-making, allows better operational

efficiency, and predictive maintenance in marine operations [18]. This technology has great potential for increasing the overall efficacy and sustainability of nautical activities. The route to a completely automated marine industry is marked by a dynamic combination between technical breakthroughs and sector difficulties [19]. While obstacles exist, the potential advantages of automation such as increased safety and less environmental impact highlight the need of ongoing study, investment, and development in this sector [20]. As the sector evolves, it is evident that automation will play an increasingly important role in determining the future of marine operations.

Objectives and Limitations: Analyzing the Impact of Automation on Workforce Management

The advent of automation technologies has sparked profound transformations in various industries, with the maritime sector being notably affected due to its reliance on manual labor and its critical role in global trade. This paper explores the impact of automation on workforce management in the maritime industry, presenting a conceptual framework to navigate these changes. Automation, driven by technologies such as artificial intelligence, robotics, and the Internet of Things (IoT), promises significant improvements in efficiency, safety, and sustainability [21]. However, it also brings considerable challenges, particularly in workforce management, requiring a reevaluation of traditional employment models and skill sets. In the maritime industry, the automation of operational and navigational processes has led to changes in labor demand, particularly a shift towards personnel with advanced technological skills [22]. The proposed framework, grounded in socio-technical systems theory, suggests that organizational effectiveness can be achieved through the integration of social and technical systems. This is particularly relevant in maritime operations, where human expertise must complement automation technologies. One major challenge is the potential displacement of traditional roles, which necessitates proactive retraining and skill development programs.

Moreover, as automation increases, it fosters a shift towards more collaborative work environments, where human labor is augmented by technological advancements. This shift calls for workforce management strategies to prioritize adaptability, continuous learning, and the development of new competencies. Additionally, the implementation of

automation in maritime operations requires stringent safety protocols and ethical guidelines, addressing concerns related to autonomous maritime systems. Workforce management strategies must ensure that personnel are equipped with the necessary skills in safety procedures and ethical decision-making [23]. automation's impact on maritime workforce management is multifaceted, influencing skill sets, employment patterns, and organizational strategies. The proposed conceptual framework offers a structured approach to managing these transitions, emphasizing the need for human-centered workforce practices that support continuous adaptation and resilience in the face of technological advancements.

Maritime Transport Services in The World Economy

Globalization and improved transport boosted international trade, with over 80% carried by sea. Seaborne trade rose steadily, surpassing 5200 million tonnes in 1999. Containerization revolutionized shipping efficiency, enabling intermodal transport. Bulk, liquid, and liner cargo dominated trade. However, modernizing maritime systems requires heavy investment, prompting privatization and partnerships. While liberalization offers potential benefits, regulatory and financial challenges persist, especially for developing nations facing infrastructure, environmental, and competitive pressures in the global maritime market.

2. LITERATURE REVIEW

2.1 Key Concepts and Definitions of Maritime Automation

Exploring automation in marine environments is crucial for better understanding its impact on labour management and efficiency. Automation is the use of technology to do jobs that were previously done by people [24]. This may range from automated navigation systems to totally autonomous warships. This literature study examines the definitions and essential ideas of automation in marine environments, using academic sources to highlight existing knowledge gaps and areas for future research.

As articulated by Sharma (2021), automation in maritime contexts can be viewed on a continuum, ranging from assistive technologies that augment human capabilities to fully autonomous systems that operate independently of human intervention. This distinction is crucial for assessing the impact of automation on the

maritime workforce, as the level of autonomy has direct implications for skill requirements, job roles, and safety protocols. The marine sector is integrating automation technology to improve operating efficiency, safety, and sustainability. Tae-eun Kim et al. (2021) reviewed recent advancements in automation and telecommunication that are accelerating the development of Maritime Autonomous Surface Ships (MASS) [25]. The study highlights benefits such as improved efficiency, reduced OPEX and emissions, and identifies key operational challenges. It synthesizes ongoing research discussions and concludes with recommendations for addressing barriers and guiding future research efforts. Vishal Jain et al. (2025) examine how integrating IoT and big data analytics can transform maritime operations by enhancing safety, efficiency, and sustainability. The study explores predictive maintenance, optimization. and emission monitoring. while addressing challenges like cybersecurity. Case studies demonstrate successful applications in shipping and ports, offering a framework for driving innovation in the maritime industry [26].

