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Abstract: Predicting outcomes in One-Day International 

(ODI) cricket is difficult due to rapidly changing match 

conditions and complex in-game dynamics. Traditional 

machine learning models often rely on static 

representations and fail to capture the sensitivity of 

outcomes to realistic variations in matches. This paper 

proposes a Scenario-Aware Counterfactual Sensitivity-

Based Learning (SCIL) framework for predicting ODI 

match outcomes. The framework generates plausible 

counterfactual match scenarios and assigns influence 

weights based on prediction sensitivity, enabling the 

model to emphasize decisive match situations. 

Experiments on historical ball-by-ball ODI data show 

that SCIL consistently outperforms conventional models, 

including Logistic Regression, Random Forest, and 

XGBoost. The results show enhanced robustness, 

predictive accuracy, and probabilistic discrimination, 

highlighting the effectiveness of counterfactual 

sensitivity modeling for reliable cricket match prediction 

outcomes. 

 

Keywords: Counterfactual Learning, Match Outcome 

Prediction, One-Day International Cricket, Scenario-

Aware Modeling, Sports Analytics. 

 

1. INTRODUCTION  

Cricket, particularly the One Day International (ODI) 

format, generates abundant structured data that can be 

leveraged for predictive modelling and strategic decision-

making. The variability inherent in match outcomes—

driven by team composition, player form, environmental 

conditions, and in-match dynamics—presents a 

formidable challenge for traditional statistical approaches. 

Sophisticated machine learning (ML) methods have 

demonstrated substantial potential for addressing complex 

prediction tasks in sports analytics, yielding insights that 

inform performance optimization and tactical planning 

across disciplines. In recent work, dynamic predictive 

frameworks have been proposed that model match 

progression across multiple game states and extract 

informative features via optimization techniques, yielding 

improved outcome-prediction accuracy relative to 

conventional approaches [1]. 

Simultaneously, advanced predictive modelling has been 

applied to individual performance components in ODIs, 

such as player scoring and bowler output, uncovering 

deeper interactions between contextual variables and 

performance metrics [2]. Studies in sports analytics 

increasingly integrate feature extraction, model 

optimization, and data-driven insights to refine 

predictions of match outcomes, thereby enabling 

stakeholders to make evidence-based decisions ranging 

from team selection to in-game strategy [3]. Moreover, 

robust predictive models that account for contextual 

attributes such as venue, toss outcome, and team strength 

are crucial for producing generalizable and interpretable 

results [4].   

This work explores a novel application of machine 

learning to a large, ball-by-ball ODI cricket dataset to 

forecast match outcomes with greater reliability. By 

employing a carefully selected set of engineered features 

that reflect both pre-match and dynamic in-match 

conditions, the framework evaluates the power of 

predictive models tailored to the complexities of ODI 

cricket. 

Main contributions of this study include: 

• Development of a predictive framework using 

engineered features from ball-by-ball ODI cricket data for 

match outcome prediction. 

• Incorporation of context-aware features, including toss 

decisions and team strength indicators, to enhance 

prediction accuracy and interpretability. 

• Evaluation of multiple machine learning models on 

historical ODI data to analyze performance differences. 
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• Analysis of prediction outcomes to demonstrate 

practical relevance for match forecasting and strategic 

decision-making. 

The remainder of the paper is organized as follows. 

Section 2 reviews recent literature on machine learning 

applications in cricket analytics and match outcome 

prediction. Section 3 explains the methodology adopted in 

this study, including the dataset description, feature 

construction, and the proposed learning framework. 

Section 4 presents the experimental results along with a 

detailed discussion of the findings. Section 5 concludes 

the paper by summarizing the major outcomes and 

suggesting directions for future work, followed by the 

references. 

2. RELATED WORKS  

Recent advances in cricket analytics reflect a clear 

transition from simple score-based summaries to detailed 

ball-by-ball modeling, where match context evolves 

rapidly and plays a crucial role in determining outcomes. 

With the growing availability of structured cricket 

datasets, machine learning techniques have been widely 

adopted to extract patterns in player performance, team 

behavior, and match results. These developments have 

laid a strong foundation for predictive and decision-

support systems in cricket analytics. 

