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Abstract: 

 

Double Refined Indeterminate Triangular Neutrosophic Number (DRITrNN) provides the additional  

possibility to represent with sensitivity and accuracy the uncertain, imprecise, incomplete and inconsistent 

information. In this article a Linear programming problem is considered in DRITrNN situation and an efficient 

novel algorithm is proposed to solve the LPP with variables in the form of DRITrNN and its efficiency is validated 

with Numerical illustration. 
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1. Introduction 

 

Triangular fuzzy number has diverse application in varied areas like  decision-making [3,9,15], risk 

evaluation [8], performance evaluation [12], forecast [13], matrix games [6], k-dimensional space representation 

[17], collaborative filtering recommendation system [18] and ranking and evaluating information systems 

quality[14]. As an improvement of the fuzzy number, Intuitionistic fuzzy number was defined to suitably describe 

the vagueness and lack of precision of data. Mahapatra and Roy [10] evaluated system reliability by considering 

reliability of components as triangular intuitionistic fuzzy number. 

Single valued triangular neutrosophic number (SVTrNN) is the generality of triangular fuzzy numbers and 

triangular intuitionistic fuzzy numbers. It is used to specify the information in a more flexible manner. Avishek 

Chakraborthy et.al; [2] defined different forms of linear, non-linear generalized triangular neutrosophic numbers 

that has great significance in uncertainty theory. He used it to solve imprecise project evaluation review technique 

and route selection problem. Deli.I and Subas.Y [4,5] developed hybrid geometric operator for single valued 

triangular neutrosophic number  and solved multi criteria decision making problem. Abdel-Basset, M.et.al; [1] 

derived preference relations of triangular neutrosophic and used in the algorithm of group decision-making problem. 
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Smarandache Florentin et. al; [16] derived an algorithm for CPM whose parameters are vague and denoted by 

triangular neutrosophic numbers. Mehmet Sahin et.al; [11] defined single valued triangular neutrosophic number 

in  general form and applied it for  group decision making with multi attributes. 

As an extension to provide the added opportunity to denote the inconsistent information with greater 

accuracy Gokilamani and Sahayasudha [7] proposed the definition of Double Refined Indeterminate Triangular 

Neutrosophic Number and used ranking method to solve the Linear programming Problem. In this article a novel 

algorithm is developed to solve the LPP with the variables in the form of DRITrNN. 

 

2.Preliminaries 

Definition: 

A DRITrN number   �̿�𝑁𝑡  =  〈(𝑎, 𝑏, 𝑐);  𝑝�̿�𝑁𝑡  , 𝑞�̿�𝑁𝑡  , 𝑟�̿�𝑁𝑡  , 𝑠�̿�𝑁𝑡  〉   is a neutrosophic set on the real number set R, 

whose truth membership function 𝑇�̿�𝑁𝑡(𝑥) , indeterminacy leaning towards truth membership function 𝐼𝐹�̿�𝑁𝑡
(𝑥) , 

indeterminacy leaning towards falsity membership function 𝐼𝐹�̿�𝑁𝑡    
(𝑥) and falsity membership function 

𝐹�̿�𝑁𝑡    (𝑥) are defined as follows: 

𝑇 �̿�𝑁𝑡    (𝑥) =  

{
 
 

 
 
(𝑥 − 𝑎)𝑝�̿�𝑁𝑡  

𝑏 − 𝑎
 𝑎 ≤ 𝑥 < 𝑏

  𝑝�̿�𝑁𝑡             𝑥 = 𝑏

(𝑐 − 𝑥) 𝑝�̿�𝑁𝑡  
𝑐 − 𝑏

  𝑏 < 𝑥 ≤ 𝑐

     0              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

  𝐼𝐹�̿�𝑁𝑡    
(𝑥) 

{
 
 

 
 
𝑏 − 𝑥 + 𝑟�̿�𝑁𝑡  (𝑥 − 𝑎)