Lingfeng Wang et al. (2025) explore the application of IoT in maritime logistics, detailing its structure, standards, and development trends. The paper highlights IoT's role in addressing logistics challenges through data analysis, including collection, preprocessing, optimization strategies. It offers valuable academic insights and practical strategies to enhance maritime logistics efficiency using IoT technologies. Shu-Ling Chen et al. (2018) conducted an empirical study in Australia, the USA, and Canada to identify key employability skills for maritime business graduates. Findings highlight the importance of communication, problem solving, adaptability, teamwork, and digital literacy. As the industry shifts toward digitalisation, future graduates must manage technology effectively, adapt quickly, and demonstrate strong communication and multilingual skills [27].

Peggy Shu-Ling Chen et al. (2018) examined employability skills for maritime business graduates through research in Australia, the USA, and Canada. Key skills identified include communication, problemsolving, adaptability, digital literacy, and teamwork. As the industry moves toward digitalization, graduates must manage technology effectively. Future demands emphasize adaptability, strong communication, computer proficiency, work ethic, and multilingual Mallam Steven C. (2020)capabilities. et.al

transformation of traditional roles underscores the need for strategic workforce planning, training, development initiatives to ensure a smooth transition and maintain operational excellence. the literature on automation within maritime contexts underscores a complex interplay between technological advancement and workforce management challenges [28]. The transition towards more automated and autonomous maritime operations presents opportunities for enhanced efficiency, safety, and environmental sustainability. However, it also necessitates a proactive and comprehensive approach to managing the workforce implications, including skill development, job role adaptation, and ethical considerations. Future research should focus on developing integrative frameworks that address these challenges, facilitating a balanced and sustainable integration of automation technologies in the maritime industry [29].

2.2 Theoretical Perspectives on Workforce Management and Their Maritime Relevance

Understanding labour management theories is crucial for navigating the transformational impact of technology on the marine industry. This literature study examines how known labour management theories apply to the marine industry, taking into account the growing influence of This article aims to connect theoretical technology. frameworks to practical applications for strategic workforce planning and development in the marine sector [30]. Ogola and Nwaoligbo's (2020) The Scientific Management concept emphasizes optimizing work processes in order to boost efficiency and productivity. Taylor's ideas were groundbreaking in the early twentieth century, but with automation, they must be reconsidered in the maritime sector. Automating formerly manual tasks calls into question traditional notions of productivity and efficiency, pointing to a shift towards a paradigm that seamlessly integrates human and machine capabilities [31].

The Human Relations Movement, led by Progoulaki and Theotokas (2010), emphasizes human needs and social elements of work, offering a counterpoint to Scientific Management. This approach is especially relevant in the context of marine automation, where job displacement and reconfiguration need a greater knowledge of human aspects of labour management [32]. As organizations transition to more automated operations, it's crucial to priorities employee satisfaction, motivation, and engagement. This requires strategies that foster a

positive work environment and support employee adaptation to new technologies. Workforce management ideas remain relevant and adaptable to the marine industry, despite fast technology improvements and automation [33]. Using theoretical frameworks can help maritime organizations develop effective workforce management strategies that address both current automation demands and future trends, leading to a more resilient and adaptable maritime industry.

2.3 The Influence of Automation on Workforce Behavior and Roles

Automation in the marine industry has led to increased efficiency and safety, but has also impacted conventional employment relationships. This literature analysis examines the influence of automation on labour management in the marine sector, using several academic sources to get a comprehensive grasp of the Automation, which uses technology to do activities without human interaction, is increasingly used in marine operations such as navigation, cargo handling, and vessel repair [34]. The influence of automation on the marine workforce is significant and diverse. Hanzu-Pazara et al. (2008) examine the socioeconomic impact of automation on marine labour, indicating a change in necessary skill sets. The rise of automation has led to a requirement for technical abilities to operate and maintain automated systems, displacing traditional marine jobs. The report emphasises the need of upskilling and retraining programs to prepare the workforce for the changing To avoid the risks of job technology world. skill displacement and obsolescence, labour management must prepare strategically throughout this transformation. While automation has potential advantages, there are worries about its socio-economic effect, especially on employment and job quality. Automated technologies have displaced conventional responsibilities, raising concerns about job losses and the devaluation of marine labour. Baum-Talmor and Kitada (2022) claim that automation may lead to new job possibilities in the operation and maintenance of automated technology, indicating that the influence on employment may be more complex than previously The research on how automation affects worker dynamics in the marine industry is complicated. Automation improves operating efficiency and safety, but also presents issues for worker management [35]. The shift to automation requires a planned approach to skill development, training, and labour market adaption.

