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Abstract - Gastric cancer (GC) is one of the most common
malignant tumours that attack the stomach lining. It is the second
most common cause of cancer-related deaths worldwide. As life
expectancy increased by early diagnosis and dietary patterns
changes. A number of diagnostic techniques, such as endoscopy
analysis, CT scans, and histopathological imaging, are frequently
employed to identify and assess GC. Despite their effectiveness,
these techniques are frequently labour-intensive, time-
consuming, and susceptible to inter-observer variability, all of
which can compromise the consistency of the diagnosis. By
facilitating automated feature extraction, selection, and
classification from medical images, machine learning (ML)
techniques have been developed recently to aid in the detection
of gastric cancer. However, ML techniques often struggle with
large, complex, and high-dimensional datasets and necessitate
manual pre-processing. Deep Learning (DL) has become a more
sophisticated and effective way to get around these restrictions.
DL models, as opposed to conventional methods and classical
ML techniques, offer higher accuracy, speed, and scalability by
automatically learning hierarchical features from raw medical
images. An extensive review of current DL-based methods for
gastric cancer detection is provided in this paper. It looks at their
architectural layouts, benefits, drawbacks, and performance
comparisons. In order to enhance diagnostic accuracy and
clinical application of DL-based systems, the review also
identifies new research trends and makes recommendations for
possible future paths.

Key Words: Crime Prediction, Deep Learning, GCN-GRU,
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1. INTRODUCTION

Criminal actions continue to be a problem as societies evolve.
An increase in criminal activity has a negative effect on people's
standard of living and impedes societal and economic
development [1]. Improving public safety and decreasing
government expenses are two outcomes of effective crime
prevention. The development of better geographic information
gathering tools has made it possible to accurately capture crime
data across areas in this era of big data. Machine learning models
have the potential to revolutionize crime prevention in many
different fieldsCancer develops due to both hereditary and
environmental effects. There are both genetic and environmental

factors that cause cancer to grow. Environmental factors, mostly
diet and social behaviour, may cause about 50% of cancer cases
[1]. Tumours grow and spread over many years and in many
stages. Cancer usually happens after being around harmful
chemicals that cause cancer for 20 to 30 years. Modern medicine
has made it possible to better identify most cancers in their later
stages, when radical resection can lead to recovery in 50% of cases
[2]. This paper looks at gastric cancer and other types of cancer.

1.1 Gastric cancer

Gastric cancer (GC) is a disease that can be caused by a
number of things, including genetics and the environment [3].
According to current statistics, GC is the fourth most common
cause of cancer deaths worldwide, and the median survival time
for people with advanced stage cancer is less than 12 months [4].
Gastric carcinoma is a very aggressive cancer that is still a global
health problem [5]. That's why alternative prevention, like a
healthy diet, early diagnosis, and proper follow-up treatments, has
led to fewer recorded incidents [6]. GC is not very common, and
it is not common in people under 45 years old, where only 10% of
patients have the disease.

Diagnostic Methods for Gastric Cancer: In order to identify
stomach cancer or evaluate associated symptoms, traditional
medical procedures including physical examinations, blood tests
(such as complete blood counts and serum tumour markers like
CEA and CA 19-9), barium meal X-rays, gastric lavage cytology,
and exploratory laparotomies were often used [7]. Nevertheless,
these diagnostic techniques are intrusive, need a high level of
clinical skill, and often fall short in distinguishing between benign
and malignant tumours. Additionally, their sensitivity for early-
stage detection is low, which results in a delayed diagnosis and
fewer alternatives for therapy.

For stomach cancer diagnosis, many imaging models are
developed, including Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Endoscopy, and Histopathology [8].
The main and best method for identifying and describing stomach
cancer among these models is endoscopy and histology.

1.2 Diagnosis of Gastric Cancer using Histopathology Images

Histopathology provides extremely particular information on
the kind of tumour, such as adenocarcinoma or signet ring cell
carcinoma, as well as the amount of differentiation and invasion
of blood vessels or lymphatics. The Lauren classification, which
divides GC into intestinal and diffuse subtypes, is the most often
used categorisation of GC [9]. Clinical aspects, genetics,
morphology, epidemiology, and expansion qualities are some of
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the several traits they exhibit. Surgical choices pertaining to the
variety of stomach resections are also influenced by this
categorisation. Tubular and glandular components with varying
degrees of differentiation are included in the intestinal subtype.
Single cells with low cohesiveness and no gland development are
seen in the diffuse subtype [10,11]. Furthermore, GC with signet
ring cells is very common and is categorised by the Lauren
classification as a "diffuse type" [12]. Signet ring cell carcinoma
is now characterised as a weakly cohesive cancer form that mostly
consists of tumour cells with a crescent-shaped nucleus positioned
eccentrically and abundant cytoplasmic mucus [13]. GC is
classified as either traditional (older than 45) or early-onset (45
years or under) based on the age upon diagnosis. Additionally,
some molecules, including as HER2/neu, p53, Ki-67, and E-
cadherin, may be detected by immune histochemical staining.
These indicators may be used to identify individuals who may
respond to certain treatments, such as trastuzumab in HER2-
positive tumours, in addition to providing information on the
biological behaviour of the tumour.