𝑏 − 𝑎
     𝑎 ≤ 𝑥 < 𝑏

     𝑟�̿�𝑁𝑡                          𝑥 = 𝑏 

𝑥 − 𝑏 + 𝑟�̿�𝑁𝑡  (𝑐 − 𝑥)

𝑐 − 𝑏
  𝑏 < 𝑥 ≤ 𝑐

              1                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝐼𝑇 �̿�𝑁𝑡   
(𝑥) =

{
 
 

 
 
(𝑥 − 𝑎)𝑞�̿�𝑁𝑡  

𝑏 − 𝑎
  𝑎 ≤ 𝑥 < 𝑏

         𝑞�̿�𝑁𝑡               𝑥 = 𝑏         

(𝑐 − 𝑥) 𝑞�̿�𝑁𝑡  
𝑐 − 𝑏

  𝑏 < 𝑥 ≤ 𝑐

      0              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝐹�̿�𝑁𝑡    (𝑥)

{
 
 

 
 
𝑏 − 𝑥 + 𝑠�̿�𝑁𝑡  (𝑥 − 𝑎)

𝑏 − 𝑎
    𝑎 ≤ 𝑥 < 𝑏

             𝑠�̿�𝑁𝑡                                𝑥 = 𝑏  

𝑥 − 𝑏 + 𝑠�̿�𝑁𝑡  (𝑐 − 𝑥)

𝑐 − 𝑏
   𝑏 < 𝑥 ≤ 𝑐

            1                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

 

3.Algorithm to Solve DRITrN LPP 

 

An approach is framed with the assumption that the variable in LPP is in the form of double refined 

indeterminate triangular neutrosophic  number and the algorithm is illustrated with numerical example. 

 

3.1 Algorithm: 

Consider the following Double refined indeterminate triangular neutrosophic linear programming  with m 

constraints and n variables 
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(Maximize) or (Minimize)  Z =  ∑ 𝐶𝑗
𝑛
𝑗=1 (�̿�𝑁𝑡)𝑗                                            

subject to, 

 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1  (�̿�𝑁𝑡)𝑗 ≤  𝑜𝑟 =  𝑜𝑟 ≥  (�̿�𝑁𝑡)𝑗   , i=1,2…m                           

  (�̿�𝑁𝑡)𝑗 ≥ 0  ,   j=1,2…n 

Let  �̿�𝑁𝑡= 〈(  𝑏𝑙 , 𝑏𝑚, 𝑏𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉 and 

        �̿�𝑁𝑡= 〈(  𝑥𝑗
𝑙 , 𝑥𝑗

𝑚, 𝑥𝑗
𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉                   

The following are the steps involved in solving DRITrN LPP.  

 

Step1: 

 

  Consider the LPP  

 

Maximize(Minimize) Z = ∑ 𝑐𝑗
𝑛
𝑗=1  〈(  𝑥𝑗

𝑙 , 𝑥𝑗
𝑚, 𝑥𝑗

𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉 

 

subject to 

 

∑ (�̿�𝑁𝑡)𝑖𝑗
𝑛
𝑗=1  〈(  𝑥𝑗

𝑙 , 𝑥𝑗
𝑚, 𝑥𝑗

𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉 ≤ 〈(  𝑏𝑙 , 𝑏𝑚, 𝑏𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉 ∀ 𝑖 

 

〈(  𝑥𝑗
𝑙 , 𝑥𝑗

𝑚, 𝑥𝑗
𝑟); 𝑝�̿�𝑁𝑡 , 𝑞�̿�𝑁𝑡 , 𝑟�̿�𝑁𝑡 , 𝑠�̿�𝑁𝑡〉  ≥ 0  ∀ j                                                           

 

Step 2:  

 

The LPP in step 1 can be transformed in to an LPP as , 

 

Maximize(Minimize) Z = 〈(  𝑧𝑙 , 𝑧𝑚, 𝑧𝑟);  𝑝, 𝑞, 𝑟, 𝑠〉 
 

subject to                                                                                                                                       

 

