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Abstract - Chronic stress is recognized as a major 

contributing factor to the impairment of people's health and 

quality of life due to the negative impacts it causes both in 

personal and professional life. There is a tendency for the 

increasing of concerns about mental health and investments in 

healthcare in the coming years and this fact has motivated the 

conduction of several studies that aim to develop 

technological solutions that can be applied for monitoring of 

people's mental state to early detection and treatment of stress. 

Machine Learning and Deep Learning techniques have proven 

to be a promising alternative to provide technology to help 

solve the challenges in the medical field. This study presents a 

Convolutional Neural Network (CNN) model for classifying 

stress levels in data from electroencephalogram signals. The 

model was trained with a dataset generated from an 

experiment in which individuals were monitored by 

electroencephalogram while performing stress-inducing tasks. 

The model achieved an accuracy of 87.29% in predictions and 

presented an adequate balance between performance and 

computational costs. The results obtained demonstrate the 

potential of Deep Learning techniques as tools to aid in the 

health monitoring and diagnosis. 
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1. INTRODUCTION 

 
Chronic stress has become a common element in people's 

daily lives largely due to changes in the population's lifestyle 

in recent decades. Chronic stress can have a variety of 

emotional and physical consequences. Some examples of 

problems caused by stress are: irritability, depression, impaired 

decision-making, sleep disorders, high blood pressure, 

tachycardia, burnout syndrome, risk of heart attack and stroke. 

According to The Lancet Global Health [1] and Kang and 

Chai [2], concern about mental health problems (including 

stress) has increased in recent years due to the large number of 

people affected by such disorders worldwide and the high 

financial costs estimated for the management and treatment of 

these disorders. The need for creating mechanisms that help 

reduce these problems and improve people's quality of life has 

motivated the conduction of several studies that aim to develop 

technological solutions that can be applied for monitoring 

people's mental state for early detection and treatment of stress. 

According to Can et al. [3], Hickey et al. [4] and Long et 

al. [5], monitoring people's mental state and making decisions 

in real time based on verified information poses several 

challenges due to the dynamic characteristics of the 

environment and the complexities inherent in the stress 

detection process itself, and Machine Learning and Deep 

Learning techniques have been explored in several related 

studies and have been considered as a promising alternative to 

provide effective technological solutions to address these 

challenges. 

This study aims to present a Deep Learning model that can 

classify stress levels in electroencephalogram data with a high 

level of accuracy and can be considered an adequate solution 

for treating the problem under study. The goal is to present a 

model that can be trained consuming less computational 

resources and can achieve good performance. 

 

 

2. BACKGROUND 

 

Stress can be defined as a process generated by body to 

respond to external stimuli (also called stressors) that are 

perceived as demands or threats from the external 

environment. This process is initiated by brain and causes the 

secretion of certain hormones that can cause emotional, 

behavioral, and physical changes in the individual. Stress is a 

necessary mechanism for the survival of human beings, as it 

enables them to adapt and react to different situations to which 

they are subjected daily. Stress is usually classified into two 

categories according to the amount of time the body is exposed 

to a given stressor: acute stress (short term) or chronic stress 

(long term). According to McEwen and Akil [6], while acute 

stress is desirable for the individual's adaptability to the 

external environment to occur; chronic stress is highly harmful 

to individual because exposure to stressors for a long period of 

time can cause imbalances in the body which can lead to 

various pathologies such as high blood pressure, heart attack 

and stroke. 

The brain communicates with other organs in the body 

through the Autonomic Nervous System (ANS). The ANS is 

divided into two parts: Sympathetic Nervous System (SNS) 

and Parasympathetic Nervous System (PNS). According to 

Shahsavarani et al. [7], de Looff et al. [8] and Weissman and 

Mendes [9], the SNS comes into action when the body is 

stimulated by some stressor element and starts to release 
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hormones that cause physiological changes in the body for its 

adaptation to the environment (e.g. increased heart rate), and 

the PNS comes into action after the occurrence of the stressful 

event to inhibit the effects of the SNS and bring the organism 

back to a state of homeostasis. An analysis of the joint activity 

of the two systems makes it possible to verify how the body is 

behaving to respond to stressors. The two systems operate 

harmoniously when acute stress occurs and, normally, operate 

in a deregulated manner when chronic stress occurs. 