Figure 1 demonstrates the histopathology image of gastric
cancer [14]. This histopathology image is vital for diagnosis since
it clearly compares adenocarcinoma and normal stomach tissue.
Histopathology allows for the precise identification of many
tumor types, including those involving cellular differentiation,
gland formation, invasion of blood arteries or lymphatics, and
spread gastric or intestinal malignancy. The main component of
diffuse-type tumors, which are easily visible, are signet ring cells.
These images have the potential to impact clinical decisions by
providing more precise information for the development of
surgery and therapy regimens. Traditional immunohistochemistry
markers, such as HER2, p53, and Ki-67, can be used to determine
the efficacy of a treatment. The utilization of histopathology in
stomach cancer diagnoses will guarantee intelligent, personalized,
and evidence-based treatment.

1.3 Diagnosis of Gastric Cancer using Endoscopy Images

Endoscopy is a minimal invasive diagnostic method that
employs a flexible tube fitted with a light and camera known as
an endoscope to directly see the gastrointestinal (GI) tract's
internal lining [15]. Examining the oesophagus, stomach, and
duodenum is made especially easy using this technique, which
enables real-time examination of mucosal surfaces and the
detection of anomalies such ulcers, inflammation, polyps, or
tumours. The most crucial first diagnostic procedure for
suspected stomach cancer is upper gastrointestinal endoscopy,
also referred to as upper endoscopy,
esophagogastroduodenoscopy, or EGD. To see the stomach
lining, a flexible tube with a camera is sent via the mouth into the
stomach. The benefit of directly seeing the mucosa is that it gives
doctors the chance to spot even the smallest alterations, such as
small erosions, ulcers, or elevated lesions, which might be early
indicators of gastric cancer.

Artificial intelligence (AI) models are increasingly being used
to improve the prediction and detection of stomach cancer
utilising imaging methods such as endoscopy and histopathology
images [17]. Imaging techniques like endoscopy and
histopathology are being employed more and more to enhance the
prediction and diagnosis of stomach cancer via the application of
artificial intelligence (AI) models [17]. Machine Learning (ML)
and Deep Learning (DL), two components of Al, let doctors
identify and categorise stomach lesions automatically, which
improves the accuracy of diagnoses and decreases the room for
human mistake. There are ML models that can help with treatment

planning, identify benign from malignant stomach lesions, and
forecast tumour growth [18]. Improvements in diagnostic
consistency, data-driven decision-making, and fast image
processing are all made possible by ML. Manual lesion
annotation, which may be laborious and error-prone because of
the complicated patterns and irregular forms of stomach tumours,
and significant interpretation variability are still obstacles that ML
must overcome.

1.4 Al in Diagnosis of Gastric Cancer

On the other hand, DL models perform better when it comes
to detecting and diagnosing stomach cancer from medical photos.
By dynamically learning hierarchical features from raw data, DL
improves model accuracy and generalisation while overcoming a
number of drawbacks of conventional ML techniques [19]. Deep
Belief Networks (DBNs), Long Short-Term Memory (LSTM)
networks, Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs) are notable DL models. In
order to enable automatic and accurate stomach cancer diagnosis
and classification, these models let doctors identify significant
patterns and subtle picture characteristics from endoscopic and
radiologic images [20]. Figure 3 shows how the DL model uses
endoscopic pictures to identify stomach cancer.

The purpose of this research is to provide a thorough analysis
of the several DL classification techniques for the diagnosis of
gastric cancer. It examines the benefits and drawbacks of DL
methods for identifying gastric cancer in both its early and late
stages. To illustrate the relative effectiveness of different
approaches and pinpoint areas in need of more investigation, a
comparative analysis is provided.
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Fig -1: Sample of histopathologlcal image of normal cells
and gastric cancerous cell

Fig -2: Endoscopy Images of Gastric cancer
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Fig -3: Gastric cancer detection by DL model using Endoscopy images

The structure of the paper is as follows: Deep learning
frameworks created for the identification of stomach cancer
utilising endoscopic and histopathology pictures are reviewed in
Section II. The examined approaches are contrasted in Section III
with respect to model design, datasets, and assessment criteria.
The effectiveness of current methods is assessed in Section IV. A
summary of the lessons learnt and suggestions for future research
in automated stomach cancer detection are provided in Section V.

