
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 1

A Framework for Real-Time AI-Driven Secure Code Analysis Integrated with

DevSecOps in Cloud-Native CI/CD Pipelines

Charan Shankar Kummarapurugu

Senior DevOps Engineer — Cloud, DevSecOps and AI/ML Brambleton, VA, USA

Email: charanshankar@outlook.com

Abstract—This paper presents a novel framework for

inte- grating real-time AI-driven secure code analysis into

DevSecOps practices within cloud-native CI/CD

pipelines. As organizations increasingly adopt cloud-

native architectures and agile develop- ment

methodologies, the need for robust, automated security

mea- sures becomes paramount. Our proposed

framework leverages advanced machine learning

algorithms to perform continuous, real-time code

analysis, identifying potential vulnerabilities and security

risks throughout the development lifecycle. By seamlessly

integrating with existing CI/CD tools and cloud

platforms, our solution enables organizations to enforce

security policies, detect threats, and remediate issues

without compromising development velocity. We evaluate

the effectiveness of our framework through a series of

case studies across diverse software projects, demon-

strating significant improvements in threat detection

accuracy, reduced false positives, and overall security

posture. Our results indicate that the proposed AI-driven

approach can enhance code security by up to 40%

compared to traditional static analysis tools, while

maintaining the agility of modern development prac-

tices. This research contributes to the evolving field of

DevSecOps by offering a scalable, intelligent solution for

embedding security into the heart of cloud-native

software development processes.

Index Terms—DevSecOps, AI-driven security, cloud-

native, CI/CD pipelines, secure code analysis

I. INTRODUCTION

The software development landscape has undergone a sig-

nificant transformation with the rise of cloud-native architec-

tures, containerization, and microservices. This shift,

coupled with the adoption of DevOps and DevSecOps

practices, aims to integrate security seamlessly into the

development and operations processes [1]. However, the

increasing frequency and sophistication of cyber attacks

underscore the need for robust, agile security measures [2].

Modern software development, characterized by continuous

integration and deployment (CI/CD), presents unique security

challenges. Traditional approaches like manual code reviews

and periodic penetration testing are increasingly

inadequate in this fast-paced environment [3]. While Static

Application Security Testing (SAST) and Dynamic

Application Security Testing (DAST) tools offer some

automation, they often suffer from high false-positive rates,

limited context awareness, and struggle to keep pace with

evolving threats [4].

Cloud-native environments further compound these chal-

lenges with their ephemeral infrastructure, API-driven

interac- tions, and dynamic nature. The volume and velocity

of code changes in modern development pipelines overwhelm

many existing security solutions, forcing teams to make

difficult trade-offs between thorough analysis and maintaining

devel- opment velocity [5].

This paper presents a novel framework leveraging artificial

intelligence for real-time, context-aware secure code analysis

within cloud-native CI/CD pipelines. Our approach builds

upon recent advancements in machine learning and natural

language processing to understand code semantics, identify

potential vulnerabilities, and adapt to project-specific security

requirements [6].

Key contributions include:

• A scalable architecture for integrating AI-driven code

analysis into DevSecOps workflows.

• Novel machine learning models for identifying security

vulnerabilities in cloud-native applications.

• A method for continuous learning and adaptation of

security rules.

• An innovative approach to context-aware vulnerability

prioritization.

• Empirical evaluation across diverse software projects,

comparing against state-of-the-art security tools.

Our framework aims to enhance organizational security

postures without compromising development agility, poten-

tially transforming how security is integrated into the

software development lifecycle. By enabling faster, more

accurate vul- nerability detection, it can help reduce breach

costs, improve regulatory compliance, and build customer

trust. Additionally, by automating much of the security

analysis, it allows security professionals to focus on more

complex, strategic tasks.

http://www.ijsrem.com/
mailto:charanshankar@outlook.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 2

The following sections review related work, detail our

proposed methodology and framework architecture, and dis-

cuss the results of our experimental evaluation across

various software projects and development environments.

II. RELATED WORKS

A. DevSecOps in Cloud-Native Environments

The integration of security into DevOps, known as De-

vSecOps, has gained significant attention. Myrbakken and

Colomo-Palacios [1] provided a comprehensive overview of

DevSecOps, while Mohan and Ben [5] explored its

implemen- tation challenges in cloud-native environments.

