
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 404

A Fast, Efficient Technique for Finding a Path through
Multiple Destinations

Snehal Shivaji Gundal

Abstract—In a real world situation, employees of different
companies or organizations often need to travel to multiple
destinations without passing through the same place twice. However,
the problem of identifying an efficient path to travel through multiple
destinations can be extremely difficult and timeconsuming. In this
work, I propose an algorithm to find an efficient path in real world
scenarios, within a short amount of time. This heuristic uses Dijkstra’s
algorithm to find different paths between pairs of destinations and
then determines the efficiency of each path. It runs in a recursive
manner until it covers all of the destinations, including returning back
to the starting location. With that, the algorithm creates an efficient
path through all of the destinations. As a result, this approach allows
people and organizations to save time, and money which could be
used in other places. In order to test how beneficial this technique is,
I have run several sample test situations involving between 5 and 50
destinations. My data shows that the algorithm produces an efficient
path within 20 to 150 seconds, depending on the number of
destinations. Since it requires very little time and knowledge, this
approach will be quite appealing and useful to the companies and
organizations.

Index Terms—Algorithms and Theory; Computational Intelligence;
Systems and Software Engineering; Computing in
Management Technology;

I. INTRODUCTION

On a typical day, a busy person in the service industry or
sales industry visits multiple places. For example, a courier
delivery person probably visits 50 households and drops the
boxes in each house. Most likely, those houses are within a few
cities, but certainly not next to each other. To address the need
of these people, there is certainly a need to develop a
methodology to quickly identify an efficient route that cover

multiple locations.

For many years, researchers have proposed various
methods to identify efficient route between two points.
Different definitions of efficiency has been used, along with
many different real-life factors. Dijkstra’s algorithm [1] is the
classic approach for finding the shortest paths between two
destinations in a graph. The graph can represent any network
like road network across cities, or inside a city. Hart et. al
proposed a faster version of the Dijkstra’s algorithm, for

finding shortest paths in graphs. This approach is called A*
algorithm [2].

In [3], a road map production system model using
bidirectional search algorithm was proposed for navigating a
mobile robot. Fetterer et. al proposed a performance analysis
of hierarchical shortest path algorithms in [4]. They analyzed
the effect of memorizing individual data structures for the
storage overhead and computation time of hierarchical routing
algorithms based on A* technique. In [5], Liu et. al explored the
approach of combining a shortest path algorithm with
knowledge about the road network. Seo et. al presented an
effective alternative path-finding algorithm based on a genetic
algorithm, in [6]. They developed efficient genetic operators
for path calculation, and used that to efficiently used
similarities among the paths.

In [7], Zhang et. al proposed a Bi-Road Method (BRM) that
generates the shortest collision-free path with consideration
of safety from the given start point to goal point. This was used
for mobile robots working in the static and known 2D
environment. Noto and Sato proposed a fast method for
obtaining a path that is as close as possible to the path
obtained by the traditional Dijkstra method (the optimum
path) [8]. That method extends the conventional Dijkstra
method so as to obtain a solution to a problem given within a
specified time, such as path search in a car navigation system.
In [9], an improved version of the shortest routing algorithm
was proposed. In that approach, a coefficient weighing the
evaluated distance was used. This coefficient has an influence
on the performance of the shortest path algorithm.

Girish et. al discussed about approximating Shortest Path in
Large-Scale Road Networks with Turn Prohibitions (rightturn
only, left turn only) and multi-constrained Path Algorithm [10].
The results show that the efficiency of that MCP algorithm is
84.5conventional routing algorithms in terms of execution
time. In [11], the authors find realistic or feasible path, and not
necessarily only the shortest path. In that work, both lane
changes and turn restrictions are considered, which were
necessary to achieve a realistic shortest path. In [12], Qi and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 405

Schneider presented a generic two-layered framework for
moving objects in road networks environment and
demonstrated the important role of traffic factors on path
finding and route planning. They developed a parallel
algorithm in road networks with the consideration of traffic
influence. A general simulated annealing algorithm was
proposed in [13] that took into account all the restrictions of
real network and found the optimal solution between any two
nodes efficiently without changing its structure. In [14],
authors presented an effective approach that works well in
realistic road networks using multi constraint routing
algorithm.