2. SURVEY ON DL BASED GASTRIC CANCER
PREDICTION MODELS USING PATHOLOGY
AND ENDOSCOPY IMAGES

Ahmad et al. [21] suggested an improved You Only Look
Once (YOLO)-v7 model combined with a Squeeze and Excitation
(SE) attention module for an automated gastric lesion
identification system. The purpose of this attention-powered
YOLOvV7 model was to recognise tiny stomach abnormalities in
endoscopic pictures, such as ulcers, adenomas, and gastric
malignancies. The structure enhances feature extraction and
lesion localisation by combining channel-wise attention with
CNN-based object identification. By precisely identifying and
categorising various kinds of stomach lesions, our model helps
endoscopists during real-time endoscopic treatments.

Chae et al. [22] presented a computer-aided diagnosis
(CADx) model to categorise gastroscopic pictures into healthy
tissue, gastric lesions and early gastric cancer. Multi-Filter
AutoAugment (MFAA), a data augmentation approach
introduced in this model, filters enhanced data to preserve only
relevant and high-quality samples. In the augmentation process,
the Big Transfer (BiT) model acts as a supplementary filter.
Healthy tissue, gastric lesions and early-stage stomach cancer
were all categorised using Vision Transformer (ViT).

Jhang et al. [23] devised a Gastric section correlation network
(GSCNet) for gastric precancerous lesion prediction. This model
assists to diagnose corpus-predominant gastritis index (CGI) from
endoscopic images of three dominant gastric sections like antrum,
body and cardia. The scaling feature fusion module extracts
features that robustly represent mucosa despite variations in
viewing angles and scales across gastric sections. The section
correlation module incorporates medical knowledge to model
inter-section relationships using three correlation losses. A
channel attention layer was applied to each sub-network to extract
more salient deep features for early gastric cancer prediction.

Jhang et al. [23] devised a Stomach Section Correlation
Network (GSCNet) to predict stomach precancerous lesions. By

using the endoscopic images of the antrum, body, and cardia, this
model detects corpus-predominant gastritis index (CGI). Despite
the differences in viewing angles and scales amongst stomach
sections, the scaling feature fusion module was employed to
extract representative features accurately depict mucosa. Then, a
correlation module was introduced guided by three correlation
losses to capture the inter-section interactions by incorporating
prior medical information. A channel attention layer was added to
each sub-network to extract more salient deep information for
early gastric cancer prediction

Mirza et al. [24] used Hybrid Rice Optimisation with DL
(GDDC-HRODL) to create a gastrointestinal cancer detection and
classification system. In order to improve visual characteristics,
picture contrast was increased using Contrast Limited Adaptive
Histogram Equalisation (CLAHE). For feature extraction, the
HybridNet model then uses a two-path autoencoder network that
collaborates with both reconstruction and classification pathways.
The hyperparameters of the feature extractor were adjusted using
Hybrid Rice Optimisation (HRO), and the final classification was
done using an Attention-based LSTM (ALSTM). To provide
precise gastrointestinal illness identification, the Ant Lion
Optimisation (ALO) algorithm was used to optimise the ALSTM
model.

Zubair et al. [25] presented a DL based gastric cancer
prediction called DL-GHCS using digital histopathology images.
Images were classified as normal or abnormal using a Gaussian
Mixture Model (GMM) improved Expectation-Maximizing
Naive Bayes (EM-NB) classifier. An enhanced fuzzy c-means
(IFCM) clustering technique was introduced for segmentation,
which precisely identifies malignant areas. The approach
highlights pertinent regions in the tissue images for early stomach
cancer identification integrating Grad-CAM for interpretability
for clinical diagnosis.

Tran et al. [26] created GIFCOS-DT a one-stage DL model
based on the Fully Convolution One-Stage (FCOS) architecture to
predict gastrointestinal tract lesions from endoscopic images.
This approach improves the lesion prediction for irregular or
elongated forms by using a unique Distance Transform (DT)
based loss function. To speed up the processing times of every
system step, a multithread approach was used. The Jetson Xavier
and other edge devices use the model, which was created for real-
time application, to help physicians with endoscopic treatments.

Lee et al. [27] devised an automated gastric lesion detector
named theYOLO with Meta Recognition (YOLO-MR) model to
efficiently detect ulcer, adenoma and cancer using endoscopic
cancer. YOLOv7 was used to manage object recognition while
taking into account class imbalance and the features of medical
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data. To swiftly adjust to new or unbalanced data, model-agnostic
meta-learning (MAML) was used. Residual blocks were used to
minimize the gradient loss and facilitate deeper network learning.
Gastric lesions were found by including meta-learning for
optimum weights into the YOLO model.

