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Abstract - Gastric cancer (GC) is one of the most common 

malignant tumours that attack the stomach lining. It is the second 

most common cause of cancer-related deaths worldwide. As life 

expectancy increased by early diagnosis and  dietary patterns 

changes. A number of diagnostic techniques, such as endoscopy 

analysis, CT scans, and histopathological imaging, are frequently 

employed to identify and assess GC. Despite their effectiveness, 

these techniques are frequently labour-intensive, time-

consuming, and susceptible to inter-observer variability, all of 

which can compromise the consistency of the diagnosis.  By 

facilitating automated feature extraction, selection, and 

classification from medical images, machine learning (ML) 

techniques have been developed recently to aid in the detection 

of gastric cancer.  However, ML techniques often struggle with 

large, complex, and high-dimensional datasets and necessitate 

manual pre-processing.  Deep Learning (DL) has become a more 

sophisticated and effective way to get around these restrictions.  

DL models, as opposed to conventional methods and classical 

ML techniques, offer higher accuracy, speed, and scalability by 

automatically learning hierarchical features from raw medical 

images.  An extensive review of current DL-based methods for 

gastric cancer detection is provided in this paper.  It looks at their 

architectural layouts, benefits, drawbacks, and performance 

comparisons.  In order to enhance diagnostic accuracy and 

clinical application of DL-based systems, the review also 

identifies new research trends and makes recommendations for 

possible future paths. 
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1. INTRODUCTION  

 
Criminal actions continue to be a problem as societies evolve. 

An increase in criminal activity has a negative effect on people's 
standard of living and impedes societal and economic 
development [1]. Improving public safety and decreasing 
government expenses are two outcomes of effective crime 
prevention. The development of better geographic information 
gathering tools has made it possible to accurately capture crime 
data across areas in this era of big data. Machine learning models 
have the potential to revolutionize crime prevention in many 
different fieldsCancer develops due to both hereditary and 
environmental effects. There are both genetic and environmental 

factors that cause cancer to grow.  Environmental factors, mostly 
diet and social behaviour, may cause about 50% of cancer cases 
[1].  Tumours grow and spread over many years and in many 
stages.  Cancer usually happens after being around harmful 
chemicals that cause cancer for 20 to 30 years.  Modern medicine 
has made it possible to better identify most cancers in their later 
stages, when radical resection can lead to recovery in 50% of cases 
[2].  This paper looks at gastric cancer and other types of cancer.   

1.1 Gastric cancer 

Gastric cancer (GC) is a disease that can be caused by a 
number of things, including genetics and the environment [3].  
According to current statistics, GC is the fourth most common 
cause of cancer deaths worldwide, and the median survival time 
for people with advanced stage cancer is less than 12 months [4].  
Gastric carcinoma is a very aggressive cancer that is still a global 
health problem [5].  That's why alternative prevention, like a 
healthy diet, early diagnosis, and proper follow-up treatments, has 
led to fewer recorded incidents [6].  GC is not very common, and 
it is not common in people under 45 years old, where only 10% of 
patients have the disease. 

Diagnostic Methods for Gastric Cancer: In order to identify 
stomach cancer or evaluate associated symptoms, traditional 
medical procedures including physical examinations, blood tests 
(such as complete blood counts and serum tumour markers like 
CEA and CA 19-9), barium meal X-rays, gastric lavage cytology, 
and exploratory laparotomies were often used [7].  Nevertheless, 
these diagnostic techniques are intrusive, need a high level of 
clinical skill, and often fall short in distinguishing between benign 
and malignant tumours.  Additionally, their sensitivity for early-
stage detection is low, which results in a delayed diagnosis and 
fewer alternatives for therapy. 

For stomach cancer diagnosis, many imaging models are 
developed, including Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI), Endoscopy, and Histopathology [8]. 
The main and best method for identifying and describing stomach 
cancer among these models is endoscopy and histology. 

1.2 Diagnosis of Gastric Cancer using Histopathology Images   

Histopathology provides extremely particular information on 
the kind of tumour, such as adenocarcinoma or signet ring cell 
carcinoma, as well as the amount of differentiation and invasion 
of blood vessels or lymphatics.  The Lauren classification, which 
divides GC into intestinal and diffuse subtypes, is the most often 
used categorisation of GC [9]. Clinical aspects, genetics, 
morphology, epidemiology, and expansion qualities are some of 
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the several traits they exhibit.  Surgical choices pertaining to the 
variety of stomach resections are also influenced by this 
categorisation.  Tubular and glandular components with varying 
degrees of differentiation are included in the intestinal subtype.  
Single cells with low cohesiveness and no gland development are 
seen in the diffuse subtype [10,11].  Furthermore, GC with signet 
ring cells is very common and is categorised by the Lauren 
classification as a "diffuse type" [12].  Signet ring cell carcinoma 
is now characterised as a weakly cohesive cancer form that mostly 
consists of tumour cells with a crescent-shaped nucleus positioned 
eccentrically and abundant cytoplasmic mucus [13].  GC is 
classified as either traditional (older than 45) or early-onset (45 
years or under) based on the age upon diagnosis.  Additionally, 
some molecules, including as HER2/neu, p53, Ki-67, and E-
cadherin, may be detected by immune histochemical staining.  
These indicators may be used to identify individuals who may 
respond to certain treatments, such as trastuzumab in HER2-
positive tumours, in addition to providing information on the 
biological behaviour of the tumour.  