In [15], authors presented a use case on scaling up the Time

Fig. 1. Example routes showing a good path and a bad path

dependent shortest path calculations within an established
existing Dynamic Traffic Assignment software framework with
distributed computing. Test of this approach with real-world
transportation networks show drastic run time performance.
In [16], [17], Kaneko and Honda presented a technique to find
shortest path involving a specific departure point, destination
point and a set of candidate middle transit points. Wang et. al
presents an integrated shelter location and route allocation
approach for the emergent evacuation problem with multiple
sources and multiple shelters in city transportation networks
[18]. A mixed integer linear programming model is developed
to formulate the problem, in which the overall evacuation time
is minimized subject to capacity constraints on both shelters
and roads. In [19], Yang et. al build a route selection model in
emergency evacuation based on quasiuser optimum dynamic
traffic assignment theory, and develop a constrained K-
shortest paths algorithm within a dynamic restricted searching
area. Jing et. al proposed an efficient road network k-nearest-
neighbor query verification technique which utilizes the

network Voronoi diagram and neighbors to prove the integrity
of query results [20].

In [21], Zhang et. al proposed a parameter-free minimal
resource neural network framework for solving a wide range
of single-source shortest path problems for various graph
types. In [22], Wang et. al proposed a route-planning
approach, which introduces factors of turning, and edge
removal solve k shortest path problem. Another approach was
presented which searches effectively the shortest-time path
and avoids collision.

All the above-mentioned research work focus on developing
routing algorithm between two locations, but none of them
focus on developing a complete route involving multiple
destinations. In our proposed approach, we bring in that

unique concept where we compute the efficient route
covering multiple destination locations.

We have organized the rest of the paper as follows: In the
Section II, we present the problem statement and motivation
behind working on this solution. In Section III, we discuss the
flow and internal details of our proposed approach. The
experimental setup and the results are presented in In Section
IV. In Section V, we list few possible real-world application of
this technique. Conclusions are drawn in Section VI.

Fig. 2. partial connection graph involving 50 destinations

II. PROBLEM STATEMENT AND MOTIVATION

The problem of identifying an efficient path to travel
through multiple destinations is extremely difficult and
timeconsuming. In this work, I propose an algorithm to find an
efficient path in real world scenarios, within a short amount of
time. The path will cover all the locations that need to be
visited.

978-1-5090-4767-3/17/$31.00 ©2017 IEEE

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 406

Let us first visualize a situation in Fig 1, where a person needs
to start from the initial location A, visit five locations (B through
F) and then come back to the original starting location. If he
uses his intuition and decides the route, it is possible that he
would take a route similar to what is shown in the left side of
the Figure 1. On the other hand, if there is an intelligent
technique to find an efficient path, that would identify the
route as shown in the right side of Fig 1. It is evident that the

efficient path saves travel time, and resource.

In all situations, the best possible path can be determined by
using brute-force approach of trying every possible
combination. If number of locations are relatively small, then a
person can manually do trial and error to decide on the best
possible route. Unfortunately, if the number of locations is
large, then that approach is infeasible and will require very
long time to identify even for a super-computer.

In the Fig 2, I am showing the network of paths if there are
50 destinations in the problem statement. This image is
captured by using the Dracula Graph Library [23] available in
the public domain. In the Fig 2, each green box denotes a
destination, and each black line denotes a path between the
two destination points. From that figure, it is clear that
analyzing a network like that is impossible for a human brain.
In addition, for a fast super-computer, it will take very long
runtime.

If there are 10 locations to visit, then the computer needs to
analyze 362,880 paths to determine the best possible path.
Similarly, for 15 locations, computer needs to analyze
87,178,291,200 paths. Finally, for 50 locations, computer
needs to analyze 60,828,186 * 1055 paths.