Further study is needed to properly comprehend the long-term ramifications of automation in the marine sector and establish appropriate human-technological transition methods. Understanding the changing nature of the labour market requires a critical viewpoint. Irmina Durlik et al. (2025) explores the transformative role of real-time AI agents in autonomous maritime transport. The study highlights AI's contribution to safety, efficiency, and sustainability through collision avoidance, anomaly detection, and emission monitoring. It addresses challenges like limited onboard computing and legal constraints, proposing solutions such as edge AI and modular systems, while outlining future directions like smart port integration. Amit Sharma et al. (2021) discusses the growing influence of digitalization and automation in maritime operations, highlighting their impact on work processes and the need to adapt Maritime Education and Training (MET). The chapter emphasizes developing digital, information-processing, and non-technical skills to meet new competency demands, offering a conceptual roadmap to guide future MET developments in response to autonomous shipping trends. Song Ding et al. (2012) highlight the growing shift toward automation in the maritime industry, particularly in navigation systems, driven by advancing technology and reduced crew sizes. While automation improves efficiency, it can reduce situational awareness, impacting performance during critical situations [36]. The paper reviews marine automation applications and evaluates their effects on overall system performance. The research on how automation affects worker dynamics in the marine industry is complicated. Automation improves operating efficiency and safety, but also presents issues for worker management. The shift to automation requires a planned approach to skill development, training, and labour market adaption [37]. Further study is needed to properly comprehend the long-term ramifications of automation in the marine sector and establish appropriate human-technological transition methods [38].

2.4 Identifying Gaps at the Intersection of Maritime Operations and Automation

Automation is transforming the marine sector by influencing personnel management and operational norms. Although the literature on this junction is extensive, there are still substantial gaps that must be addressed to fully realize the promise of automation in marine contexts. This literature analysis examines the complex relationship between marine operations and

automation technology, using academic sources to identify gaps. The literature lacks empirical data on the long-term impact of automation on labour skills and job patterns in the marine industry [39]. Krzysztof Bogusławski et al. (2022) explore the impact of Industry 4.0 on maritime transport, emphasizing the shift toward autonomous ships. A global CAWI survey reveals that future seafarers are less fearful of automation than their mentors but feel unprepared due to gaps in Maritime Education and Training (MET). The study calls for updated MET curricula and HR strategies to address automation-driven changes. Xue Li et al. (2023) examines the impact of Maritime Autonomous Surface Ships (MASS) on seafarers, emphasizing the need for a human-centred approach alongside automation. A systematic review of 101 studies highlights MASS effects on seafarer employment, tasks, skills, and risks. The study recommends adapting regulations and education frameworks, offering insights for policy development and future human-centred research in autonomous maritime operations. Moreover, the literature reveals a gap in the exploration of regulatory and ethical considerations associated with maritime automation. As Hanzu-Pazara et al. (2008) note, the development and deployment of automated systems in marine environments is surpassing the establishment of international legislation and ethical frameworks to regulate their usage. This gap highlights the need of multidisciplinary research that integrates ideas from technology, law, and ethics to guide the ethical incorporation of automation into marine operations. Addressing this gap is critical for ensuring that automation advancements benefit the industry and society as a whole, while avoiding unintended consequences such as increased vulnerability to cyber threats or the erosion of human oversight in critical decision-making processes. The gaps in the literature show the need for a comprehensive approach to investigating the effect of automation on the marine labour and industry practices. Future study should use both quantitative and qualitative methods to capture the intricate interaction between technology, human factors, and regulatory frameworks. Such an approach would not only close current knowledge gaps, but would also serve as a solid platform for policymaking and strategic planning as the marine sector navigates the difficulties and possibilities posed by automation [40].

3. METHODOLOGY

The technique for performing a systematic literature review and content analysis on the influence of automation on marine labour management consists of discovering, analyzing, and synthesizing relevant material in an organized manner. This section describes the study's methodology, which includes data sources, a search strategy, inclusion and exclusion criteria, selection criteria, and data analysis techniques.

3.1. Data Sources

This review's key data sources were academic databases such as Scopus, Web of Science, PubMed, and Google Scholar. These databases were selected because they provide extensive coverage of literature in marine studies, automation technologies, workforce management, and occupational psychology. Furthermore, materials from industry organizations, government publications, and respectable marine and automation technology websites were evaluated to reflect a wide range of opinions on the matter [41].

3.2 Search Strategy

The search strategy employed a systematic and comprehensive approach to capture a wide range of relevant literature. A combination of keywords and phrases was used, including terms such as "automation," "maritime industry," "workforce management," "employment," "skill development," and "occupational well-being." Boolean operators, specifically AND and OR, were strategically applied to combine these terms in various configurations, ensuring a broad yet focused search. The initial search was conducted without time restrictions, aiming to gather foundational literature across the field. Following this, a more targeted search was performed, focusing on publications from the past ten years to ensure the inclusion of the most recent and relevant research, particularly those technological advancements and their implications for the maritime industry and workforce management.