Figure 1 demonstrates the histopathology image of gastric 
cancer [14]. This histopathology image is vital for diagnosis since 
it clearly compares adenocarcinoma and normal stomach tissue. 
Histopathology allows for the precise identification of many 
tumor types, including those involving cellular differentiation, 
gland formation, invasion of blood arteries or lymphatics, and 
spread gastric or intestinal malignancy. The main component of 
diffuse-type tumors, which are easily visible, are signet ring cells. 
These images have the potential to impact clinical decisions by 
providing more precise information for the development of 
surgery and therapy regimens. Traditional immunohistochemistry 
markers, such as HER2, p53, and Ki-67, can be used to determine 
the efficacy of a treatment. The utilization of histopathology in 
stomach cancer diagnoses will guarantee intelligent, personalized, 
and evidence-based treatment. 

1.3 Diagnosis of Gastric Cancer using Endoscopy Images   

     Endoscopy is a minimal invasive diagnostic method that 
employs a flexible tube fitted with a light and camera known as 
an endoscope to directly see the gastrointestinal (GI) tract's 
internal lining [15].  Examining the oesophagus, stomach, and 
duodenum is made especially easy using this technique, which 
enables real-time examination of mucosal surfaces and the 
detection of anomalies such ulcers, inflammation, polyps, or 
tumours.  The most crucial first diagnostic procedure for 
suspected stomach cancer is upper gastrointestinal endoscopy, 
also referred to as upper endoscopy, 
esophagogastroduodenoscopy, or EGD.  To see the stomach 
lining, a flexible tube with a camera is sent via the mouth into the 
stomach.  The benefit of directly seeing the mucosa is that it gives 
doctors the chance to spot even the smallest alterations, such as 
small erosions, ulcers, or elevated lesions, which might be early 
indicators of gastric cancer.  

Artificial intelligence (AI) models are increasingly being used 
to improve the prediction and detection of stomach cancer 
utilising imaging methods such as endoscopy and histopathology 
images  [17]. Imaging techniques like endoscopy and 
histopathology are being employed more and more to enhance the 
prediction and diagnosis of stomach cancer via the application of 
artificial intelligence (AI) models [17]. Machine Learning (ML) 
and Deep Learning (DL), two components of AI, let doctors 
identify and categorise stomach lesions automatically, which 
improves the accuracy of diagnoses and decreases the room for 
human mistake. There are ML models that can help with treatment 

planning, identify benign from malignant stomach lesions, and 
forecast tumour growth [18]. Improvements in diagnostic 
consistency, data-driven decision-making, and fast image 
processing are all made possible by ML. Manual lesion 
annotation, which may be laborious and error-prone because of 
the complicated patterns and irregular forms of stomach tumours, 
and significant interpretation variability are still obstacles that ML 
must overcome. 

1.4 AI in Diagnosis of Gastric Cancer 

On the other hand, DL models perform better when it comes 
to detecting and diagnosing stomach cancer from medical photos.  
By dynamically learning hierarchical features from raw data, DL 
improves model accuracy and generalisation while overcoming a 
number of drawbacks of conventional ML techniques [19].  Deep 
Belief Networks (DBNs), Long Short-Term Memory (LSTM) 
networks, Convolutional Neural Networks (CNNs), and 
Recurrent Neural Networks (RNNs) are notable DL models.  In 
order to enable automatic and accurate stomach cancer diagnosis 
and classification, these models let doctors identify significant 
patterns and subtle picture characteristics from endoscopic and 
radiologic images [20].  Figure 3 shows how the DL model uses 
endoscopic pictures to identify stomach cancer. 

The purpose of this research is to provide a thorough analysis 
of the several DL classification techniques for the diagnosis of 
gastric cancer.  It examines the benefits and drawbacks of DL 
methods for identifying gastric cancer in both its early and late 
stages.  To illustrate the relative effectiveness of different 
approaches and pinpoint areas in need of more investigation, a 
comparative analysis is provided. 

 

Fig -1: Sample of histopathological image of normal cells 
and gastric cancerous cell 

 

Fig -2: Endoscopy Images of Gastric cancer 
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Fig -3: Gastric cancer detection by DL model using Endoscopy images 

 

The structure of the paper is as follows:  Deep learning 
frameworks created for the identification of stomach cancer 
utilising endoscopic and histopathology pictures are reviewed in 
Section II.  The examined approaches are contrasted in Section III 
with respect to model design, datasets, and assessment criteria.  
The effectiveness of current methods is assessed in Section IV.  A 
summary of the lessons learnt and suggestions for future research 
in automated stomach cancer detection are provided in Section V.  