The Electroencephalogram (EEG) is the device that makes 

it possible to record the brain's electrical activity through the 

use of electrodes connected to the scalp. The EEG measures 

electrical voltage fluctuations resulting from ionic current 

flowing within neurons. The signal obtained by the EEG at a 

certain instant of time represents the amplitude of the voltage 

recorded in a certain position of the scalp and it is measured in 

microvolts (µV). The set of measurements recorded in a given 

time interval (usually called a brain wave) represents the 

frequency of oscillations occurring in the amplitude of the 

signal and it is measured in Herts (Hz). According to Can et al. 

[3], Hickey et al. [4], Long et al. [5] and Kang and Chai [2], 

the EEG has been widely accepted and used as a tool for 

analyzing stress levels through the analysis of the joint 

operation of the SNS and PNS systems. 

According to iMotions [10] and TMSi [11], the EEG has 

become a widely used tool both for research related to the 

understanding of brain functioning and the analysis of diseases 

in medical practice due to its ease of use, and because it is 

considered a low-cost and non-invasive tool compared to other 

tools for brain imaging. Another characteristic that has favored 

the use of EEG for brain activity analysis is its high time 

resolution, which makes it possible to record hundreds of 

snapshots of electrical activity in a single second and makes it 

possible to analyze events at the precise moment of their 

occurrence. 

The EEG is a flexible device that allows the definition of 

different configurations for the number of electrodes and their 

positioning on the scalp. The most widely used electrode 

configuration pattern is the so-called 10-20 System, which was 

proposed in 1957 by Heber Jasper. The 10-20 System defines 

21 electrodes that are identified according to their location on 

the scalp and their relationship to the underlying area of the 

cerebral cortex. According to TMSi [11], the numbers “10” 

and “20” in the system name refer to the distances between 

adjacent electrodes that may represent 10% or 20% of the total 

distance of the skull. Fig. 1 shows a diagram of electrode 

positioning considering the spatial distances between adjacent 

electrodes. 

 

Figure 1 - Distance of the electrodes in the 10-20 System. 

 

Each electrode is identified by one or two letters that 

represent the brain region to which it is associated. The letters 

used are: Fp (pre-frontal or frontal pole), F (frontal), C (central 

line of the brain), T (temporal), P (parietal) and O (occipital). 

The identification also receives a number that represents the 

distance of the electrode in relation to the midline of the brain. 

The electrodes located in the midline receive the letter “z” to 

indicate the number zero and the other electrodes receive 

numbers that increase as their location moves away from the 

midline. Odd numbers are associated with the left hemisphere 

and even numbers are associated with the right hemisphere. 

Fig. 2 shows a representation of the 10-20 System indicating 

the association of each electrode with the associated brain 

region. 

 

 

Figure 2 - Identification of electrodes in the 10-20 System. 

 
In 1994 an extension to the original 10-20 System called 

the 10-10 System was accepted as a standard by the American 

Electroencephalographic Society. This system had been 

proposed in 1985 by researchers at the University of 

Washington. This standard allows the use of up to 74 

electrodes and enables high resolution measurements to be 

performed. This pattern defines 10% of the total distance from 

the skull to all adjacent electrodes, as exemplified by Fig. 3. 

The EEG is a device that has high sensitivity and its 

measurements are subject to the presence of artifacts which 

are unwanted signals that alter the signals of interest. 

Basically, there are two types of artifacts: physiological 

signals coming from other parts of the body outside the brain 

and non-physiological signals coming from the environment 
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outside the body. According to TMSi [11], the main 

generators of physiological artifacts are eye movement, the 

movement of facial muscles and cardiac activity, and the main 

generators of non-physiological artifacts are electromagnetic 

interference from the network, electrode snapping, cable 

movement and the poor connection of measurement channel. 

Proper treatment of artifacts is considered a critical task in the 

analysis of EEG signals because the presence of artifacts can 

cause errors in the interpretation of the results obtained. 

According to TMSi [11] and Kumar and Bhuvaneswari [12], 

there are several techniques to prevent the capture of artifact-

generating signals and techniques to remove unwanted signals 

during subsequent data processing. 

 

 

Figure 3 - The 10-10 System. 