3.3 Inclusion and Exclusion Guidelines for Literature Review

This systematic review used specified inclusion and exclusion criteria to identify relevant and high-quality papers for analysis. The inclusion requirements required peer-reviewed journal articles, conference papers, and books on the influence of automation in the marine

sector and labour management. This included research that provided empirical data, theoretical frameworks, or systematic reviews on how automation affects employment, skill development, and occupational wellbeing in the marine industry. To ensure uniformity, all publications reviewed have to be in English. exclusion criteria prioritize academic rigour by excluding non-peer-reviewed publications, opinion pieces, and editorials. Studies linked to automation or the marine sector, but not directly addressing worker management, were omitted. To prevent translation errors, non-English literature was excluded from the review process. The literature selection strategy intended to build a meaningful dataset for analyzing the influence of automation on marine personnel management.

3.4 Selection Criteria

The selection method consisted of two stages: an initial screening based on titles and abstracts, followed by a full-text review. In the first step, publications were evaluated to ensure that they were relevant to the study's emphasis on the effect of automation on the marine labour. In the second step, the entire texts of possibly relevant publications were thoroughly evaluated against the inclusion and exclusion criteria. The final selection of studies to include in the review was based on their direct relevance to the research objectives, methodological rigour, and addition to the body of knowledge on the issue.

4. RESULT

The results of this study provide a comprehensive breakdown of the impact of automation on workforce dynamics in the maritime industry, as gathered from various regional and global data sources. The findings highlight key trends in vessel types, regional maritime activities, and the growing shift towards automation in shipping operations. As automation port and technologies are increasingly integrated, the study also examines the evolving skill requirements for maritime professionals, focusing on the growing demand for technical expertise in automation systems. cybersecurity, and remote operations. Additionally, the results underscore the economic implications of automation, such as shifts in labor demand and the associated impacts on employment patterns. With automation, while operational efficiency and safety are improved, challenges like job displacement, skill gaps,

and the need for retraining programs become apparent. The study's findings emphasize the importance of adapting workforce development strategies and regulatory frameworks to address these challenges while capitalizing on the benefits of automation in the maritime sector.

Table 1.Total breakdown by region

Count ry	Indone sia	Pana ma	Japan	China	US
Numb er of vessels	8782	8052	5289	4287	3611
Best 3 expert s	•	petrol, coal, banan as		Communications paraphernalia , processors, office machine parts	gasoli ne,

Indonesia has the highest number of vessels (8782), followed by Panama and Japan. Major exports vary by country, including energy resources, vehicles, electronics, and communication equipment across different regions.

Vessel share

Table 2:

3
9
3
-

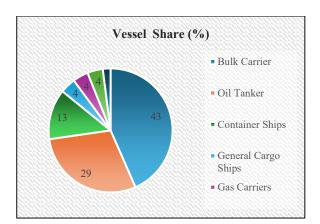


Fig 2: Vessel share

The data indicates that Bulk Carriers dominate the vessel share with 43%, reflecting their crucial role in transporting large volumes of unpackaged bulk goods like coal and grain. Oil Tankers follow with 29%, showing significant activity in petroleum transportation. Container Ships account for 13%, essential for intermodal freight. General Cargo Ships, Gas Carriers, and Off Shore vessels each make up 4%, indicating their moderate but important roles in diverse cargo, liquefied gas, and offshore operations respectively. Chemical Tankers represent the smallest share at 2%, specialized for transporting hazardous or chemical liquids. Overall, bulk and oil dominate maritime shipping.

Table 3:

Outlay and Expenditure for the Ports and Shipping Sector (₹ in Crores)

Year	Revenue Expenditure	Capital Expenditure	Total Expenditure
2022-	Expenditure	Expenditure	Expenditure
-	1 000 20	(79.4	1 (07 70
2023	1,009.30	678.4	1,687.70
(Actual)			
2023-			
2024	1 150 52	1 069 21	2 210 74
(Budget	1,150.53	1,068.21	2,218.74
Estimate)			
2023-			
2024	1 220 77	1 166 45	2 205 12
(Revised	1,228.67	1,166.45	2,395.12
Estimate)			
2024–			
2025	1 267 62	1 077 02	2 245 55
(Budget	1,267.62	1,077.93	2,345.55
Estimate)			

Fig 3: Outlay and Expenditure for the Ports and Shipping Sector (₹ in Crores)

The data reveals a consistent increase in both revenue and capital expenditure in the Ports and Shipping sector from 2022–2023 to 2024–2025. This upward trend indicates a strong focus on infrastructure development and modernization, likely driven by automation and digitalization efforts. The significant rise in capital expenditure reflects investment in advanced technologies, which may impact workforce dynamics by reducing manual labor needs and emphasizing skill-based roles in maritime operations.