Bui et al. [28] created a spatially-constrained and
unconstrained bi-graph interaction network, known as SCUBa-
Net for classifying colorectal, prostate, stomach and bladder
malignancies using the multi-organ pathological images. To
categorise pathology images, this model uses a bi-graph neural
network (Bi-GNN) model that blends Transformers and Graph
Convolutional Networks (GCNs). Each picture is processed as
two graphs, one geographically unconstrained (totally linked) and
one spatially limited (based on local node connections). Through
specialised attention blocks, these two graph representations
interact both locally and globally to effectively classify images of
multi-organ cancer tissue.

Yang et al. [29] developed SegRep a mask-supervised
learning technique for segment representation in pathology
images for predicting stomach cancer. This method effectively
extracts the specific tissue segments in pathological images. It
modifies traditional CNNs by applying dual-level masking to both
input images and feature maps, allowing it to focus only on target
tissue regions. These masked features were then utilised to
generate segment-specific, high-quality representations using a
self-supervised learning (SSL) framework. Finally, stomach
cancer was detected using K-Nearest Neighbour.

Almarshad et al. [30] presented a novel snake optimisation
method with a DL-assisted gastrointestinal cancer classification
(SOADL-GCC). This model combines a Deep Belief Network
(DBN) for final classification, a Capsule Network (CapsNet) for
feature extraction, and bilateral filtering (BF) for picture
preprocessing. Snake Optimisation Algorithm (SOA)
hyperparameter tweaking was used to maximise CapsNet's
performance. The automatic categorisation of gastrointestinal
cancer from endoscopic pictures is improved by this combination
method.

Mudavadkar et al. [31] devised an Ensemble DL model
(EDL) to diagnose stomach cancer using digital histopathology
images. The decision areas of the model were visualised using
Class Activation Mapping (CAM). The ensemble method makes
use of VGGNetl6 for fine-grained feature extraction and
ResNet34 for depth-wise learning. By examining sub-size picture
patches, this approach can identify stomach cancer early and may
lessen the need for expensive digital scanners while increasing
diagnostic effectiveness.

Almasoud et al. [32] created developed an African Vulture
Optimisation Algorithm with Transfer Learning (GICDC-
AVOADL) to construct a Gastro-Intestinal Cancer Detection and
Classification system. An enhanced EfficientNet-B5 network is
used by the model to extract deep features. EfficientNet-B5's
hyperparameters were optimised using the African Vulture
Optimisation Algorithm (AVOA).  Furthermore, the final
identification and classification of gastrointestinal malignancies
was carried out using the Dilated Convolutional Autoencoder
(DCAE).

Hagq et al. [33] introduced an efficient hybrid cascaded DL
model (HCDL) for the precise multi-classification and
segmentation of stomach cancer from endoscopic images. In
order to categorise endoscopic images into three categories like
normal, early gastric cancer and advanced gastric cancer, the

method combines a modified GoogLeNet with ViT. The Faster
R-CNN technique is used in this model to precisely localise
malignant areas. Following classification, Faster R-CNN creates
labels and bounding boxes that precisely identify invasive regions,
therefore detecting and segmenting areas of stomach cancer.

Liu et al. [34] introduced an Immune Checkpoint Inhibitors
Response Network (ICIsNet) for gastric cancer. Using
histopathological whole slide pictures, EfficientNet-B4,
DenseNetl121, and Swin Transformer V2 were trained to extract
characteristics relevant to tumours. The prediction score
(ICIsRS), which indicates a patient's probable response to first-
line PD-1 inhibitor combination chemotherapy, was created by
integrating these models into an ensemble known as ICIsNet. By
determining which patients are most likely to benefit from
immunotherapy, this method allows for individualised treatment
planning.

Jasphin & Merry Geisa [35] developed an Multimodal DL
(MMDL) model system for automated identification of gastric
cancer using endoscopic images. This model makes use of three
fundamental models like Xception network for classification, the
Bidirectional Convolutional Gated Recurrent Unit Dense U-Net
(BCGDU-Net) for segmentation, and Google's AutoAugment for
data augmentation. The BCGDU-Net efficiently segments gastric
lesions by combining dense convolution layers with a
bidirectional Convolutional Gated Recurrent Unit (ConvGRU).
For a precise prediction of stomach cancer, the Xception network
then divides the segmented areas into malignant and non-
cancerous groups.

Khayatian et al. [36] devised a hybrid DL (HDL) and
CatBoost (CatB) method for stomach cancer diagnosis utilising
histopathology images. The key areas in this model were
visualised using Grad-CAM, and the feature clustering was
visualised using t-distributed Stochastic Neighbour Embedding (t-
SNE). Softmax was used for the prediction of stomach cancer,
while EfficientNetV2B0 was used for feature extraction.