〈(  𝑎𝑙 , 𝑎𝑚, 𝑎𝑟);  𝑝, 𝑞, 𝑟, 𝑠〉  ≤ 〈(  𝑏𝑖
𝑙 , 𝑏𝑖

𝑚, 𝑏𝑖
𝑟); 𝑝�̿�𝑖𝑁𝑡

, 𝑞�̿�𝑖𝑁𝑡
, 𝑟�̿�𝑖𝑁𝑡

, 𝑠�̿�𝑖𝑁𝑡
〉 ∀ 𝑖 

 

𝑝 ≤ 𝑀𝑖𝑛𝑖 (𝑝�̿�𝑖𝑁𝑡
)  ,   𝑞 ≤ 𝑀𝑖𝑛𝑖 (𝑞�̿�𝑖𝑁𝑡

)  ,  𝑟 ≥ 𝑀𝑎𝑥𝑖 (𝑟�̿�𝑖𝑁𝑡
)  , 𝑠 ≥ 𝑀𝑎𝑥𝑖 (𝑠�̿�𝑖𝑁𝑡

) 

 

Where 

𝑝 = 𝑀𝑖𝑛𝑖 ( 𝑝�̿�𝑗𝑁𝑡
),   𝑞 = 𝑀𝑖𝑛𝑖(𝑞�̿�𝑗𝑁𝑡

)  ,   𝑟 = 𝑀𝑎𝑥𝑖 (𝑟�̿�𝑗𝑁𝑡
)  ,  𝑠 = 𝑀𝑎𝑥𝑖 (𝑠�̿�𝑗𝑁𝑡

)   

 

Step 3: 

 

LPP in step 2 can be transformed into an multi objective linear programming Problem 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)𝑧𝑙 , 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)𝑧𝑚 , 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)𝑧𝑟 , 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)∑ 𝑝�̿�𝑗𝑁𝑡
𝑛
𝑗=1 , 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)∑ 𝑞�̿�𝑗𝑁𝑡
𝑛
𝑗=1 , 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒)∑ 𝑟�̿�𝑗𝑁𝑡
𝑛
𝑗=1 , 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒)∑ 𝑠�̿�𝑗𝑁𝑡
𝑛
𝑗=1 , 

 

subject to 

 

𝑎𝑙  ≤   𝑏𝑖
𝑙
  ∀ 𝑖 

 

𝑎𝑚  ≤   𝑏𝑖
𝑚

  ∀ 𝑖 
 

𝑎𝑟  ≤   𝑏𝑖
𝑟
  ∀ 𝑖 

 

∑𝑝�̿�𝑗𝑁𝑡
≤ 𝑛 𝑀𝑖𝑛𝑖(

𝑛

𝑗=1

𝑝�̿�𝑖𝑁𝑡
) 

 
∑ 𝑞�̿�𝑗𝑁𝑡
𝑛
𝑗=1 ≤ 𝑛 𝑀𝑖𝑛𝑖 (𝑞�̿�𝑖𝑁𝑡

)   

∑𝑟�̿�𝑗𝑁𝑡

𝑛

𝑗=1

≥ 𝑛 𝑀𝑎𝑥𝑖 (𝑟�̿�𝑖𝑁𝑡
) 

∑𝑠�̿�𝑗𝑁𝑡
≥ 𝑛 𝑀𝑎𝑥𝑖 (𝑠�̿�𝑖𝑁𝑡

)

𝑛

𝑗=1

 

 

𝑥𝑗
𝑙  ≥ 0 ,      𝑥𝑗

𝑚  − 𝑥𝑗
𝑙  ≥ 0   ,   𝑥𝑗

𝑟  − 𝑥𝑗
𝑚  ≥ 0 

 
𝑝�̿�𝑗𝑁𝑡

+ 𝑞�̿�𝑗𝑁𝑡
+ 𝑟�̿�𝑗𝑁𝑡

+ 𝑠�̿�𝑗𝑁𝑡
≤ 4  

 