With that, we realized that it is extremely beneficial to
different organizations and companies, if there is an efficient
algorithms that can quickly determine an efficient path
covering multiple locations.

III. DETAILS OF OUR APPROACH

Our proposed approach is a web-based application that can
be run from any Internet-enabled modern browser. In this
section, we first explain the use-model of this proposed
application. After that, we describe the details of the core
engine behind the application.

A. Flow of Our Approach

Fig 3 shows the input form for the online interface of this
application. In this application, the user needs to enter the

following information:

• The Starting Address: This is the place from where the
person will start the trip, and visit all the required
destinations, before coming back to this starting location.

For example, in the case of a courier driver, the
warehouse address will be entered in this field, as the

starting address.

• All the Different Destination Addresses: In this field, user
will enter the addresses of all the locations that need to
be visited. For example, in the case of a courier driver, the

addresses of all the customers will be entered in this field.

• Mode of Travel: As of now, the supported modes are
driving, walking, public transport (bus) and bicycling. This
is optional, and driving by car is used as the default value.
This field makes the application usable by the people who

do not have a car.

• Most Important Criteria: This field allows people to
specify whether they want to travel less distance or travel
faster, even if that means longer distance. This option can
be useful during a busy commute hours or in a highly

congested area.

• Optional Settings: User can specify optional parameters

like avoid highways or avoid toll-road etc.

After all the information is submitted through this webbased
form, our back-end engine computes an efficient route to
cover each of the destination locations. Since our flow uses
Google Maps [24], it is very intuitive and easy to use. The final

output of the application contains the following information:

• The Efficient Path and Complete Direction: All the
destination locations are arranged in an efficient order,
which constitutes the final path. Finding the order of the
locations is the key offering in this approach. Once the
order is determined, the application displays clear turnby-
turn direction for driving, walking or bicycling (by using
Google Maps [24]). As a result, user gets a specific travel
order that he can follow from the starting point. For the
transit users, the application shows a combination of bus

direction and walking.

• Visual Display of Complete Direction: The actual direction
is displayed by using Google Maps [24]. Depending on the
mode of travel, this can be either driving or walking or
bicycling or hybrid direction.

• Total Distance of Travel: The actual total traversed
distance is displayed in Miles. This distance is computed

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 407

Fig. 3. Web interface of our proposed flow

by using the route information from Google Maps [24].
Hence it is almost always different from the geographical
distance between the locations in order.

• Total Time of Travel: The actual total travel time is
displayed in hours and minutes. This value greatly
changes based on the mode of travel (car or walk or
bicycle or transit).

B. Our Core Engine

Once the user fills out the form and submits the input data,
our core algorithm gets executed in the back-end. In this
section, we discuss the internal details of that algorithm.

1) Identification of the distance or time between pair of
locations: Once user submits the starting location and the list
of destination locations, we first need to collect the data about
distance or travel time between each pair of locations. This is
obtained by calling the Google Maps developer API [24].
Google Maps allows 50 such requests per second and 100,000
such requests per every 24-hours, which is more than
sufficient for our usage. If the user chose the distance to be the
most important factor, we call Google Maps in the distance
mode. On the other hand, if user entered time as the most

important factor, we call Google Maps in the time mode.

2) Building of the graph structure: We used graph theory
for the core of our algorithm. In this step, we formulate the
graph, where each location is a vertex. Every pair of vertex is
connected by an edge, where the edge weight is the number
(distance or travel time) returned by he corresponding Google

Maps API call. We modeled the graph by using the Dracula
Graph Library [23]. We store the complete path in a variable
called Final Path. In the beginning, that variable is empty. As
we decide different segments of our whole route, we keep on
appending the segments to this Final Path, until all the
destinations are visited.