2. SURVEY ON DL BASED GASTRIC CANCER 

PREDICTION MODELS USING PATHOLOGY 

AND ENDOSCOPY IMAGES 

Ahmad et al. [21] suggested an improved You Only Look 

Once (YOLO)-v7 model combined with a Squeeze and Excitation 

(SE) attention module for an automated gastric lesion 

identification system.  The purpose of this attention-powered 

YOLOv7 model was to recognise tiny stomach abnormalities in 

endoscopic pictures, such as ulcers, adenomas, and gastric 

malignancies.  The structure enhances feature extraction and 

lesion localisation by combining channel-wise attention with 

CNN-based object identification.  By precisely identifying and 

categorising various kinds of stomach lesions, our model helps 

endoscopists during real-time endoscopic treatments. 

Chae et al. [22] presented a computer-aided diagnosis 

(CADx) model to categorise gastroscopic pictures into healthy 

tissue, gastric lesions and early gastric cancer. Multi-Filter 

AutoAugment (MFAA), a data augmentation approach 

introduced in this model, filters enhanced data to preserve only 

relevant and high-quality samples. In the augmentation process, 

the Big Transfer (BiT) model acts as a supplementary filter. 

Healthy tissue, gastric lesions and early-stage stomach cancer 

were all categorised using Vision Transformer (ViT). 

Jhang et al. [23] devised a Gastric section correlation network 

(GSCNet) for gastric precancerous lesion prediction. This model 

assists to diagnose corpus-predominant gastritis index (CGI) from 

endoscopic images of three dominant gastric sections like antrum, 

body and cardia. The scaling feature fusion module extracts 

features that robustly represent mucosa despite variations in 

viewing angles and scales across gastric sections. The section 

correlation module incorporates medical knowledge to model 

inter-section relationships using three correlation losses. A 

channel attention layer was applied to each sub-network to extract 

more salient deep features for early gastric cancer prediction. 

 Jhang et al. [23] devised a Stomach Section Correlation 

Network (GSCNet) to predict stomach precancerous lesions. By 

using the endoscopic images of the antrum, body, and cardia, this 

model detects corpus-predominant gastritis index (CGI). Despite 

the differences in viewing angles and scales amongst stomach 

sections, the scaling feature fusion module was employed to 

extract representative features accurately depict mucosa. Then, a 

correlation module was introduced guided by three correlation 

losses to capture the inter-section interactions by incorporating 

prior medical information. A channel attention layer was added to 

each sub-network to extract more salient deep information for 

early gastric cancer prediction  

Mirza et al. [24] used Hybrid Rice Optimisation with DL 

(GDDC-HRODL) to create a gastrointestinal cancer detection and 

classification system. In order to improve visual characteristics, 

picture contrast was increased using Contrast Limited Adaptive 

Histogram Equalisation (CLAHE). For feature extraction, the 

HybridNet model then uses a two-path autoencoder network that 

collaborates with both reconstruction and classification pathways. 

The hyperparameters of the feature extractor were adjusted using 

Hybrid Rice Optimisation (HRO), and the final classification was 

done using an Attention-based LSTM (ALSTM). To provide 

precise gastrointestinal illness identification, the Ant Lion 

Optimisation (ALO) algorithm was used to optimise the ALSTM 

model. 

Zubair et al. [25] presented a DL based gastric cancer 

prediction called DL-GHCS using digital histopathology images. 

Images were classified as normal or abnormal using a Gaussian 

Mixture Model (GMM) improved Expectation-Maximizing 

Naïve Bayes (EM-NB) classifier.  An enhanced fuzzy c-means 

(IFCM) clustering technique was introduced for segmentation, 

which precisely identifies malignant areas. The approach 

highlights pertinent regions in the tissue images for early stomach 

cancer identification integrating Grad-CAM for interpretability 

for clinical diagnosis. 

Tran et al. [26] created GIFCOS-DT a one-stage DL model 

based on the Fully Convolution One-Stage (FCOS) architecture to 

predict gastrointestinal tract lesions from endoscopic images.  

This approach improves the lesion prediction for irregular or 

elongated forms by using a unique Distance Transform (DT) 

based loss function.  To speed up the processing times of every 

system step, a multithread approach was used.   The Jetson Xavier 

and other edge devices use the model, which was created for real-

time application, to help physicians with endoscopic treatments. 

Lee et al. [27] devised an automated gastric lesion detector 

named theYOLO with Meta Recognition (YOLO-MR) model to 

efficiently detect ulcer, adenoma and cancer using endoscopic 

cancer.  YOLOv7 was used to manage object recognition while 

taking into account class imbalance and the features of medical 
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data. To swiftly adjust to new or unbalanced data, model-agnostic 

meta-learning (MAML) was used.  Residual blocks were used to 

minimize the gradient loss and facilitate deeper network learning.   

Gastric lesions were found by including meta-learning for 

optimum weights into the YOLO model.  