Park et al. [37] created a lightweight hyperspectral imaging
system combined with artificial intelligence for gastric cancer
detection. In order to capture intrinsic tissue optical features, our
model made use of hyperspectral imaging and structured lighting.
Based on these characteristics, a ViT model is used to categorise
tissue types such as normal, adenoma, and malignancy. Accurate
stomach cancer identification was made possible by the
development of a revolutionary image processing technique that
aligns pathology data with imaging at the pixel level.

Zhang et al. [38] constructed a Multimodal Severity rating of
stomach Cancer (MSGC), a multimodal approach for rating the
severity of stomach cancer utilising endoscopic images and
diagnostic texts. This model adopts Bidirectional Encoder
Representations from Transformers (BERT) for semantic text
interpretation and an improved Residual Network with
Aggregated Transformations (ResNeXt) for visual feature
extraction. Through the alignment of same-category samples in
the feature space, contrastive learning enhances intra-class
similarity. A multi-head attention module (MHAM) highlights
key characteristics. To encourage reciprocal learning across
visual and textual modalities, a unique loss function combines
contrastive loss with cross-entropy loss.

Kang et al. [39] developed a DL-based clinical decision
support system (DL-CDSS) for early gastric cancer prediction.
This model predicts lymph node metastases and lymphovascular
invasion in patients for cancer prediction by combining
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endoscopic pictures with real-world clinical data, such as
demographics, biopsy results, and CT findings. The transformer
model combines a multimodal classification model that combines
CNN and random forest (RF) with an image-only model that uses
a simple CNN. Whether a patient should have a gastrectomy or
endoscopic resection, this method helps doctors make well-
informed judgements.

Zubair et al. [40] created a multi-channel attention
mechanism (MCAM) in conjunction with transfer learning (TL)
to categorise stomach cancer using histopathology images. With
CNN backbones (Inception-V3, VGG-16, and Xception,
respectively), this model combines three complementing attention
channels, such as multi-scale global information, multi-scale
spatial information, and multi-scale spatial information.
Together, these channels improve model interpretability and
feature extraction, especially when using Grad-CAM
visualisations. The framework is intended for the categorisation

of medical images, particularly to help with the early and precise
detection of stomach cancer from histopathology slides.

Khan et al. [41] constructed a network-level fused DL
technique to classify gastrointestinal cancer using wireless
capsule endoscopy (WCE) images. Sparse Convolutional
DenseNet201 with Self-Attention (SC-DSAN) improves feature
concentration on illness areas and lowers computing burden by
using sparse convolutions and self-attention. CNN-GRU captures
temporal relationships in WCE picture sequences by combining
CNN for spatial feature extraction with a Gated Residual Unit
(GRU). The Entropy-controlled Marine Predators Algorithm
(EMPA) and Bayesian Optimisation (BO) were used to optimise
the features. Lastly, a Shallow Wide Neural Network (SWNN)
was used to classify gastrointestinal cancer.

The comparison of several DL-based gastric cancer
prediction models utilising pathological and endoscopic images is
shown in Table 1.

Table -1: Assessment of Various DL Based Gastric Cancer Prediction using pathology and endoscopy images

Ref No, | Techniques Used | Advantage Disdvantage | Dataset Performance
Author & Evaluation
year
[21] YOLOV7 object Effective small | Needs large 61,734 endoscopic Precision: 72%;
Ahmad et al. | detection model, lesion annotated images collected Recall: 69%; F1-
(2023) CNN with SE localization, dataset, Model | from a hospital in Score: 71%
attention module reduces trained on Korea (2018-2021) | mean Average
dependence on | private data, Precision (mAP):
endoscopist may not 71%
expertise, generalize well
[22] ViT, MFAA, BiT Better High Gyeongsang Abnormalities vs
Chae(2023) generalization computational | National University | Healthy Tissue
due to filtering | cost, loner Hospital and Al Fl-score: 0.87
low-quality training time, Hub, Korea with Area Under Curve
augmented data, | lower accuracy | endoscopic images (AUC): 0.94
Works well on | on larger of EarlyGastric Cancer
complex datasets 600 healthy tissue vs. Non-Cancerous
medical images images, 300 Lesions
abnormal lesion Fl-score: 0.92
images, 300 early AUC: 0.97
gastric cancer
images
[23] Scaling Feature Applies prior Complex 304 patients, each Accuracy = 95.7%j;
Jhang Fusion Module, medical design may not | patient has 3 Sensitivity: 93.8%;
(2023) Section Correlation | knowledge, suit low- endoscopic images Specificity: 96.2%
Module, effectively resource collected from two
Channel Attention | handles settings, Image | hospitals in Taiwan
Layer variation in quality
image angles variations can
and scales reduce
performance
[24] HybridNet, Enhances image | Multiple Kvasir Dataset Accuracy = 99.49%;
Mirza HRO, ALSTM, clarity,  better | optimization with 5,000 labeled Sensitivity = 98.72%;
(2023) ALO, two-path | hyperparameter | steps leads to | endoscopic images Specificity = 99.68%;
autoencoder optimization, increases F1-score: 98.72%
network Handles  both | training time,
labeled and | Repeated
unlabeled data retraining due to
different
datasets
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[25] NB classifier with | Lower Longer training | GasHisSDB: Accuracy