Fig. 4. Flowchart of the proposed algorithm

3) Updation (Increase) of the cost: Now, we start an
iterative process, until a complete Final Path is computed. In
our graph, if any destination was marked as Visited, we
increase the cost of visiting that destination again. This is a
standard technique in the domain of graph algorithms, so that
subsequent steps (in the iterative loop) avoids visiting these
destinations again.

4) Computation of different Shortest Paths: Next, we
start the frontier propagation from the starting destination. In
the first pass of the iteration, starting destination is the original
starting destination. In the subsequent passes, we change the
starting destination, so that the frontier propagation starts
from the new starting destination. In this step, we find the
shortest path from the starting destination to all the other
destinations. At the end of this computation, we have many
alternate paths that take the visitor from starting destination

to all the other destinations.

5) Identification of Least-Cost Path: once all the paths to
different destinations are identified, we have cost values for
each route. The cost value will be in miles, if the user is running
the application in distance mode. On the other hand, if user
chose time as the important factor, then the cost will be in
minutes. Once the cost for each destination is computed, we
find out how many new destinations are being visited in that
path. Then, the ”effective cost” for that path is computed by
diving the total cost by the number of newly visited
destinations in that route.

For example, to visit from San Francisco to New York, our
algorithm might be going through Las Vegas, Dallas and
Orlando. If all those destinations were not visited earlier, then
this specific path will have effective cost value equal to (total
distance or time)/4. Similarly, if our route reached New York
only via Las Vegas and Dallas, then the specific path will have
effective cost value equal to (total distance or time)/3. Another

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 408

situation would be, our route reached New York via path will
have effective cost value equal to (total distance or time)/2.

By using this approach, we identify the Least Cost Path
among all the paths possible. This Least Cost Path is appended
to our Final Path. In addition, we mark all the visited locations
appropriately, so that subsequent steps try to avoid visiting

those locations again.

6) More Iterations Needed?: After covering any
additional location, this algorithm performs a quick check to
see if there are still any more locations that are not visited. This
is a trivial step. If all the locations are visited, then the
algorithm successfully terminates and returns the Final Path as
the answer. In addition to the Final Path, the algorithm will
then interact with Google Maps [24] and display the actual
traveling directions along with travel time and travel distance.
On the other hand, if the algorithm identified some unvisited

locations, then following steps are performed

7) Updation (Reduction) of the cost: In this step, we
reduce the cost of visiting any Already Visited location. This
step is important, so that we do not increase the cost
repeatedly, in the step 3.

8) Reformulating the problem for Remaining Path: In
this step, we prepare the data structure for starting a new
search for the next segment. To achieve that
programmatically, we mark the last visited location as the new
starting point. With that, the algorithm goes back to the step
3 and performs the iterations, until the step 6 successfully
terminates the algorithm.

IV. EXPERIMENTAL SETUP AND RESULTS

We have implemented our proposed algorithm using
Javascript programming language on Windows-10 laptop, with
4GB memory. HTML and CSS were used for the forms to accept
user’s input values. For the output display, HTML was used,

along with Google Maps [24].

To run this software, users need only a modern web browser
and internet connection. For all our runs, we used dual-core

Windows-10 computer containing 1.7 GHz i3 processor and

8GB memory. In addition, the application was also installed

Fig. 6. Sample Path when destinations are in different cities in Silicon Valley

in a web-hosting area, so that other people can use it from

their computer.

To collect all the different data-points regarding the
capability and usefulness of our proposed approach, we used
different combinations of input factors, as described in the
Section III. Following variations were used:

A. Different Types of Destinations

• Short distance travel: We chose different addresses in a
specific city like the New York City. Generally, we used the
addresses of local fire stations and police stations in the

city.

• Medium distance travel: We chose different addresses in
different cities in a specific state. For example, in some
runs, we chose following 7 cities in the state of California:
San Jose, Mountain View, Saratoga, Los Gatos, Campbell,

Milpitas, and Sunnyvale

• Long distance travel: We chose different destinations
across America, that spans through multiple states. For

Fig. 5. Sample Path when destinations are in different states in USA

Las Vegas and Dallas, but Dallas was already visited in our
overall algorithm (through some other path), then this specific

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 409

example, in some runs, we chose the city centers of
following cities: San Francisco, Denver, Orlando, New

York, Las Vegas, Chicago, Seattle and Dallas

B. Varying Number of Locations

We ran the proposed application on different number of
destination locations. The number varied from 5 to 50.