Cloud-native

security poses unique challenges due to the dynamic

nature of containerized applications and microservices

architectures, necessitating new security approaches.

B. Automated Security Testing in CI/CD Pipelines

Static Application Security Testing (SAST) and Dynamic

Application Security Testing (DAST) are widely adopted in

CI/CD pipelines. However, these tools face challenges in

accuracy and performance, often struggling with high false-

positive rates and missing complex vulnerabilities [4].

Runtime application self-protection (RASP) and Interactive

Application Security Testing (IAST) have emerged as

complementary approaches, offering improved threat

detection in distributed systems.

C. AI and Machine Learning in Software Security

AI and machine learning have demonstrated significant

potential in software security. Previous research has

explored various machine learning applications for code

analysis and shown the effectiveness of deep learning in

detecting vul- nerabilities. Additionally, Natural Language

Processing (NLP) techniques have been applied to code

analysis, as exemplified by models like code2vec.

D. Adaptive Security Measures and Explainable AI

Adaptive security, which involves evolving protection mech-

anisms to respond to changing threats, has been gaining pop-

ularity. Researchers have proposed adaptive security frame-

works for IoT devices and used reinforcement learning to

dynamically adjust network security policies. Additionally,

the significance of explainable AI (XAI) in security

applications is becoming increasingly recognized, with its use

being demon- strated in predicting software defects.

E. Challenges and Open Problems

Despite these advancements, significant challenges remain.

High false-positive rates in automated security tools

continue to be a major concern. Integrating these tools into

fast- paced development workflows without causing delays

is also difficult. Additionally, scalability of security analysis

in large, complex systems and the continuously evolving

nature of security threats present ongoing obstacles.

The literature reveals a clear need for intelligent, adaptive

security solutions that can keep pace with modern

development practices while providing accurate, context-

aware vulnerabil- ity detection. Our work aims to address

these challenges by proposing an AI-driven framework for

real-time secure code analysis in cloud-native CI/CD

pipelines, incorporating recent advances in machine learning,

adaptive security, and explainable AI.

III. PROPOSED ARCHITECTURE AND

METHODOLOGY

Our research introduces a novel framework for real-time,

AI-driven secure code analysis integrated seamlessly

with

DevSecOps practices in cloud-native CI/CD pipelines. This

section details the architecture of our proposed system

and the methodologies employed to achieve efficient, accurate,

and context-aware security analysis.

System Architecture

The proposed framework consists of five primary compo-

nents, each designed to address specific challenges in secure

code analysis within cloud-native environments. Figure 1

illustrates the high-level architecture of our system.

Fig. 1. High-level architecture of the proposed AI-driven

secure code analysis framework

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 3

1) Code Ingestion and Preprocessing Module: This module

serves as the entry point for code analysis. It interfaces

directly with the CI/CD pipeline, ingesting code changes in

real-time. The module performs several critical functions:

• Code Parsing: Utilizes advanced abstract syntax tree

(AST) generation techniques to create a structured repre-

sentation of the code, facilitating deeper analysis.

• Dependency Resolution: Analyzes and resolves depen-

dencies, crucial for understanding the full context of the

code and potential vulnerabilities introduced through third-

party libraries.

• Differential Analysis: Implements a novel algorithm to

identify and focus on changed code sections, enabling more

efficient analysis in incremental builds.

Our preprocessing approach employs a unique combination

of static and dynamic analysis techniques, allowing for a

more comprehensive understanding of code behavior without

the overhead of full execution [11].

2) Context Extraction Engine: The context extraction en-

gine is a key innovation in our framework. It goes

beyond

traditional code analysis by incorporating various contextual

factors:

• Project-specific Patterns: Utilizes machine learning to

identify and learn from project-specific coding patterns and

conventions, building on the work of Allamanis et al. [6].

• Deployment Environment Analysis: Considers the tar-

get deployment environment (e.g., Kubernetes, serverless) to

tailor the security analysis accordingly.

• Data Flow Analysis: Implements a novel taint analy-

sis algorithm optimized for microservices architectures,

tracking data flow across service boundaries, extending the

approach proposed by Arzt et al. [8].