Table 4:

Percentage of Vessels Using Compliant Low-Sulphur Fuel & Green Initiatives in Indian Ports (2020–2023)


Year		Vessels <0.5% ur Fuel	Ports Offering Shore Power	Number of LNG- Fueled Vessels Registered in India
2020	65%		1	2
2021	82%		3	4
2022	94%		5	7
2023	98%		7	11
	_			

The data reflects a clear and progressive shift towards sustainable maritime practices in India. From 2020 to 2023, the percentage of vessels using <0.5% sulphur fuel increased significantly from 65% to 98%, showcasing strong compliance with global emission norms.

Simultaneously, ports offering shore power—an essential feature for reducing emissions while docked—expanded from just 1 to 7. Additionally, the number of LNG-fueled vessels registered in India grew from 2 in 2020 to 11 in 2023. These trends highlight the maritime sector's commitment to decarbonization, green port initiatives, and the adoption of cleaner fuel technologies.

Table 5:Impact of different challenges in the shipping Industry

Challenge Category	Specific Issues	Impacts
Geopolitical and Weather Challenges	Red Sea conflict, Panama Canal drought, extreme weather (hurricanes, storms)	rerouting,
Logistical Challenges	Port congestion, extended transit times (Asia to North America, Europe)	shinning time
Operational Efficiency Challenges	Increased fuel costs, food price rise, excess inventory	consumer
	Real-time tracking, connected networks, data analysis	•

Fig 4: Impact of Different Challenges in the Shipping Industry (2024)

4. DISCUSSION OF FINDINGS

1. Impact on Workforce Skills:

The shift towards automation in the maritime industry necessitates a transformation in workforce skills. As traditional manual labor roles diminish, there is a growing demand for workers skilled in automation technologies, IT management, and digital literacy. Workers need to adapt to roles that focus on system management, software operation, and technological problem-solving. The evolution in skill requirements underscores the need for continuous workforce training, ensuring that maritime professionals remain relevant in an increasingly automated environment, thereby enabling them to manage new technologies effectively.

2. Job Displacement and Re-skilling Needs

One of the primary concerns highlighted by the findings is job displacement due to automation, particularly for roles that involve routine and manual tasks. While automation leads to more efficient and safer operations, it also reduces the need for certain jobs, thus increasing the demand for re-skilling programs. The maritime sector must invest in upskilling workers for higher-tech roles, such as operating autonomous vessels and managing smart systems. This re-skilling process is essential to ensure a smooth transition and mitigate the socio-economic impacts of technological displacement.

3. Psychological Impact of Automation

Automation's integration into the maritime industry brings not only technical but also psychological challenges. The findings indicate that automation, while enhancing operational efficiency, may create stress and job insecurity among workers, leading to concerns over job stability. Workers in traditional roles might feel alienated by technological advances, causing anxiety about their future in the industry. Addressing these concerns requires establishing support systems, health initiatives, including mental transparent communication, and proactive engagement with employees to help them navigate these changes smoothly.

4. Ethical and Safety Concerns

With the rise of automation, ethical concerns in maritime operations are becoming more prominent, particularly regarding worker safety and autonomy. While

automation is designed to reduce human error and enhance safety, it may also lead to unforeseen issues, such as lack of human oversight in critical situations. The ethical implications of fully autonomous vessels, especially in cases of accidents or equipment failure, require thorough consideration. To ensure the safety of both workers and the environment, it is crucial to maintain human oversight while advancing automation technologies.

5. The Role of Education and Training Programs

The findings highlight the urgent need for educational reforms to align with the demands of an automated maritime industry. Existing training programs focused on traditional maritime skills are inadequate to address the technological shift. There is a clear need for curricula that incorporate automation, cybersecurity, and digital tools. Collaborative efforts between maritime academies and industry stakeholders will ensure the next generation of maritime professionals is adequately prepared to handle the complexities of an automated environment, enhancing the overall efficiency and safety of maritime operations.