Bui et al. [28] created a spatially-constrained and 

unconstrained bi-graph interaction network, known as SCUBa-

Net for classifying colorectal, prostate, stomach and bladder 

malignancies using the multi-organ pathological images.  To 

categorise pathology images, this model uses a bi-graph neural 

network (Bi-GNN) model that blends Transformers and Graph 

Convolutional Networks (GCNs).  Each picture is processed as 

two graphs, one geographically unconstrained (totally linked) and 

one spatially limited (based on local node connections).  Through 

specialised attention blocks, these two graph representations 

interact both locally and globally to effectively classify images of 

multi-organ cancer tissue. 

Yang et al. [29] developed SegRep a mask-supervised 

learning technique for segment representation in pathology 

images for predicting stomach cancer.  This method effectively 

extracts the specific tissue segments in pathological images.   It 

modifies traditional CNNs by applying dual-level masking to both 

input images and feature maps, allowing it to focus only on target 

tissue regions. These masked features were then utilised to 

generate segment-specific, high-quality representations using a 

self-supervised learning (SSL) framework. Finally, stomach 

cancer was detected using K-Nearest Neighbour. 

 Almarshad et al. [30] presented a novel snake optimisation 

method with a DL-assisted gastrointestinal cancer classification 

(SOADL-GCC). This model combines a Deep Belief Network 

(DBN) for final classification, a Capsule Network (CapsNet) for 

feature extraction, and bilateral filtering (BF) for picture 

preprocessing.  Snake Optimisation Algorithm (SOA) 

hyperparameter tweaking was used to maximise CapsNet's 

performance.  The automatic categorisation of gastrointestinal 

cancer from endoscopic pictures is improved by this combination 

method. 

 Mudavadkar et al. [31] devised an Ensemble DL model 

(EDL) to diagnose stomach cancer using digital histopathology 

images.  The decision areas of the model were visualised using 

Class Activation Mapping (CAM).  The ensemble method makes 

use of VGGNet16 for fine-grained feature extraction and 

ResNet34 for depth-wise learning.  By examining sub-size picture 

patches, this approach can identify stomach cancer early and may 

lessen the need for expensive digital scanners while increasing 

diagnostic effectiveness. 

Almasoud et al. [32] created developed an African Vulture 

Optimisation Algorithm with Transfer Learning (GICDC-

AVOADL) to construct a Gastro-Intestinal Cancer Detection and 

Classification system.  An enhanced EfficientNet-B5 network is 

used by the model to extract deep features.  EfficientNet-B5's 

hyperparameters were optimised using the African Vulture 

Optimisation Algorithm (AVOA).  Furthermore, the final 

identification and classification of gastrointestinal malignancies 

was carried out using the Dilated Convolutional Autoencoder 

(DCAE).  

Haq et al. [33] introduced an efficient hybrid cascaded DL 

model (HCDL) for the precise multi-classification and 

segmentation of stomach cancer from endoscopic images.  In 

order to categorise endoscopic images into three categories like 

normal, early gastric cancer and advanced gastric cancer, the 

method combines a modified GoogLeNet with ViT.  The Faster 

R-CNN technique is used in this model to precisely localise 

malignant areas.  Following classification, Faster R-CNN creates 

labels and bounding boxes that precisely identify invasive regions, 

therefore detecting and segmenting areas of stomach cancer. 

Liu et al. [34] introduced an Immune Checkpoint Inhibitors 

Response Network (ICIsNet) for gastric cancer. Using 

histopathological whole slide pictures, EfficientNet-B4, 

DenseNet121, and Swin Transformer V2 were trained to extract 

characteristics relevant to tumours.  The prediction score 

(ICIsRS), which indicates a patient's probable response to first-

line PD-1 inhibitor combination chemotherapy, was created by 

integrating these models into an ensemble known as ICIsNet.  By 

determining which patients are most likely to benefit from 

immunotherapy, this method allows for individualised treatment 

planning. 

Jasphin & Merry Geisa [35] developed an Multimodal DL 

(MMDL) model system for automated identification of gastric 

cancer using endoscopic images.  This model makes use of three 

fundamental models like Xception network for classification, the 

Bidirectional Convolutional Gated Recurrent Unit Dense U-Net 

(BCGDU-Net) for segmentation, and Google's AutoAugment for 

data augmentation.  The BCGDU-Net efficiently segments gastric 

lesions by combining dense convolution layers with a 

bidirectional Convolutional Gated Recurrent Unit (ConvGRU).  

For a precise prediction of stomach cancer, the Xception network 

then divides the segmented areas into malignant and non-

cancerous groups. 

Khayatian et al. [36] devised a hybrid DL (HDL) and 

CatBoost (CatB) method for stomach cancer diagnosis utilising 

histopathology images. The key areas in this model were 

visualised using Grad-CAM, and the feature clustering was 

visualised using t-distributed Stochastic Neighbour Embedding (t-

SNE).  Softmax was used for the prediction of stomach cancer, 

while EfficientNetV2B0 was used for feature extraction. 

Park et al. [37] created a lightweight hyperspectral imaging 

system combined with artificial intelligence for gastric cancer 

detection. In order to capture intrinsic tissue optical features, our 

model made use of hyperspectral imaging and structured lighting. 