0 ≤  𝑝�̿�𝑗𝑁𝑡
≤ 1 ,   0 ≤  𝑞�̿�𝑗𝑁𝑡

≤ 1 ,    0 ≤  𝑟�̿�𝑗𝑁𝑡
≤ 1 ,    0 ≤  𝑠�̿�𝑗𝑁𝑡

≤ 1 

 

𝑝�̿�𝑗𝑁𝑡
≥ 𝑠�̿�𝑗𝑁𝑡

 ,    𝑝�̿�𝑗𝑁𝑡
≥ 𝑟�̿�𝑗𝑁𝑡

  ,   𝑝�̿�𝑗𝑁𝑡
≥ 𝑞�̿�𝑗𝑁𝑡

  

 

Step 4: 

Combining all the objective function in to a single objective function the LPP can be represented as 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)𝑤 =   𝑧𝑙 + 𝑧𝑚 + 𝑧𝑟 + ∑ 𝑝�̿�𝑗𝑁𝑡
𝑛
𝑗=1 + ∑ 𝑞�̿�𝑗𝑁𝑡

𝑛
𝑗=1 − ∑ 𝑟�̿�𝑗𝑁𝑡

𝑛
𝑗=1 − ∑ 𝑠�̿�𝑗𝑁𝑡

𝑛
𝑗=1   

 

subject to 

 

𝑎𝑙  ≤   𝑏𝑖
𝑙
  ∀ 𝑖 

 

𝑎𝑚  ≤   𝑏𝑖
𝑚

  ∀ 𝑖 
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𝑎𝑟  ≤   𝑏𝑖
𝑟
  ∀ 𝑖 

                                                                                                                                             

∑𝑝�̿�𝑗𝑁𝑡
≤ 𝑛 𝑀𝑖𝑛𝑖(

𝑛

𝑗=1

𝑝�̿�𝑖𝑁𝑡
) 

 
∑ 𝑞�̿�𝑗𝑁𝑡
𝑛
𝑗=1 ≤ 𝑛 𝑀𝑖𝑛𝑖 (𝑞�̿�𝑖𝑁𝑡

)   

∑𝑟�̿�𝑗𝑁𝑡

𝑛

𝑗=1

≥ 𝑛 𝑀𝑎𝑥𝑖 (𝑟�̿�𝑖𝑁𝑡
) 

∑𝑠�̿�𝑗𝑁𝑡
≥ 𝑛 𝑀𝑎𝑥𝑖 (𝑠�̿�𝑖𝑁𝑡

)

𝑛

𝑗=1

 

 

𝑥𝑗
𝑙  ≥ 0 ,      𝑥𝑗

𝑚  − 𝑥𝑗
𝑙  ≥ 0   ,   𝑥𝑗

𝑟  − 𝑥𝑗
𝑚  ≥ 0 

 
𝑝�̿�𝑗𝑁𝑡

+ 𝑞�̿�𝑗𝑁𝑡
+ 𝑟�̿�𝑗𝑁𝑡

+ 𝑠�̿�𝑗𝑁𝑡
≤ 4  

 

0 ≤  𝑝�̿�𝑗𝑁𝑡
≤ 1 ,   0 ≤  𝑞�̿�𝑗𝑁𝑡

≤ 1 ,    0 ≤  𝑟�̿�𝑗𝑁𝑡
≤ 1 ,    0 ≤  𝑠�̿�𝑗𝑁𝑡

≤ 1 

 

𝑝�̿�𝑗𝑁𝑡
≥ 𝑠�̿�𝑗𝑁𝑡

 ,    𝑝�̿�𝑗𝑁𝑡
≥ 𝑟�̿�𝑗𝑁𝑡

  ,   𝑝�̿�𝑗𝑁𝑡
≥ 𝑞�̿�𝑗𝑁𝑡

  

 

Step 5: 

 

Find the optimal solution �̿�𝑁𝑡 of LPP in step 4 by using TORA software and then find the neutrosophic optimal 

value. The obtained solution are in the form of DRITrNN. 