5. CONCLUSIONS AND RECOMMENDATIONS

The integration of automation into the maritime industry presents significant opportunities to improve operational efficiency, safety, and sustainability. However, it also poses challenges, especially related to workforce management. Automation reduces the need for manual labor but increases demand for workers with advanced technical skills, creating a critical gap in existing training programs. The findings of this study emphasize the need for robust re-skilling initiatives to address job displacement and ensure workers remain competitive in the evolving industry. Additionally, the psychological impacts of automation on employees must be addressed through proactive support systems.

Regulatory frameworks need to adapt to the changes brought by automation, particularly concerning the safety of autonomous ships and the ethical implications of reducing human oversight. A collaborative effort between maritime companies, regulatory bodies, and educational institutions is crucial to ensure a seamless transition to a more automated maritime workforce. This collaboration will also facilitate the development of safety protocols, ethical guidelines, and up-to-date training programs. It is recommended that the maritime

industry invests in continuous professional development and re-skilling programs, particularly in digital literacy, automation technologies, and cybersecurity. Furthermore, policymakers should focus on creating regulations that ensure safe integration of autonomous technologies while protecting workers' welfare and job security. Future research should explore the long-term effects of automation on the maritime workforce and evaluate the effectiveness of training initiatives.

Statements and Declarations

Ethical Approval

"The submitted work is original and not have been published elsewhere in any form or language (partially or in full), unless the new work concerns an expansion of previous work."

Consent to Participate

"Informed consent was obtained from all individual participants included in the study."

Consent to Publish

"The authors affirm that human research participants provided informed consent for publication of the research study to the journal."

Funding

"The authors declare that no funds, grants, or other support were received during the preparation of this manuscript."

Competing Interests

"The authors have no relevant financial or non-financial interests to disclose."

Availability of data and materials

"The authors confirm that the data supporting the findings of this study are available within the article."

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

REFERENCE

- [1] M. Shahbakhsh, G. R. Emad, and S. Cahoon, "Industrial revolutions and transition of the maritime industry: The case of Seafarer's role in autonomous shipping," *The Asian Journal of Shipping and Logistics*, vol. 38, no. 1, pp. 10–18, Mar. 2022, doi: 10.1016/j.ajsl.2021.11.004.
- [2] M. Wahlström, J. Hakulinen, H. Karvonen, and I. Lindborg, "Human Factors Challenges in Unmanned Ship Operations Insights from Other Domains," *Procedia Manufacturing*, vol. 3, pp. 1038–1045, 2015, doi: 10.1016/j.promfg.2015.07.167.
- [3] D. Šakan, I. Rudan, S. Žuškin, and D. Brčić, "Near Real-time S-AIS: Recent Developments and Implementation Possibilities for Global Maritime Stakeholders," *Pomorstvo (Online)*, vol. 31, no. 1, pp. 211–218, Dec. 2018, doi: 10.31217/p.31.1.6.
- [4] I. Mariani and I. Bianchi, "Conceptualising Digital Transformation in Cities: A Multi-Dimensional Framework for the Analysis of Public Sector Innovation," *Sustainability*, vol. 15, no. 11, p. 8741, May 2023, doi: 10.3390/su15118741.
- [5] T. Kim, A. Sharma, A. H. Gausdal, and C. Chae, "Impact of automation technology on gender parity in maritime industry," *WMU J Marit Affairs*, vol. 18, no. 4, pp. 579–593, Dec. 2019, doi: 10.1007/s13437-019-00176-w.
- [6] I. Conev and T. Koritarov, "Alternative educational models for sustainable development of maritime education," in *Proceedings of 3rd International Scientific Conference Industrial Growth Conference 2024*, Az-buki National Publishing House, Feb. 2025, pp. 258–268. doi: 10.53656/igc-2024.24.
- [7] F. Glaviano *et al.*, "Management and Sustainable Exploitation of Marine Environments through Smart Monitoring and Automation," *JMSE*, vol. 10, no. 2, p. 297, Feb. 2022, doi: 10.3390/jmse10020297.
- [8] M. J. Smith and P. Carayon, "New technology, automation, and work organization: Stress problems and improved technology implementation strategies," *Int. J. Hum. Factors*