Zubair GMM, EM | computational time, depends | 245,196 (GasHisSDB) =

(2024) algorithm IFCM, | complexity, upon  manual | histopathology 98.47%

Grad-CAM visual feature images HCRF: 700 | Accuracy (HCRF) =
explanations, extraction H&E-stained images | 97.31%
with ground truth
segmentation
[26] Multithread Better detection | Lower accuracy | Kvasir-SEG with | Average  Precision
Tran (2024) | technique, FCOS, | of irregular- | on subtle | Public dataset with | (AP) 50 (Kvasir-
DT shaped lesions, | lesions, 1,000 polyp images. | SEG): 81.3%
real —time | performance IGH_GIEndoLesion- | (GIFCOS-DT),
capability drops with low- | SEG with 5,211 | +4.2% over FCOS
resolution input | endoscopic images | AP50
from 2,543 patients (IGH_GIEndoLesion-
SEG): 57.5%
(GIFCOS-DT),
+7.2% over FCOS

[27] YOLOv7, MAML, | Handles class | Longer training | Dataset Gachon Accuracy = 96%;

Lee (2024) | Residual Blocks imbalance time due to University Gil AP (Cancer) = 0.984
effe.ctively, ) meta-learning, | Medical Center, AP (Ulcer) =0.919
achieves  high computationally | including 61,734 AP (Adenoma) =
accuracy even . .. 0.976
with limited data | €XPensive endoscopic images

during training | across cancer, ulcer,
phase. adenoma, normal.

[28] Bi-GNN. GCN, Captures  both | High Pathology image | Accuracy Colorectal

Bui (2024) | transformers, local and global | computational | dataset of Colorectal | cancer: 89.0%;

specialized tissue complexity and | cancer,Prostate Prostate cancer:
. relationships, . . In-domain test: 72.1%
attention blocks . training  cost, | cancer,Gastric .
effective o Out-of-domain test:
multiple cancer Limited cancer,Bladder 74.9%
types and organs | €xternal cancer Gastric cancer:
validation  on 85.9%;
some  cancer Bladder cancer:
types 93.0%

[29] SSL, dual level Captures object- | Depends on | Gastric cancer (GC) | Accuracy:

Yang (2024) | masking, KNN specific  tissue | high-quality dataset  (pathology | Foveolar: 90.7%
features; Avoids | segmentation images) from | Gland: 86.7%
overfitting masks; limited | University of Tokyo | Differentiated cancer:
issues evaluation on | (171 WSIs, 140 | 94.4%