 

3.2 Numerical Illustration: 

 

Maximize Z = 5 �̿�1𝑁𝑡 + 4 �̿�2𝑁𝑡 

 

subject to 

 

6 �̿�1𝑁𝑡 + 4 �̿�2𝑁𝑡  ≤  < (3,5,6); 0.6,0.3,0.2,0.2 > 

 

 �̿�1𝑁𝑡 + 2 �̿�2𝑁𝑡  ≤  < (5,8,10); 0.7,0.4,0.3,0.1 >                                                             

 

 �̿�1𝑁𝑡 +  �̿�2𝑁𝑡  ≤ < (12,15,19); 0.6,0.2,0.1,0.2 > 

 

�̿�2𝑁𝑡 ≤ < (14,17,21); 0.8,0.3,0.2,0.1 > 

 

�̿�1𝑁𝑡 , �̿�2𝑁𝑡  ≥ 0 

 

Solution: 

 

Considering �̿�1𝑁𝑡 = 〈(  𝑥1
𝑙, 𝑥1

𝑚, 𝑥1
𝑟); 𝑝�̿�1𝑁𝑡 , 𝑞�̿�1𝑁𝑡 , 𝑟�̿�1𝑁𝑡 , 𝑠�̿�1𝑁𝑡〉  and  
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�̿�2𝑁𝑡 = 〈(  𝑥2
𝑙, 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉 the LPP can be transformed in to an LPP as 

 

Maximize Z= {
5 〈(  𝑥1

𝑙 , 𝑥1
𝑚, 𝑥1

𝑟); 𝑝�̿�1𝑁𝑡 , 𝑞�̿�1𝑁𝑡 , 𝑟�̿�1𝑁𝑡 , 𝑠�̿�1𝑁𝑡〉  +

4 〈(  𝑥2
𝑙, 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉
 

 

subject to 

 

6 〈(  𝑥1
𝑙 , 𝑥1

𝑚, 𝑥1
𝑟); 𝑝�̿�1𝑁𝑡 , 𝑞�̿�1𝑁𝑡 , 𝑟�̿�1𝑁𝑡 , 𝑠�̿�1𝑁𝑡

〉 + 

 4 〈(  𝑥2
𝑙 , 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉  ≤  < (3,5,6); 0.6,0.3,0.2,0.2 > 

 

 〈(  𝑥1
𝑙 , 𝑥1

𝑚, 𝑥1
𝑟); 𝑝�̿�1𝑁𝑡 , 𝑞�̿�1𝑁𝑡 , 𝑟�̿�1𝑁𝑡 , 𝑠�̿�1𝑁𝑡

〉 +  

2 〈(  𝑥2
𝑙 , 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉  ≤  < (5,8,10); 0.7,0.4,0.3,0.1 >                                                   

 

 〈(  𝑥1
𝑙 , 𝑥1

𝑚, 𝑥1
𝑟); 𝑝�̿�1𝑁𝑡 , 𝑞�̿�1𝑁𝑡 , 𝑟�̿�1𝑁𝑡 , 𝑠�̿�1𝑁𝑡

〉 +  〈(  𝑥2
𝑙 , 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉  ≤ <

(12,15,19); 0.6,0.2,0.1,0.2 > 

 

〈(  𝑥2
𝑙 , 𝑥2

𝑚, 𝑥2
𝑟); 𝑝�̿�2𝑁𝑡 , 𝑞�̿�2𝑁𝑡 , 𝑟�̿�2𝑁𝑡 , 𝑠�̿�2𝑁𝑡

〉 ≤ < (14,17,21); 0.8,0.3,0.2,0.1 > 

 

〈(  𝑥𝑗
𝑙 , 𝑥𝑗

𝑚, 𝑥𝑗
𝑟); 𝑝�̿�𝑗𝑁𝑡

, 𝑞�̿�𝑗𝑁𝑡
, 𝑟�̿�𝑗𝑁𝑡

, 𝑠�̿�𝑗𝑁𝑡
〉  ≥ 0  ∀ j  

 

Using the proposed method the above LPP can be converted as 

 