Cricket analytics has evolved to focus on data-driven 

models that use extensive match records to link individual 

player metrics to team outcomes, supporting practical 

decision-making for performance insights [5]. In addition 

to traditional structured data, video analytics has gained 

importance, with deep learning techniques used to 

identify batting techniques from match footage, showing 

that cricket performance patterns can be effectively 

learned with appropriate representations [6]. From a 

temporal standpoint, probabilistic models have been used 

to analyze persistence and predictability in cricket, often 

referred to as the “hot hand” effect, underscoring the 

significance of time-dependent behavior in assessing 

performance [7]. 

Research efforts have also expanded to event 

understanding in broadcast content, where deep learning 

frameworks identify key match moments and generate 

player-specific highlights, emphasizing that match 

outcomes are only one part of a larger cricket intelligence 

ecosystem [8]. Recent studies have also examined pose 

estimation combined with machine learning to classify 

batting strokes using body key-points, thereby enhancing 

interpretability by connecting predictions to 

biomechanical cues rather than relying solely on 

scoreboard data [9]. At the same time, context-aware 

decision-support systems have been proposed that 

incorporate match state and textual commentary to 

suggest bowling and fielding strategies, demonstrating 

how predictive models can assist with actionable in-game 

decisions beyond mere outcome prediction [10]. 

Dynamic outcome modeling has also received increasing 

attention, in which supervised learning techniques are 

applied to structured cricket-match features to forecast 

match outcomes and to compare the effectiveness of 

learning paradigms. Such studies demonstrate that 

outcome prediction accuracy can be significantly 

influenced by feature representation and learning 

strategy, particularly when match context is explicitly 

modeled [11]. Complementing ODI-focused studies, 

machine learning approaches have also been applied to 

shorter formats, such as T20 Internationals, 

demonstrating that both static and evolving match 

features contribute to predictive performance across 

cricket formats [12]. Additionally, several studies have 

focused on predicting specific match conditions, such as 

high-score chases, using machine learning, 

demonstrating that a combination of contextual match 

features and advanced classifiers can significantly 

improve predictive capability for dynamic in-game 

events [13]. 

Overall, existing studies indicate the growing importance 

of machine learning across various areas of cricket 

analytics, including performance assessment, strategy 

development, and outcome forecasting. However, many 

methods depend on static representations or analyze 

isolated parts of the game, which restricts their ability to 

account for real-world match situations. This gap 

underscores the need for scenario-aware learning 

frameworks that explicitly model how plausible changes 

in match conditions can affect predictions. 

 

3. RESEARCH METHODOLOGY 

This section describes the dataset preparation process, 

feature construction, and the proposed scenario-aware 

learning framework adopted for ODI cricket match 

outcome prediction. The methodology is designed to 

capture both historical performance patterns and 

contextual match dynamics, which are critical for reliable 

prediction in limited-overs cricket. 

3.1. Dataset Description 

The experiments are conducted using the One-Day 

International (ODI) cricket dataset from the Cricsheet 
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repository, accessed via the Kaggle platform [14]. The 

dataset provides structured ball-by-ball and match-level 

information for international ODI matches, enabling 

detailed analysis of match outcomes and performance 

patterns. Multiple comma-separated value (CSV) files are 

used to capture information at different levels, including 

match summaries, batting and bowling statistics, and 

player details, as shown in Table 1. Only completed 

matches with valid results are considered, while 

abandoned or incomplete matches are excluded to ensure 

data consistency and reliability. 

Table -1: Dataset Files and Description 

File name (.csv) Level Description 

match_summary Match 

Match result, 

teams, venue, date, 

toss winner, toss 

decision 

batter_player_stats 
Player 

(Batting) 

Runs scored, balls 

faced, strike rate, 

boundaries 

bowler_player_sta

ts 

Player 

(Bowling

) 

Overs bowled, 

wickets taken, 

economy rate 

detailed_player_d

ata 
Player 

Player role and 

participation details 

Ball-by-ball 

YAML (original 

Cricsheet) 

Ball 
Delivery-wise 

match events 

The processed dataset comprises 2,400 completed ODI 

matches with clearly defined outcomes. In addition to 

match-level records, the dataset includes 1,540 

aggregated batting performance entries, 929 aggregated 

bowling performance entries, and 52,031 player-level 

participation records. Table 2 presents statistics for the 

different CSV files. These multiple levels of granularity 

enable comprehensive modeling of both match context 

and player contributions. 