Based on these characteristics, a ViT model is used to categorise 

tissue types such as normal, adenoma, and malignancy. Accurate 

stomach cancer identification was made possible by the 

development of a revolutionary image processing technique that 

aligns pathology data with imaging at the pixel level. 

Zhang et al. [38] constructed a Multimodal Severity rating of 

stomach Cancer (MSGC), a multimodal approach for rating the 

severity of stomach cancer utilising endoscopic images and 

diagnostic texts. This model adopts Bidirectional Encoder 

Representations from Transformers (BERT) for semantic text 

interpretation and an improved Residual Network with 

Aggregated Transformations (ResNeXt) for visual feature 

extraction.  Through the alignment of same-category samples in 

the feature space, contrastive learning enhances intra-class 

similarity.  A multi-head attention module (MHAM) highlights 

key characteristics.  To encourage reciprocal learning across 

visual and textual modalities, a unique loss function combines 

contrastive loss with cross-entropy loss. 

Kang et al. [39] developed a DL-based clinical decision 

support system (DL-CDSS) for early gastric cancer prediction. 

This model predicts lymph node metastases and lymphovascular 

invasion in patients for cancer prediction by combining 
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endoscopic pictures with real-world clinical data, such as 

demographics, biopsy results, and CT findings.  The transformer 

model combines a multimodal classification model that combines 

CNN and random forest (RF) with an image-only model that uses 

a simple CNN.  Whether a patient should have a gastrectomy or 

endoscopic resection, this method helps doctors make well-

informed judgements. 

Zubair et al. [40] created a multi-channel attention 

mechanism (MCAM) in conjunction with transfer learning (TL) 

to categorise stomach cancer using histopathology images.  With 

CNN backbones (Inception-V3, VGG-16, and Xception, 

respectively), this model combines three complementing attention 

channels, such as multi-scale global information, multi-scale 

spatial information, and multi-scale spatial information.  

Together, these channels improve model interpretability and 

feature extraction, especially when using Grad-CAM 

visualisations.  The framework is intended for the categorisation 

of medical images, particularly to help with the early and precise 

detection of stomach cancer from histopathology slides. 

Khan et al. [41] constructed a network-level fused DL 

technique to classify gastrointestinal cancer using wireless 

capsule endoscopy (WCE) images.  Sparse Convolutional 

DenseNet201 with Self-Attention (SC-DSAN) improves feature 

concentration on illness areas and lowers computing burden by 

using sparse convolutions and self-attention.  CNN-GRU captures 

temporal relationships in WCE picture sequences by combining 

CNN for spatial feature extraction with a Gated Residual Unit 

(GRU).  The Entropy-controlled Marine Predators Algorithm 

(EMPA) and Bayesian Optimisation (BO) were used to optimise 

the features. Lastly, a Shallow Wide Neural Network (SWNN) 

was used to classify gastrointestinal cancer. 

       The comparison of several DL-based gastric cancer 

prediction models utilising pathological and endoscopic images is 

shown in Table 1.

Table -1: Assessment of Various DL Based Gastric Cancer Prediction using pathology and endoscopy images 

 

Ref No, 

Author & 

year 

Techniques Used Advantage Disdvantage Dataset Performance 

Evaluation 

[21] 

Ahmad et al.   

(2023) 

YOLOv7 object 

detection model, 

CNN with SE 

attention module 

Effective small 

lesion 

localization, 

reduces 

dependence on 

endoscopist 

expertise, 

Needs large 

annotated 

dataset, Model 

trained on 

private data, 

may not 

generalize well 

61,734 endoscopic 

images collected 

from a hospital in 

Korea (2018–2021) 

Precision: 72%; 

Recall: 69%; F1-

Score: 71% 

mean Average 

Precision (mAP): 

71% 

[22] 

Chae(2023) 

ViT, MFAA, BiT Better 

generalization 

due to filtering 

low-quality 

augmented data, 

Works well on 

complex 

medical images 

High 

computational 

cost, loner 

training time, 

lower accuracy 

on larger 

datasets 

Gyeongsang 

National University 

Hospital and AI 

Hub, Korea with 

endoscopic images 

of 

600 healthy tissue 

images, 300 

abnormal lesion 

images, 300 early 

gastric cancer 

images 

 

Abnormalities vs 

Healthy Tissue 

F1-score: 0.87 

Area Under Curve 

(AUC): 0.94 

EarlyGastric Cancer 

vs. Non-Cancerous 

Lesions 

F1-score: 0.92 

AUC: 0.97 

[23] 

Jhang 

(2023) 

Scaling Feature 

Fusion Module, 

Section Correlation 

Module, 

Channel Attention 

Layer 

Applies prior 

medical 

knowledge, 

effectively 

handles 

variation in 

image angles 

and scales 

Complex 

design may not 

suit low-

resource 

settings, Image 

quality 

variations can 

reduce 

performance 

304 patients, each 

patient has 3 

endoscopic images 

collected from two 

hospitals in Taiwan 

Accuracy = 95.7%;  

Sensitivity: 93.8%;  

Specificity: 96.2% 

[24] 

Mirza 

(2023) 