multi- patients) Undifferentiated
institutional cancer: 89.8%
data Cluster Homogeneity
(AUC): 0.801
[30] BF, CapsNet, SOA, | Enhances edge | Scalability Kvasir dataset with
Almarshad | DBN preservation in | issues, high | 5000 labeled | Accuracy = 99.72%;
(2024) images, model endoscopic images. f1-SCORE = 99.29%,
Maintains complexity due
spatial to integration of
relationships, multiple
fine-tuned components
hyperparameters
[31] Detects cancer | Longer training, | GasHisSDB (Gastric | Accuracy (80*80
Mudavadkar from small | Jow sensitivity, | Histopathology Sub- | patch size) =
(2024) image patches, Longer training, Size Image Database 99.3%,
effective feature low sensitivity with Accuracy (120*120)
extraction task > | 245,196 image | =99.4%,
patches from 600 | Accuracy (160*160)
high-resolution =98.4%
pathology slides.
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[32] Improved capture detailed | Finds harder to | Kvasir dataset with | Accuracy: 99.64%;
Almasoud | EfficientNet-BS5, features without | interpret for | 5000 labeled | Precision: 99.09%;
(2024) AVOA, DCAE losing image | clinical endoscopic images | Recall (Sensitivity):
information, less | validation, across 5 GI classes 99.11%;
computation trained on low- F1-score: 99.09%
time resolution
images
[33] GoogleNet, ViT, | Effectively Low-frequency | Total of 1,741 | Accuracy = 97.4%;
Haq (2024) | Faster R-CNN captures spatial- | tumors endoscopic images, | Sensitivity = 97.5%;
global feature | excluded; same- | collected from a | Fl-score=95.9%
and robust | source images | Guangdong hospital,
generalizability, | reduce with 67 healthy, 891
Efficient diversity; few | early-stage and 783
segmentation positives limit | advanced gastric
task sensitivity cancer cases.
[34] EfficientNet-B4, | Predicts lacks 313 H&E-stained | Accuracy (FAH-
Liu (2024) DenseNet121, immunotherapy | transparency, whole slide SYSU) = 84.8%,
Swin Transformer | response relatively small | Pathology  images Accuracy (FAH-NCU
V2, directly  from | sample size and | from 264 patients hort) = 87.0%
biopsy  slides, | class imbalance, | with advanced | <°"° s
No extra testing | Manual ~ ROI | gastric cancer Accuracy (SAH-
needed, efficient | Labeling collected from 4 | SYSU  cohort) =
extraction  of medical centers in | 93.2%,
complex China like FAH- | Accuracy (ACH-
patterns SYSU, FAH-NCU, | GZMU cohort) =
SAHSYSU, ACH- | 9( oo
GZMU
[35] Google’s AutoAugment Increases 480 endoscopic | Accuracy: 98.9%;
Jasphin AutoAugment reduces training  time | images, 230 for | F1-Score: 98.89%
(2024) BCGDU-Net overfitting and | due to large data | training (53
improves volume, might | cancerous, 180 non-
- Xception generalization, may overfit if | cancerous) 240 for
better lesion | segmentation testing (30
segmentation was inaccurate | cancerous, 190 non-
using cancerous)
bidirectional
memory
[36] EfficientNetV2B0), | Efficient Manual Feature | GasHisSDB
Khayatian CatBoost classifier, | visualization Selection, Contains Gastric | Accuracy
(2024) Grad-CAM, t-SNE | and handles | limited data | histopathology
large feature set | diversity images with 80, 120 | 80px = 89.7%,
and 160 pixel crops | 93.1%, and 120px =
93.9% 160px =
93.9%
[37] hyperspectral Effectively Limited sample | 9 patients' gastric | Accuracy =0.913;
Park (2025) | imaging  system, | handles  high- | size, lacks depth | tissue specimens (6 | Precision=0.891;
ViT dimensional and | data, image | cancer, 3 adenoma) | Recall = 0.854
heterogeneous synchronization | Histopathology F1 Score = 0.867;
data, Better | issues images collected via | Specificity=0.930
pixel-wise ESD at Ajou
analysis University Hospital
(2022-2023)
[38] ResNeXt, Captures Dependence on | private dataset | Accuracy = 94.14%,
Zhang BERT, Contrastive | complementary | multi-modal collected from a | Precision = 94.84%,
(2025) learning, MHAM visual-textual data local hospital, | Recall =93.69%,
features, availability, comprising Fl-score = 94.26%.
performs  well | imbalance  or | endoscopic images
on both small | noise hinders | and diagnostic
and large | feature records.
database alignment
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[39] Transformer-based | Captures Utilized only | 2927 patients with | Accuracy: 91.3%;
Kang (2025) | multimodal DL | complex single mode | early gastric cancer | Sensitivity: 89.8%;
model, patterns across | patient data | f.om 7 institutions Specificity: 91.5%;
Basic CNN model | data types, | might not | £ josconic images -+
(image-only) image and | generalize, . P g
CNN + RF | clinical data for | more text data | €linical ) data
(multimodal better decision- | was used than | (demographics,
fusion) images biopsy, CT)
Internal Validation:
449 patients
External Validation:
766 patients (from 2
hospitals)
[40] MCAM, TL, | Extracts both Drop in | GasHisSDB: Gastric | Accuracy
Zubair Inception-V3, global and local | performance on | histopathology (GasHisSDB) =
(2025) VGG-16, Xception, | features from low-resolution | images (three sub- | 99.6%
Grad-CAM images, captures images, limited | datasets A: 160x160, | Accuracy (HCRF) =
> interpretability | B:  120x120, C: | 99.65%
rele'vant 1mage and scalability 80x80) and HCREF,
regions histopathology
dataset
[41] SC-DSAN, CNN, | Lowers High Training | Kvasir-V1, V2 | Accuracy  (Kvasir-
Khan (2025) | GRU, BO, EMPA, | processing load | Time, Slight | endoscopic images | V1) = 99.60%,
SWNN and memory | complexity .in with 8 | Accuracy  (Kvasir-
use, capture GRU while gastrointestinal V2)=96.60%
more relevant | training on .
disease features, | larger datasets cancer disease
well optimized classes, 4000 images
parameters per class after
augmentation

The assessment Table 1 shown that the methods using various

augmentation method can be developed for generating images by
learning unique characteristics of images from small datasets.