Table -2: Dataset Statistics 

File Rows 
Column

s 
Description 

match_summary 2,400 21 

Match-level 

details 

(teams, 

venue, toss, 

result) 

batter_player_stats 1,540 16 
Aggregated 

batting 

performance 

per match 

bowler_player_sta

ts 
929 17 

Aggregated 

bowling 

performance 

per match 

detailed_player_d

ata 

52,03

1 
21 

Player 

participation 

and role 

information 

External contextual factors such as weather conditions, 

pitch reports, and player injury information are excluded 

because these data are not consistently available across 

all matches in the dataset. 

3.2. Data Preprocessing  

 Prior to model training, the raw data were preprocessed 

to ensure consistency and suitability for machine learning. 

Incomplete and abandoned matches were removed based 

on missing outcome labels. Player-level batting and 

bowling statistics were aggregated to the match level 

using standard summary statistics, including total runs, 

total wickets, average strike rate, and economy rate. 

Categorical variables, including team identifiers, venue, 

and toss decision, were encoded into numerical 

representations, while numerical features were 

normalized to reduce scale bias. Missing numerical values 

arising from partial player participation were imputed 

using feature-wise means, yielding a clean, unified match-

level dataset. 

3.3. Feature Construction 

After preprocessing, a structured feature set was 

constructed to represent each ODI match as a fixed-length 

numerical vector suitable for supervised learning. Feature 

design focused on capturing match context, team 

performance, and progression patterns that influence 

outcomes in limited-overs cricket. All features were 

derived directly from the available dataset. 

Match Context Features 

Match context features denote static conditions linked to 

a game. These include team identifiers, venue details, and 

toss-related factors. Toss decision and winner are 

included as categorical variables because they affect 

batting and bowling strategies. Venue identifiers help 

indirectly capture location-specific effects. 

Let kc denote a categorical feature. Each such feature was 

mapped to a numerical representation via an encoding 

function, as shown in Eq. (1). 

https://ijsrem.com/
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( )k kc c→    (1) 

where (.) denotes the encoding operation. 

Batting Performance Features 

Batting performance features summarize the overall 

effectiveness of the batting side at the match level. 

Player-level batting statistics were aggregated using 

standard summary operations. 

For a given match m with N For batters, the total runs 

scored are computed using Eq. (2). 

1

N

m i

i

Runs r
=

=    (2) 

where ir is the number of runs scored by the batter i . 

Average batting strike rate is computed using Eq. (3). 

1

1 N

m i

i

AvgSR sr
N =

=    (3) 

These indicators reflect scoring volume and scoring 

efficiency, respectively. 

Bowling Performance Features 

Bowling performance features capture the bowling side's 

ability to restrict runs and take wickets. Bowling statistics 

were aggregated at the match level. 

Total wickets taken in a match are computed as per Eq. 

(4). 

1

K

m j

j

Wkts w
=

=    (4) 

where jw denotes wickets taken by the bowler j , and K is 

the number of bowlers. The average bowling economy is 

computed using Eq. (5). 

1

1 K

m j

j

AvgEco eco
K =

=    (5) 

where jeco is the economy rate of the bowler j in that 

match. 

Match Progression Features 

To model the dynamic nature of ODI matches, 

performance features were aggregated across key phases 

of an innings: powerplay, middle overs, and death overs. 

Using Eq. (6)., the phase-wise run rates are computed. 

p

p

p

Runs
RR

Overs
=    (6) 

where p denotes the corresponding phase. 
pRuns and 

pOvers denotes the runs scored and overs bowled in the 

phase p . This representation allows the model to capture 

momentum shifts across different stages of the match. 

All constructed features were combined into a fixed-

length vector: 

1 2 3[ , , ,......, ]m dx x x x x=   (6) 

where mx represents the feature vector for the match m , 

and d denotes the total number of engineered features. 

This vector serves as the input to the proposed learning 

framework described in the subsequent section. 