C. Different Modes of Travel

We have used Walking, Driving, Cycling and Public Transit
mode, for different address combinations. Walking and

bicycling were mostly used for short-distance mode.

D. Different Key Goals

In some cases, we have tried to minimize travel-time. In
some other cases, we have tried to minimize travel distance.

E. Different Miscellaneous Settings

For the long distance travel, we have used some

combinations where we tried to avoid highways or toll roads.

Fig. 7. Sample Path when destinations are in the city of San Jose, CA

We tried our application with over 100 different variations
of these input combinations. When the number of locations is
less than 8, we could implement an exhaustive brute-force
search approach and compare our algorithms’ result with the
best-possible outcome from the brute-force approach. In each

of the cases, our approach produced the best possible route.

Then, we tested our algorithm on wider network (with
number of destinations greater than 8) and visually observed
the results in Google Maps [24]. Since brute-force approach
cannot compute such a large number of destinations, there
was no way for us to verify that. visually, the final complete
paths seemed quite efficient.

In this section, for the sake of brevity, we are displaying
three sample outputs from our application. These are out of

100 different combinations that we tried with.

Fig 5 shows the complete path when the destinations are in
different states in USA. Chosen locations are: San Jose, Denver,
Orlando, New York, Las Vegas, Boston, Seattle and Dallas

Fig 6 shows the complete path when the destinations are in
different cities in Silicon Valley (San Francisco Bay Area).
Chosen locations are city centers of San Jose, Mountain View,

Saratoga, Los Gatos, Campbell, Milpitas, and Sunnyvale.

Fig 7 shows the complete path when the destinations are
quite close to each other, in the city of San Jose. I chose the
addresses of few fire stations and police stations.

TABLE I
COMPUTATION TIME OF MY ENGINE

Number of Computation Time
Destinations in Seconds

5 17
10 28
15 41
20 54
25 70
30 89
35 102
40 107
45 124
50 146

In Table I, we present the time consumed by our approach,

to compute the complete path. It is observed that our
approach consumes less than 30 seconds to compute the
complete path covering upto 10 locations. In the other
spectrum, when the number of locations is around 50, then
our approach takes less than only 3 minutes. This observation
confirms that our proposed approach is extremely fast and

easy to use in realworld applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15087 | Page 410

V. READ-WORLD APPLICATION

This application can potentially be used by different
organizations across the world. Currently, this is being
presented to different departments in the state of California.
This application has been successfully demonstrated to one of
the largest public transportation companies in the USA. We
have proposed them to use it in their on-demand services
offered to the senior citizens in the city. Another potential
usage will be in the department of Waste management, where
they deliver the replacement garbage bins to different houses.
Few other potential departments are servicing/inspection
divisions in different departments, like Food and Drugs, Gas
and Electric Services, Cable and Telephone Services companies
etc. All these departments’ applications require a vehicle
(driver) to start from a specific location, visit different
destinations locations in an on-demand manner, and finally
come back to the starting location.

VI. CONCLUSION

In this work, we propose an algorithm to find an efficient
path in real world scenarios, within a short amount of time.
Our primary goal is to provide this tool to different companies
or organizations that have people who need to visit multiple
destinations. Using this tool, they can determine the efficient
path quickly, and that eliminates the need for them to
manually identify a path. As a result, this approach allows
people and organizations to save time, and money which could
be used in other places. This proposed methodology is
practical and extremely easy to use. Our experimental data-set
indicates that our proposed approach determines a path
within a very short amount of time, and the path is almost
always the best possible path that a human could have
generated by using trial and error approach over several hours

and days of time.

http://www.ijsrem.com/