HybridNet,  

HRO, ALSTM,  

ALO, two-path 

autoencoder 

network 

Enhances image 

clarity, better 

hyperparameter 

optimization, 

Handles both 

labeled and 

unlabeled data   

Multiple 

optimization 

steps leads to 

increases 

training time, 

Repeated 

retraining due to 

different 

datasets 

Kvasir Dataset 

with 5,000 labeled 

endoscopic images 

Accuracy = 99.49%;  

Sensitivity = 98.72%; 

Specificity = 99.68%;  

F1-score: 98.72% 
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[25] 

Zubair 

(2024) 

NB classifier with 

GMM, EM 

algorithm IFCM, 

Grad-CAM 

Lower 

computational 

complexity, 

visual 

explanations,   

Longer training 

time, depends 

upon manual 

feature 

extraction 

GasHisSDB: 

245,196 

histopathology 

images  HCRF: 700 

H&E-stained images 

with ground truth 

segmentation 

Accuracy 

(GasHisSDB) = 

98.47% 

Accuracy (HCRF) = 

97.31% 

[26] 

Tran (2024) 

Multithread 

technique, FCOS, 

DT 

Better detection 

of irregular-

shaped lesions, 

real –time 

capability   

Lower accuracy 

on subtle 

lesions, 

performance 

drops with low-

resolution input 

Kvasir-SEG with 

Public dataset with 

1,000 polyp images. 

IGH_GIEndoLesion-

SEG with  5,211 

endoscopic images 

from 2,543 patients 

Average Precision 

(AP) 50 (Kvasir-

SEG): 81.3% 

(GIFCOS-DT), 

+4.2% over FCOS 

AP50 

(IGH_GIEndoLesion-

SEG): 57.5% 

(GIFCOS-DT), 

+7.2% over FCOS 

[27] 

Lee (2024) 

YOLOv7, MAML, 

Residual Blocks 

Handles class 

imbalance 

effectively,  

achieves high 

accuracy even 

with limited data 

Longer training 

time due to 

meta-learning, 

computationally 

expensive 

during training 

phase. 

Dataset Gachon 

University Gil 

Medical Center, 

including 61,734 

endoscopic images 

across cancer, ulcer, 

adenoma, normal. 

Accuracy = 96%; 

AP (Cancer) = 0.984 

AP (Ulcer) = 0.919 

AP (Adenoma) = 

0.976 

 

[28] 

Bui (2024) 

Bi-GNN. GCN, 

transformers, 

specialized 

attention blocks 

Captures both 

local and global 

tissue 

relationships, 

effective 

multiple cancer 

types and organs 

High 

computational 

complexity and 

training cost,  

Limited 

external 

validation on 

some cancer 

types 

Pathology image 

dataset of Colorectal 

cancer,Prostate 

cancer,Gastric 

cancer,Bladder 

cancer 

Accuracy Colorectal 

cancer: 89.0%; 

Prostate cancer: 

In-domain test: 72.1% 

Out-of-domain test: 

74.9% 

Gastric cancer: 

85.9%; 

Bladder cancer: 

93.0% 

[29] 

Yang (2024) 

SSL, dual level 

masking, KNN 

Captures object-

specific tissue 

features; Avoids 

overfitting 

issues 

Depends on 

high-quality 

segmentation 

masks; limited 

evaluation on 

multi-

institutional 

data 

Gastric cancer (GC) 

dataset  (pathology 

images) from 

University of Tokyo 

(171 WSIs, 140 

patients) 

Accuracy: 

Foveolar: 90.7% 

Gland: 86.7% 

Differentiated cancer: 

94.4% 

Undifferentiated 

cancer: 89.8% 

Cluster Homogeneity 

(AUC): 0.801 

[30] 

Almarshad 

(2024) 

BF, CapsNet, SOA, 

DBN 

Enhances edge 

preservation in 

images,  

Maintains 

spatial 

relationships, 

fine-tuned 

hyperparameters 

Scalability 

issues, high 

model 

complexity due 

to integration of 

multiple 

components 

Kvasir dataset with 

5000 labeled 

endoscopic images. 

 

Accuracy = 99.72%; 

f1-SCORE = 99.29% 

[31] 

Mudavadkar 

(2024) 

 Detects cancer 

from small 

image patches, 

effective feature 

extraction task 

Longer training, 

low sensitivity, 

Longer training, 

low sensitivity, 

GasHisSDB (Gastric 

Histopathology Sub-

Size Image Database 

with 

245,196 image 

patches from 600 

high-resolution 

pathology slides. 