- Manuf., vol. 5, no. 1, pp. 99–116, Dec. 1995, doi: 10.1002/hfm.4530050107.
- [9] "The Impact of AI Integration on Workforce Dynamics: Legal Challenges and Labour Law Implications in the Era of Business Technology Transformation," in *Advances in Business Information Systems and Analytics*, IGI Global, 2024, pp. 277–300. doi: 10.4018/979-8-3693-4187-2.ch013.
- [10] T. Ciarli, M. Kenney, S. Massini, and L. Piscitello, "Digital technologies, innovation, and skills: Emerging trajectories and challenges," *Research Policy*, vol. 50, no. 7, p. 104289, Sep. 2021, doi: 10.1016/j.respol.2021.104289.
- [11] C. De Holanda Araujo, "Automation and skill evolution: examining the impact on workforce skillsets in the mining industry," 2024, doi: 10.14288/1.0440685.
- [12] M. R. Kelley, "New Process Technology, Job Design, and Work Organization: A Contingency Model," *American Sociological Review*, vol. 55, no. 2, p. 191, Apr. 1990, doi: 10.2307/2095626.
- [13] S. K. Parker and G. Grote, "Automation, Algorithms, and Beyond: Why Work Design Matters More Than Ever in a Digital World," *Applied Psychology*, vol. 71, no. 4, pp. 1171–1204, Oct. 2022, doi: 10.1111/apps.12241.
- [14] B. Martini, D. Bellisario, and P. Coletti, "Human-Centered and Sustainable Artificial Intelligence in Industry 5.0: Challenges and Perspectives," *Sustainability*, vol. 16, no. 13, p. 5448, Jun. 2024, doi: 10.3390/su16135448.
- [15] A. I. Almusharraf, "Automation and Its Influence on Sustainable Development: Economic, Social, and Environmental Dimensions," *Sustainability*, vol. 17, no. 4, p. 1754, Feb. 2025, doi: 10.3390/su17041754.
- [16] C. Claramunt *et al.*, "Maritime data integration and analysis: recent progress and research challenges." OpenProceedings.org, 2017. doi: 10.5441/002/EDBT.2017.18.
- [17] M. Zhang and S. Yu, "A review on the preparedness of Chinese maritime law education for emerging industry and technology trends: Sustainable net-zero shipping, maritime digitalization, and application of artificial intelligence technologies," *Sustainable Futures*, vol. 9, p. 100752, Jun. 2025, doi: 10.1016/j.sftr.2025.100752.

[27]

- IJSREM e-Journal
 - [18] S. Werbińska-Wojciechowska, R. Giel, and K. Winiarska, "Digital Twin Approach for Operation and Maintenance of Transportation System—Systematic Review," *Sensors*, vol. 24, no. 18, p. 6069, Sep. 2024, doi: 10.3390/s24186069.
 - [19] Y. Zou, G. Xiao, Q. Li, and S. A. Biancardo, "Intelligent Maritime Shipping: A Bibliometric Analysis of Internet Technologies and Automated Port Infrastructure Applications," *JMSE*, vol. 13, no. 5, p. 979, May 2025, doi: 10.3390/jmse13050979.
 - [20] S. H. Bonilla, H. R. O. Silva, M. Terra Da Silva, R. Franco Gonçalves, and J. B. Sacomano, "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," *Sustainability*, vol. 10, no. 10, p. 3740, Oct. 2018, doi: 10.3390/su10103740.
 - [21] N. Rane, "Integrating Leading-Edge Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Technologies for Smart and Sustainable Architecture, Engineering and Construction (AEC) Industry: Challenges and Future Directions," *SSRN Journal*, 2023, doi: 10.2139/ssrn.4616049.
 - [22] S. Jo and E. D'agostini, "Disrupting technologies in the shipping industry: How will MASS development affect the maritime workforce in Korea," *Marine Policy*, vol. 120, p. 104139, Oct. 2020, doi: 10.1016/j.marpol.2020.104139.
 - [23] "Managing Workplace Ethics: An Extended Conceptualization of Ethical Sensemaking and the Facilitative Role of Human Resources," in *Research in Personnel and Human Resources Management*, Emerald Group Publishing Limited, 2015, pp. 121–189. doi: 10.1108/s0742-730120150000033006.
 - [24] "The Role of AI and Automation on the Future of Jobs and the Opportunity to Change Society," in *Advances in Intelligent Systems and Computing*, Cham: Springer International Publishing, 2019, pp. 348–357. doi: 10.1007/978-3-030-16187-3 34.
 - [25] M. Belabyad, C. Kontovas, R. Pyne, and C.-H. Chang, "Skills and competencies for operating maritime autonomous surface ships (MASS): a systematic review and bibliometric analysis," *Maritime Policy & Management*, pp. 1–

- 26, Mar. 2025, doi: 10.1080/03088839.2025.2475177.
- [26] A. J. Wohlleber, M. Bock, H. Birkel, and E. Hartmann, "Implementing Vital Dynamic Capabilities to Succeed in Digital Transformation: A Multiple-Case Study in Maritime Container Shipping," *IEEE Trans. Eng. Manage.*, vol. 71, pp. 13627–13645, 2024, doi: 10.1109/tem.2022.3201770.