Maximize Z = 5𝑥1
𝑙 + 4  𝑥2

𝑙 + 5 𝑥1
𝑚 + 4 𝑥2

𝑚 + 5 𝑥1
𝑟 + 4 𝑥2

𝑟 +   𝑝�̿�1𝑁𝑡 + 𝑝�̿�2𝑁𝑡 + 𝑞�̿�1𝑁𝑡 + 𝑞�̿�2𝑁𝑡 − 𝑟�̿�1𝑁𝑡 − 

𝑟�̿�2𝑁𝑡 − 𝑠�̿�1𝑁𝑡 − 𝑠�̿�2𝑁𝑡 

 

subject to 

 

6𝑥1
𝑙 + 4  𝑥2

𝑙  ≤ 3 ,     𝑥1
𝑙 + 2 𝑥2

𝑙  ≤ 5 ,    𝑥1
𝑙 + 𝑥2

𝑙  ≤ 12 , 𝑥2
𝑙  ≤ 14 

 

6𝑥1
𝑚 + 4  𝑥2

𝑚  ≤ 5 ,     𝑥1
𝑚 + 2 𝑥2

𝑚  ≤ 8 ,     𝑥1
𝑚 + 𝑥2

𝑚  ≤ 15 , 𝑥2
𝑚  ≤ 17 

 

6𝑥1
𝑟 + 4  𝑥2

𝑟  ≤ 6 ,     𝑥1
𝑟 + 2 𝑥2

𝑟  ≤ 10 ,     𝑥1
𝑟 + 𝑥2

𝑟  ≤ 19 , 𝑥2
𝑟  ≤ 21 

 

𝑝�̿�1𝑁𝑡 + 𝑝�̿�2𝑁𝑡 ≤ 1.2 ,   𝑞�̿�1𝑁𝑡 + 𝑞�̿�2𝑁𝑡 ≤  0.4 , 𝑟�̿�1𝑁𝑡 + 𝑟�̿�2𝑁𝑡 ≥ 0.6 , 𝑠�̿�1𝑁𝑡 + 𝑠�̿�2𝑁𝑡 ≥ 0.4 

 

𝑥𝑗
𝑙  ≥ 0 ,      𝑥𝑗

𝑚  − 𝑥𝑗
𝑙  ≥ 0   ,   𝑥𝑗

𝑟  − 𝑥𝑗
𝑚  ≥ 0    for j=1,2 

 
𝑝�̿�𝑗𝑁𝑡

+ 𝑞�̿�𝑗𝑁𝑡
+ 𝑟�̿�𝑗𝑁𝑡

+ 𝑠�̿�𝑗𝑁𝑡
≤ 4  for j=1,2 

 

0 ≤  𝑝�̿�𝑗𝑁𝑡
≤ 1 ,   0 ≤  𝑞�̿�𝑗𝑁𝑡

≤ 1 ,    0 ≤  𝑟�̿�𝑗𝑁𝑡
≤ 1 ,    0 ≤  𝑠�̿�𝑗𝑁𝑡

≤ 1   for j=1,2 

 

𝑝�̿�𝑗𝑁𝑡
≥ 𝑠�̿�𝑗𝑁𝑡

 ,    𝑝�̿�𝑗𝑁𝑡
≥ 𝑟�̿�𝑗𝑁𝑡

  ,   𝑝�̿�𝑗𝑁𝑡
≥ 𝑞�̿�𝑗𝑁𝑡

     for j=1,2 

 

The optimal solution is obtained using TORA,  

 

�̿�1𝑁𝑡 = < (0, 0, 0); 1, 0.2, 0.4, 0.2 > 
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�̿�2𝑁𝑡 = < (0.75, 1.25, 1.5); 0.2, 0.2, 0.2, 0.2 > 

 

 

4. Conclusion 

  In this paper a new algorithm is developed to solve  Linear Programming Problem with variables in the 

form Double Refined Indeterminate Triangular Neutrosphic number .This direct approach is used to solve the LPP 

effectively. The efficacy of the approach is verified by implementing it to a numerical example.  
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