3.4.  Scenario-Aware Counterfactual Sensitivity 

Learning 

 The proposed method enhances match outcome 

prediction by incorporating realistic counterfactual 

scenarios during model training. A base predictive model 

is first trained using the original match instances. For each 

instance, multiple plausible counterfactual variants are 

generated through bounded and domain-consistent feature 

perturbations. The influence of each scenario is quantified 

by measuring the sensitivity of the model’s predicted 

outcome to variations in that scenario.  

 Scenarios that produce significant shifts in predictions 

are assigned higher influence weights, whereas negligible 

variations are suppressed. Model parameters are then 

refined using a joint loss function that combines original 

instances with influence-weighted counterfactual 

scenarios. This learning strategy enables the model to 

capture outcome sensitivity to critical match dynamics 

and improves robustness to realistic match variations.  

 Equations (7)–(15) formally define the proposed 

counterfactual sensitivity–based learning mechanism, 

including scenario generation, influence estimation, and 

scenario-aware optimization. 

 Let the training dataset be  

1{( )}, N

i i iD x y ==    (7) 

where ( )i ip f x= represents the match state and ,1{ }0iy

denotes the match outcome. A probabilistic prediction 

model [0,1]df →R  is trained to estimate the outcome 

probability ( )i ip f x= . 

Counterfactual Scenario Generation 

 For each instance ix , a set of S counterfactual 

scenarios are generated as 
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, , , 1, 2, ,i s i i sx x s S = +  =   (8) 

where the perturbation vector 
,i s satisfies 

( )

, [ ],j

i s j j  − +ò ò    (9) 

and all
,i sx are constrained to lie within the valid domain

. 

Sensitivity-Based Influence Estimation 

The predicted outcome for each counterfactual scenario is 

, ,( )i s i sp f x
 =    (10) 

The sensitivity (prediction shift) induced by each 

scenario is defined as 

, ,i s i s ip p = −    (11) 

A thresholded influence score is computed as 

, , )0,(i s i sI max=  −    (12) 

where  controls insignificant fluctuations. 

Influence Weight Normalization 

The normalized influence weight of each scenario is 

given by 

,

,

,

1

,

)
,

(

( )

0

1

i s

i kS k

i k

k

i s

exp I
I

exp I

w

otherwise
s

=




 



= 









 (13) 

Scenario-Aware Learning Objective 

The final training objective is formulated as 

1

, ,

1

( ) ( ( ) ) ( ) (1 ), ,( )
N

i

s

i s

S

i s i i

i

L f x y w f x y

=



=

 
 =  + − 

 
  (14) 

where ( ) denotes a standard classification loss function 

and [0,1] balances original and counterfactual 

learning. The optimal model parameters are obtained as 

( )arg minL


 =    (15) 

Collectively, these equations constitute the core of the 

proposed framework, ensuring that outcome predictions 

remain consistent and robust under realistic variations in 

counterfactual matches. 

 

 

4. RESULTS AND DISCUSSIONS 

This section evaluates the effectiveness of the proposed 

Scenario-Aware Counterfactual Influence Learning 

(SCIL) framework for outcome prediction in One-Day 

International (ODI) cricket. The performance of the 

proposed method is compared against conventional 

machine learning baselines to demonstrate the impact of 

counterfactual sensitivity modeling. 

4.1. Experimental Setup 

The experiments were conducted on historical One-Day 

International (ODI) cricket match data, where each 

sample represents an intermediate match state 

characterized by features such as overs remaining, runs 

required, wickets in hand, current run rate, and required 

run rate. The task is formulated as a binary classification 

problem to predict whether the batting or the chasing 

team ultimately wins the match. 

The proposed Scenario-Aware Counterfactual Influence 

Learning (SCIL) framework is implemented using a 

probabilistic learning model and compared to widely 

used machine learning algorithms such as Logistic 

Regression, Random Forest, and XGBoost. All models 

are trained on the same feature set and follow the same 

experimental pipeline, with SCIL differing only in its use 

of counterfactual scenario generation and influence 

weighting based on sensitivity. Stratified train–test 

splitting is used to maintain class balance during 

evaluation. The models are developed and evaluated with 

standard machine learning libraries, applying consistent 

hyperparameter tuning strategies across all methods. 