Accuracy (80*80 

patch size) =

 99.3%, 

Accuracy (120*120) 

= 99.4%, 

Accuracy  (160*160) 

= 98.4% 
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[32] 

Almasoud 

(2024) 

Improved 

EfficientNet-B5, 

AVOA, DCAE 

capture detailed 

features without 

losing image 

information, less 

computation 

time 

Finds harder to 

interpret for 

clinical 

validation, 

trained on low-

resolution 

images 

Kvasir dataset with 

5000 labeled 

endoscopic images 

across 5 GI classes 

Accuracy: 99.64%;  

Precision: 99.09%;  

Recall (Sensitivity): 

99.11%;  

F1-score: 99.09% 

[33] 

Haq (2024) 

GoogLeNet,   ViT, 

Faster R-CNN 

Effectively 

captures spatial-

global feature 

and robust 

generalizability, 

Efficient 

segmentation 

task 

Low-frequency 

tumors 

excluded; same-

source images 

reduce 

diversity; few 

positives limit 

sensitivity 

Total of 1,741 

endoscopic images, 

collected from a 

Guangdong hospital, 

with 67 healthy, 891 

early-stage and 783 

advanced gastric 

cancer cases. 

Accuracy = 97.4%; 

Sensitivity = 97.5%;  

F1-score = 95.9% 

[34] 

Liu (2024) 

EfficientNet-B4, 

DenseNet121, 

Swin Transformer 

V2, 

Predicts 

immunotherapy 

response 

directly from 

biopsy slides, 

No extra testing 

needed, efficient 

extraction of 

complex 

patterns 

lacks 

transparency, 

relatively small 

sample size and 

class imbalance, 

Manual ROI 

Labeling 

313 H&E-stained 

whole slide 

Pathology images 

from 264 patients 

with advanced 

gastric cancer 

collected from 4 

medical centers in 

China like FAH-

SYSU, FAH-NCU, 

SAHSYSU, ACH-

GZMU 

Accuracy (FAH-

SYSU) = 84.8%, 

Accuracy (FAH-NCU 

cohort) = 87.0%, 

Accuracy (SAH-

SYSU cohort) = 

93.2%, 

Accuracy (ACH-

GZMU cohort) =  

90.0%. 

[35] 

Jasphin 

(2024) 

Google’s 

AutoAugment 

BCGDU-Net  

- Xception 

AutoAugment 

reduces 

overfitting and 

improves 

generalization, 

better lesion 

segmentation 

using 

bidirectional 

memory 

Increases 

training time 

due to large data 

volume, might 

may overfit if 

segmentation 

was inaccurate 

480 endoscopic 

images,  230 for 

training (53 

cancerous, 180 non-

cancerous) 240 for 

testing (30 

cancerous, 190 non-

cancerous) 

Accuracy: 98.9%;  

F1-Score: 98.89% 

[36] 

Khayatian 

(2024) 

EfficientNetV2B0),  

CatBoost classifier,  

Grad-CAM, t-SNE 

Efficient 

visualization 

and handles 

large feature set 

Manual Feature 

Selection, 

limited data 

diversity 

GasHisSDB 

Contains Gastric 

histopathology 

images with 80, 120 

and 160 pixel crops 

 

Accuracy 

 80px =  89.7%, 

93.1%, and 120px = 

93.9% 160px = 

93.9% 

[37] 

Park (2025) 

hyperspectral 

imaging system, 

ViT 

Effectively 

handles high-

dimensional and 

heterogeneous 

data, Better 

pixel-wise 

analysis 

Limited sample 

size, lacks depth 

data, image 

synchronization 

issues 

9 patients' gastric 

tissue specimens (6 

cancer, 3 adenoma) 

Histopathology 

images collected via 

ESD at Ajou 

University Hospital 

(2022–2023) 

Accuracy = 0.913;  

Precision= 0.891; 

Recall = 0.854 

F1 Score = 0.867; 

Specificity= 0.930 

[38] 

Zhang 

(2025) 

ResNeXt,  

BERT, Contrastive 

learning, MHAM 

Captures 

complementary 

visual-textual 

features, 

performs well 

on both small 

and large 

database 

Dependence on 

multi-modal 

data 

availability, 

imbalance or 

noise hinders 

feature 

alignment 

private dataset 

collected from a 

local hospital, 

comprising 

endoscopic images 

and diagnostic 

records. 

Accuracy = 94.14%, 

Precision = 94.84%,  

Recall = 93.69%,  

F1-score = 94.26%. 
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[39] 

Kang (2025) 

Transformer-based 

multimodal DL 

model,  

Basic CNN model 

(image-only) 

CNN + RF 

(multimodal 

fusion) 

Captures 

complex 

patterns across 

data types, 

image and 

clinical data for 

better decision- 

Utilized only 

single mode  

patient data 

might not 

generalize, 

more text data 

was used than 

images 

2927 patients with 

early gastric cancer 

from 7 institutions 

Endoscopic images + 

clinical data 

(demographics, 

biopsy, CT) 

Internal Validation: 

449 patients 

External Validation: 

766 patients (from 2 

hospitals) 

Accuracy: 91.3%; 

Sensitivity: 89.8%; 

Specificity: 91.5%; 

[40] 

Zubair 

(2025) 

MCAM, TL, 

Inception-V3, 

VGG-16, Xception, 

Grad-CAM 

Extracts both 

global and local 

features from 

images, captures 

relevant image 

regions 

Drop in 

performance on 

low-resolution 

images, limited 

interpretability 

and scalability 

GasHisSDB: Gastric 

histopathology 

images (three sub-

datasets A: 160x160, 

B: 120x120, C: 