 

Several studies have proposed the use of Machine 

Learning techniques to classify stress levels through the 

analysis of data from physiological exams. The use of Deep 

Learning models has been considered an effective alternative 

to perform this task due to the recognized Artificial Neural 

Networks (ANN) ability to model complex systems and 

extract patterns from data. Several studies have demonstrated 

the potential of Deep Learning models for detecting stress 

levels, presenting results that are considered promising due to 

the high accuracy achieved by the models in the predictions, 

as can be seen in the results presented by Dham et al. [13], 

Zainudin et al. [14] and Li and Liu [15]. 

The Deep Learning models most explored in studies on 

classification of stress levels have been: Multilayer Perceptron 

(MLP), Long Short-Term Memory (LSTM) and 

Convolutional Neural Networks (CNN). According to 

Wibawa et al. [16] and Li and Liu [15], comparative analyzes 

between the models have shown that CNN models can 

achieve better results by allowing high accuracy rates to be 

achieved with the use of fewer parameters and lower 

computational costs for the model training. 

 

 

 

 

 

 

 

 

3. METHODS 

 

3.1. Dataset Description 

 

The dataset used in this study is called SAM 40. This 

dataset was derived from the research developed by Ghosh et 

al. [17] at BCI Lab GU (Guwahati, India). The dataset has a set 

of records of EEG signals collected in an experiment in which 

40 individuals aged between 18 and 25 years were monitored 

while performing stress-inducing tasks. The tasks performed 

were: listening to relaxing music (for 25 seconds), performing 

the Stroop test (for 25 seconds), solving arithmetic questions 

(for 25 seconds) and identifying symmetric mirror images (for 

25 seconds). Each individual performed the sequence of tasks 

in 3 trials. The individuals assigned a stress level rating to each 

task performed. The assigned rating is on a scale of 0 to 10, 

where 0 means no stress and 10 means the highest level of 

stress. 

The equipment used in the experiment was configured 

according to the 10-10 pattern of electrode placement with 32-

channel recording. The electrodes used were: CZ, FZ, Fp1, F7, 

F3, FC1, C3, FC5, FT9, T7, CP5, CP1, P3, P7, PO9, O1, PZ, 

OZ, O2, PO10, P8, P4, CP2, CP6, T8, FT10, FC6, C4, FC2, 

F4, F8 and Fp2. The sampling frequency used in the equipment 

was 128 Hz; which made it possible to generate a dataset with 

a total of 1,536,000 samples with 32 features, where each 

feature represents the recording of brain activity (in 

microvolts) obtained by each of the electrodes used in the 

experiment. 

The original dataset went through a pre-processing step 

before being made publicly available. According to Ghosh et 

al. [17], filtering techniques were used to remove artifacts 

present in the data that may have been caused by the influence 

that muscle movement and eye movement exert on the EEG 

signals.  

 

3.2. Preprocessing 

 

An exploratory analysis of the data was carried out, in 

which it was verified that the dataset does not have problems 

of data inconsistencies such as missing data, zero values, 

duplicated samples or noisy data; which dispensed with the 

need to perform some treatment for these types of problems. 

The exploratory analysis also provided a better understanding 

of the characteristics and patterns of the data present in each 

feature, and it was verified that the dataset has a symmetrical 

normal distribution; which is an indication that the data 

distribution is in line with what is normally expected by 

Machine Learning algorithms to achieve better performance in 

their learning. 

The correlation analysis between each of the 32 features 

and the dataset target showed that none of the features has a 

different correlation with the target compared to the other 

features and for this reason it was decided to keep the 32 
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features in the dataset considering that all of them may have 

the same importance for predicting the target. 

The dataset was organized to be treated as a time series 

because, according to Wibawa et al. [16], CNN models have 

been shown to be effective in treating datasets with this 

characteristic in studies carried out in recent years. "Time 

windows" containing 3,200 samples each were generated. 

Each "time window" represents 25 seconds of EEG signal 

measurements (1 task performed). The resulting dataset 

contains 480 samples after being reorganized into "time 

windows". The “time window” structure is shown in Fig. 4 

The dataset was stratified into 90% of samples for 

training and 10% for testing. The dataset was quite 

unbalanced, and it was necessary to use oversampling 

techniques to increase the number of samples in the training 

set and balance the class distribution. Initially, a resampling 

technique was applied to increase the number of samples, and 

then the Synthetic Minority Over-sampling Technique 

(SMOTE) was applied to balance the training set by creating 

synthetic instances. After oversampling was applied, the 

number of samples in the training set increased to 2,640. 