DL algorithms for both endoscopic and histopathology images

are suffered from class imbalance issue. It was solved by many
augmentation approaches, transfer learning approaches and
meta-learning approaches. However, obtaining the unique
characteristics of the images for handling class imbalances is
very challenging. In order to solve these issues, an intelligent

3. RESULT AND DISCUSSION

The performance analysis of the deep learning methods
presented in Table 1 highlights their effectiveness in predicting
and classifying gastric cancer using both pathology and
endoscopic images. Most of the studies utilized different
benchmark or institution-specific datasets, reflecting a wide

Comparsion of DL based Gastric Cancer Prediction Models using Patholoy images

MCAM+TL [40] (GasHisSDB)
HDL+CatB [36] (160px)
HDL+CatB [36] (80px)
ICIsNet [34] (SAH-SYSU)
ICIsNet [34] (FAH-SYSU)
EDL [31] (120%x120)
SegRep [29] (Undifferentiated)
SegRep [29] (Gland)

SCUBa-Net [28]
DL-GHCS [25] (GasHisSDB)
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80
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Fig -4: Graphical analysis of various DL based gastric cancer prediction models using pathology images in terms Accuracy

Comparsion of DL based Gastric Cancer Prediction Models using Endoscopic images
96.6
SWNN [41] (Kvasir-V1) 99.6
91.3
HCDL [38] 94.14
98.9
HCDL [33] 97.4
99.64
SOADL-GCC [30] 99.72
96
GDDC-HRODL [24] 99.49
95.7
YOLOvV7+ SE [21] 71
50 60 70 80 90 100
Accuracy (%)

Fig -5: Graphical analysis of various DL based gastric cancer prediction models using endoscopic images in terms Accuracy

range of imaging sources and clinical settings. In this section, a
comparative performance evaluation is conducted across deep
learning-based gastric cancer prediction models focusing
primarily on classification accuracy.

Figure 4 depicts the graphical representation of different DL
based gastric cancer prediction models using pathology images
by accuracy metrics. Among the compared prediction models,
MCAM+TL [40] for HCRF based histopathology image dataset
results in highest accuracy of 99.65% compared to other models.
This model effectively extracts both global and local features
from images and captures relevant image regions for gastric
cancer prediction.

Figure 5 depicts the graphical representation of different DL
based gastric cancer prediction models using endoscopic images
by accuracy metric. Among the compared models, SOADL-GCC
[30] results in highest accuracy of 99.72% when evaluated on
Kvasir dataset with 5000 labeled endoscopic images.This model
effectively preserves image edges, maintains spatial
relationships, and utilizes fine-tuned hyperparameters to enable
efficient and accurate gastric cancer prediction.

Based on Figures 4 and 5, it can be concluded that the
MCAM+TL [40] model, evaluated on the HCRF histopathology
image dataset, outperforms other gastric cancer prediction
models that utilize pathology images. Despite its advantage,
certain limitations like reduced performance on low-resolution
images, along with limited interpretability and scalability on
larger database which significantly lowers the models
performances. Likewise, SOADL-GCC [30], evaluated on the
Kvasir endoscopic dataset, outperforms other gastric cancer
prediction models based on endoscopic images But, this model
leads to scalability issues and increased model complexity due to
the integration of multiple components. Thus, the limitations of
these models will be resolved in the future proposed models by
introducing the advanced and lightweight architectures aimed at
improving scalability, reducing computational complexity and
enhancing interpretability. Additionally, integrating both
pathological and endoscopic images in a multi-modal framework
enhances prediction performance and generalizability by
combining cellular- and tissue-level features leading to improved

diagnostic accuracy, lesion localization and clinical decision-
making. These improvements will assists to develop more
reliable and accurate clinical diagnostic prediction algorithms,
which may someday be used for other purposes including
identifying thyroid nodules in ultrasound pictures.

4. CONCLUSION

Early gastric cancer prediction reduces the morality rate.
Traditional models fail to provide accurate results in the early
detection. To overcome challenges, numerous deep learning
(DL) models have been developed. This paper presents a
comprehensive review of DL-based gastric cancer prediction
approaches utilizing endoscopic and pathological images,
analyzing the techniques employed, their advantages and
limitations, datasets used, and performance metrics. This study
provides valuable insights for researchers aiming to develop
robust and efficient diagnostic models, ultimately contributingto
personalized treatment strategies for patients. Future work will
focus on designing advanced and lightweight architectures that
improve scalability and computational efficiency, thereby
enabling real-time prediction. Moreover, the integration of both
pathological and endoscopic images will to enhance diagnostic
accuracy, improve lesion localization and support more informed
clinical decision-making for gastric cancer prediction.
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