80x80) and HCRF,  

histopathology 

dataset 

Accuracy 

(GasHisSDB) = 

99.6% 

Accuracy (HCRF) = 

99.65% 

[41] 

Khan (2025) 

SC-DSAN, CNN, 

GRU, BO, EMPA, 

SWNN 

Lowers 

processing load 

and memory 

use, capture 

more relevant 

disease features, 

well optimized 

parameters 

High Training 

Time, Slight 

complexity in 

GRU while 

training on 

larger datasets 

Kvasir-V1, V2 

endoscopic images 

with 8 

gastrointestinal 

cancer disease 

classes, 4000 images 

per class after 

augmentation 

Accuracy (Kvasir-

V1) = 99.60%, 

Accuracy (Kvasir-

V2) = 96.60% 

 

The assessment Table 1 shown that the methods using various 

DL algorithms for both endoscopic and histopathology images 

are suffered from class imbalance issue. It was solved by many 

augmentation approaches, transfer learning approaches and 

meta-learning approaches. However, obtaining the unique 

characteristics of the images for handling class imbalances is 

very challenging. In order to solve these issues, an intelligent 

augmentation method can be developed for generating images by 

learning unique characteristics of images from small datasets. 

3. RESULT AND DISCUSSION 

       The performance analysis of the deep learning methods 

presented in Table 1 highlights their effectiveness in predicting 

and classifying gastric cancer using both pathology and 

endoscopic images. Most of the studies utilized different 

benchmark or institution-specific datasets, reflecting a wide  
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DL-GHCS [25] (GasHisSDB)

SCUBa-Net [28]
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ICIsNet [34] (SAH-SYSU)

HDL+CatB [36] (80px)
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Fig -4: Graphical analysis of various DL based gastric cancer prediction models using pathology images in terms Accuracy 

 

Fig -5: Graphical analysis of various DL based gastric cancer prediction models using endoscopic images in terms Accuracy 

range of imaging sources and clinical settings. In this section, a 

comparative performance evaluation is conducted across deep 

learning-based gastric cancer prediction models focusing 

primarily on classification accuracy. 

       Figure 4 depicts the graphical representation of different DL 

based gastric cancer prediction models using pathology images 

by accuracy metrics. Among the compared prediction models, 

MCAM+TL [40] for HCRF based histopathology image dataset 

results in highest accuracy of 99.65% compared to other models. 

This model effectively extracts both global and local features 

from images and captures relevant image regions for gastric 

cancer prediction. 

       Figure 5 depicts the graphical representation of different DL 

based gastric cancer prediction models using endoscopic images 

by accuracy metric. Among the compared models, SOADL-GCC 

[30] results in highest accuracy of 99.72% when evaluated on 

Kvasir dataset with 5000 labeled endoscopic images.This model 

effectively preserves image edges, maintains spatial 

relationships, and utilizes fine-tuned hyperparameters to enable 

efficient and accurate gastric cancer prediction.  

      Based on Figures 4 and 5, it can be concluded that the 

MCAM+TL [40] model, evaluated on the HCRF histopathology 

image dataset, outperforms other gastric cancer prediction 

models that utilize pathology images. Despite its advantage, 

certain limitations like reduced performance on low-resolution 

images, along with limited interpretability and scalability on 

larger database which significantly lowers the models 

performances.  Likewise, SOADL-GCC [30], evaluated on the 

Kvasir endoscopic dataset, outperforms other gastric cancer 

prediction models based on endoscopic images But, this model 

leads to scalability issues and increased model complexity due to 

the integration of multiple components. Thus, the limitations of 

these models will be resolved in the future proposed models by 

introducing the advanced and lightweight architectures aimed at 

improving scalability, reducing computational complexity and 

enhancing interpretability. Additionally, integrating both 

pathological and endoscopic images in a multi-modal framework 

enhances prediction performance and generalizability by 

combining cellular- and tissue-level features leading to improved 

diagnostic accuracy, lesion localization and clinical decision-

making. These improvements will assists to develop more 

reliable and accurate clinical diagnostic prediction algorithms, 

which may someday be used for other purposes including 

identifying thyroid nodules in ultrasound pictures. 

4. CONCLUSION   

      Early gastric cancer prediction reduces the morality rate. 

Traditional models fail to provide accurate results in the early 

detection.  To overcome challenges, numerous deep learning 

(DL) models have been developed. This paper presents a 

comprehensive review of DL-based gastric cancer prediction 

approaches utilizing endoscopic and pathological images, 

analyzing the techniques employed, their advantages and 

limitations, datasets used, and performance metrics. This study 

provides valuable insights for researchers aiming to develop 

robust and efficient diagnostic models, ultimately contributingto 

personalized treatment strategies for patients. Future work will 

focus on designing advanced and lightweight architectures that 

improve scalability and computational efficiency, thereby 

enabling real-time prediction. Moreover, the integration of both 

pathological and endoscopic images will to enhance diagnostic 

accuracy, improve lesion localization and support more informed 

clinical decision-making for gastric cancer prediction. 
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