 

 
Figure 4 - “Time window” for each sample. 

 

3.3. Model Training 

 

The architecture of the CNN model proposed in this study 

is shown in Fig. 5. The architecture has 3 Convolutional 

layers, 1 Max Pooling layer, 1 Flatten layer, 1 Fully 

Connected layer using Dropout (0.2), and 1 output layer. 

Table 1 presents the configuration hyperparameters for each 

layer. 

 

 
Figure 5 - CNN model architecture. 

 

Table 1 – Layers configuration hyperparameters. 

Layer Layer type Filters 
Kernel 

size 
Activation Units 

Layer 1 Conv1D 64 3 reLU - 

Layer 2 Conv1D 32 3 reLU - 

Layer 3 Conv1D 16 3 reLU - 

Layer 4 MaxPooling1D - - - - 

Layer 5 Flatten - - - - 

Layer 6 Dense - - reLU 128 

Layer 7 Dense - - Softmax 11 

 

The model was implemented using the Tensorflow 

framework with the Keras library. Training was performed 

with a limit of 300 epochs using the AdamW optimizer with a 

learning rate of 0.001 and a batch size of 32. The cross-

validation technique (10 Folds) was used for training. 

 

 

4. RESULTS AND DISCUSSION 

 

The CNN model achieved an average accuracy of 87.29% 

in the test set. It can be said that correctly predicting the stress 

level for 87.29% of the samples is equivalent to saying, for 

example, that the model was able to correctly predict the stress 

levels in 52 minutes out of a total of 60 minutes monitored by 

EEG. Table 2 presents the detailed metrics (precision, recall 

and F1-Score) of the training. The high rates achieved for these 

metrics indicate that the model handled well with all classes 

and its performance was little impacted by false positives or 

false negatives. 

Fig. 6 and 7 show the historical accuracy and loss 

registered during the execution of each fold. It can be verified 

that the model converged quickly, reaching high accuracy 

rates, and reaching stability with less than 40 epochs of 

training. 
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Table 2 - CNN model training metrics. 

Class Precision Recall F1-Score 

0 0.91 0.87 0.89 

1 1.00 0.79 0.88 

2 1.00 0.88 0.94 
3 0.91 0.84 0.88 

4 0.72 0.89 0.79 

5 0.83 0.91 0.87 
6 0.85 0.88 0.86 

7 0.88 0.91 0.89 

8 1.00 0.83 0.91 
9 1.00 0.90 0.95 

10 1.00 0.75 0.86 

 

 

Fig. 6 and 7 show the historical accuracy and loss 

registered during the execution of each fold. It can be verified 

that the model converged quickly, reaching high accuracy 

rates, and reaching stability with less than 40 epochs of 

training. 

 

 
Figure 6 - History of accuracy in the 10 folds. 

 

 

 
Figure 7 - History of loss in the 10 folds. 

 

 

 

 

 

 

5. CONCLUSIONS 
 

There is a tendency for the increasing of concerns about 

mental health and investments in healthcare in the coming 

years. Machine Learning and Deep Learning techniques have 

proven to be a promising alternative to provide technology 

that helps in the treatment of challenges in the medical field 

and in promoting the improvement of people's quality of life. 

Deep Learning models have proven to be efficient in 

identifying patterns in complex data such as those available in 

electroencephalogram exams. Solutions based on Deep 

Learning can create a range of possibilities for healthcare 

monitoring and real-time decision making when combined 

with other cutting-edge technologies such as biosensors, 

mobile devices, and cloud computing. 

Developing technological solutions that provide excellent 

performance using less computational resources is a very 

important issue, especially because nowadays there is a 

tendency to handle ever larger amounts of data in less time. 

CNN models have been shown to be suitable for 

implementing approaches of data analysis that make it 

possible to achieve a better balance between performance and 

computational costs. The results achieved in this study 

demonstrate that CNN models can provide satisfactory results 

in the treatment of data organized in time series, which makes 

it possible to apply them to the treatment of a wide variety of 

problems. 
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