O. Oliinyk, N. Bevz, I. Shuliakov, and I.

- Derevianko, "The Impact of Multilingual Education On Developing Communication Skills for University Students Within Foreign Language Learning," *TRANSLANG*, vol. 23, no. 1, pp. 125–142, Jul. 2024, doi: 10.52919/translang.v23i1.973. [28] I. N. Theotokas, I. N. Lagoudis, and K. Raftopoulou, "Challenges of maritime human resource management for the transition to shipping digitalization," *J. shipp. trd.*, vol. 9, no. 1, Mar. 2024, doi: 10.1186/s41072-024-00165-0.
- [29] Y. Autsadee, J. Jeevan, N. H. B. Mohd Salleh, and M. R. B. Othman, "Digital tools and challenges in human resource development and its potential within the maritime sector through bibliometric analysis," *Journal of International Maritime Safety, Environmental Affairs, and Shipping*, vol. 7, no. 4, Oct. 2023, doi: 10.1080/25725084.2023.2286409.
- [30] L. D. Caesar, "Emerging Dynamics of Training, Recruiting and Retaining a Sustainable Maritime Workforce: A Skill Resilience Framework," *Sustainability*, vol. 16, no. 1, p. 239, Dec. 2023, doi: 10.3390/su16010239.
- [31] M. A. Vonderembse, T. S. Raghunathan, and S. Subba Rao, "A post-industrial paradigm: To integrate and automate manufacturing," *International Journal of Production Research*, vol. 35, no. 9, pp. 2579–2600, Sep. 1997, doi: 10.1080/002075497194679.
- [32] V. O. Gekara and V. Thanh Nguyen, "New technologies and the transformation of work and skills: a study of computerisation and automation of Australian container terminals," *New Technol Work Employ*, vol. 33, no. 3, pp. 219–233, Nov. 2018, doi: 10.1111/ntwe.12118.
- [33] Y. Autsadee, J. Jeevan, N. H. Mohd Salleh, and M. R. Othman, "Digital wind of changes: navigating competitiveness in the maritime sector through the transformation in

- human resource development," *MABR*, vol. 9, no. 3, pp. 204–228, Sep. 2024, doi: 10.1108/mabr-11-2023-0079.
- [34] K. Pazouki, N. Forbes, R. A. Norman, and M. D. Woodward, "Investigation on the impact of human-automation interaction in maritime operations," *Ocean Engineering*, vol. 153, pp. 297–304, Apr. 2018, doi: 10.1016/j.oceaneng.2018.01.103.
- [35] A. Alhammadi *et al.*, "Enhancing Safety and Efficiency: Automation to Eliminate Human Interventions from Rig Operations Through Fully Automated Tubular Handling System," in *SPE/IADC Middle East Drilling Technology Conference and Exhibition*, Abu Dhabi, UAE: SPE, May 2025. doi: 10.2118/225709-ms.
- [36] D. B. Kaber and M. R. Endsley, "The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task," *Theoretical Issues in Ergonomics Science*, vol. 5, no. 2, pp. 113–153, Mar. 2004, doi: 10.1080/1463922021000054335.
- [37] S. R. Fletcher *et al.*, "Adaptive automation assembly: Identifying system requirements for technical efficiency and worker satisfaction," *Computers & Industrial Engineering*, vol. 139, p. 105772, Jan. 2020, doi: 10.1016/j.cie.2019.03.036.
- [38] H. O. Khogali and S. Mekid, "The blended future of automation and AI: Examining some long-term societal and ethical impact features," *Technology in Society*, vol. 73, p. 102232, May 2023, doi: 10.1016/j.techsoc.2023.102232.
- [39] P. Baum-Talmor and M. Kitada, "Industry 4.0 in shipping: Implications to seafarers' skills and training," *Transportation Research Interdisciplinary Perspectives*, vol. 13, p. 100542, Mar. 2022, doi: 10.1016/j.trip.2022.100542.
- [40] T. M. Johansson, D. Dalaklis, and A. Pastra, "Maritime Robotics and Autonomous Systems Operations: Exploring Pathways for Overcoming International Techno-Regulatory Data Barriers," *JMSE*, vol. 9, no. 6, p. 594, May 2021, doi: 10.3390/jmse9060594.
- [41] Y.-C. Shih, "Ocean governance in practice: A study of the application of marine

science and technology research techniques to maritime law enforcement in Taiwan," *Marine Policy*, vol. 163, p. 106081, May 2024, doi: 10.1016/j.marpol.2024.106081.