Performance is assessed using both classification and 

probabilistic metrics. Accuracy captures overall 

correctness, whereas Precision and Recall reflect the 

quality and completeness of positive-prediction 

outcomes. The F1-score provides a balanced measure of 

these two aspects, which is particularly important in 

closely contested match situations. In addition, the Area 

Under the Receiver Operating Characteristic Curve 

(AUC) is reported to evaluate the models’ ability to rank 

winning and losing outcomes across varying decision 

thresholds, offering insight into the reliability of 

predicted probabilities. 

4.2. Overall Performance Evaluation 

The overall performance comparison emphasizes the 

ability of different models to capture decisive match 

dynamics beyond simple pattern learning. By jointly 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 10 Issue: 01 | Jan - 2026                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                             

 

© 2026, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM56333                                           |        Page 6 
 

assessing classification accuracy and probability ranking 

quality, the evaluation reveals the impact of 

counterfactual-sensitivity modeling. The comparison 

shown in Fig. 1 provides insight into how SCIL enhances 

the robustness of outcome prediction. 

 

Fig. 1: Overall Performance Comparison of Outcome 

Prediction Algorithms 

 

As illustrated in the figure, SCIL consistently achieves 

the highest performance across all evaluation metrics. 

While ensemble-based models such as Random Forest 

and XGBoost outperform Logistic Regression, the 

proposed SCIL framework further improves prediction 

accuracy and F1-score, indicating a better balance 

between precision and recall. SCIL achieves the highest 

performance across all metrics, attaining an accuracy of 

0.84 and an AUC of 0.88, compared with 0.79 accuracy 

and 0.83 AUC for XGBoost, the strongest baseline 

model. The most notable improvement is observed in 

AUC, indicating that SCIL provides superior 

probabilistic discrimination between winning and losing 

outcomes. These results confirm that incorporating 

counterfactual sensitivity and influence-based weighting 

enables the model to capture critical match dynamics 

more effectively than conventional learning approaches, 

leading to more reliable outcome predictions in closely 

contested ODI matches. 

4.3. Counterfactual Scenario Contribution 

Analysis 

This analysis examines how individual counterfactual 

scenarios contribute to learning within the proposed SCIL 

framework. Since SCIL assigns influence weights based 

on prediction sensitivity, scenarios are expected to have 

unequal impact on outcome learning. Visualizing the 

distribution of these weights provides insight into how the 

emphasis of learning is allocated across generated 

scenarios. Fig. 2 shows the analysis. 

  

Fig. 2: Distribution of Counterfactual Scenario Influence 

Weights 

The influence weight distribution exhibits a long-tailed 

pattern, in which only a small subset of counterfactual 

scenarios receives strong influence, whereas most 

contribute marginally. This indicates that match 

outcomes are driven by a limited number of decisive 

variations rather than uniform changes. By prioritizing 

these influential scenarios, SCIL effectively focuses 

learning on critical match dynamics, thereby improving 

robustness and predictive performance. A small fraction 

of the generated counterfactual scenarios receive high 

influence weights, whereas the majority contribute only 

marginally. 

5. CONCLUSIONS 

This study presented a Counterfactual Sensitivity-Based 

Learning (SCIL) framework for outcome prediction in 

One-Day International cricket, designed to capture the 

influence of realistic match variations on predictive 

behavior. By integrating sensitivity-weighted 

counterfactual scenarios into the learning process, the 

proposed approach improves robustness and 

interpretability compared to conventional models. 

Experimental evaluation shows that SCIL achieves 

superior performance, attaining an accuracy of 0.84 and 

an AUC of 0.88, outperforming strong baseline methods 

such as XGBoost, which achieved an accuracy of 0.79 

and an AUC of 0.83. The analysis further demonstrates 

that only a small subset of counterfactual scenarios 

significantly contributes to learning, validating the 

importance of influence-based weighting. Future work 

will extend this framework to other cricket formats, 

incorporate player-level and contextual features, and 

https://ijsrem.com/
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explore real-time decision-support applications for match 

strategy analysis. 
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