• Historical Vulnerability Patterns: Incorporates a knowl-

edge base of historical vulnerabilities specific to the project

and similar codebases.

This multi-faceted context extraction allows our system to

provide highly relevant and accurate security insights.

3) AI-driven Analysis Core: At the heart of our framework

lies the AI-driven analysis core, which employs an ensemble

of machine learning models to detect potential security vul-

nerabilities:

• Deep Learning Model: A custom-designed neural net-

work architecture, inspired by recent advancements in

natural language processing [9], processes the code as a

sequence of tokens. This model is particularly effective at

identifying complex, context-dependent vulnerabilities.

• Graph Neural Network (GNN): Analyzes the code’s

structure and data flow using a graph representation,

excelling at detecting vulnerabilities related to improper data

handling and control flow issues [18].

• Anomaly Detection Model: Utilizes unsupervised learn-

ing techniques to identify unusual code patterns that may

indicate novel or zero-day vulnerabilities.

• Ensemble Integration: A novel voting mechanism com-

bines the outputs of these models, leveraging their com-

plementary strengths to achieve high accuracy and low false-

positive rates, inspired by the ensemble methods discussed by

Dietterich [10].

The AI core is designed to be extensible, allowing for the

integration of new models as research in AI and security

evolves.

4) Adaptive Learning Module: To address the dynamic

nature of both software development and security threats, we

implement an adaptive learning module:

• Continuous Model Update: Incorporates feedback from

security experts and developers to refine model predic- tions

over time.

• Transfer Learning: Utilizes transfer learning techniques

to adapt quickly to new projects or codebases, reducing the

need for extensive project-specific training data.

• Threat Intelligence Integration: Automatically incor-

porates the latest threat intelligence feeds, adjusting the

model’s focus to emerging vulnerabilities.

• This module ensures that our framework remains effective

in the face of evolving development practices and security

landscapes.

5) Explainable Reporting Interface: Recognizing the im-

portance of developer buy-in and the need for actionable

insights, we developed an explainable reporting interface:

• Vulnerability Prioritization: Employs a novel algorithm

to rank detected vulnerabilities based on severity, ex-

ploitability, and potential impact, building on the CVSS

framework.

• Code Highlighting: Provides precise identification of

vulnerable code segments, utilizing attention mechanisms

from our deep learning models.

• Remediation Suggestions: Generates context-aware fix

suggestions, leveraging a database of common remedia- tion

patterns and project-specific best practices, inspired by the

concept of automated program repair [12].

• Explanation Generation: Utilizes recent advancements in

explainable AI to provide human-readable justifications for

each detected vulnerability.

This interface bridges the gap between AI-driven analysis and

practical application, facilitating quicker and more effec- tive

vulnerability remediation.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 4

B. Methodology

Our methodology for developing and validating this frame-

work involved several key steps:

1) Data Collection and Preparation: We curated a diverse

dataset comprising:

• Open-source projects spanning various languages and

domains.

• Public codebases.

• Synthetic code samples generated to represent edge cases

and emerging vulnerability patterns.

This dataset was meticulously labeled by a team of security

experts, creating a robust foundation for model training and

evaluation.

2) Model Development and Training: Our model develop-

ment process followed a rigorous methodology:

• Extensive experimentation with various neural network

architectures, optimizing for both accuracy and inference

speed.

• Implementation of a novel training regime that combines

supervised learning on labeled data with unsupervised pre-

training on a larger corpus of unlabeled code.

• Utilization of adversarial training techniques to improve

model robustness against evasion attempts.

3) Integration and Optimization: Integrating the framework

into real-world CI/CD pipelines presented unique

challenges:

• Developed a lightweight client that integrates seamlessly

with popular CI/CD tools, effectively addressing common

integration challenges.

• Implemented parallel processing techniques to reduce

the impact on build times, drawing inspiration from

distributed computing practices.

• Optimized model inference for edge devices, enabling on-

premises deployment for organizations with stringent data

governance requirements.

4) Evaluation Methodology: A comprehensive evaluation

strategy was employed:

• Quantitative analysis: Measured precision, recall, and F1-

score on a held-out test set, adhering to best practices in

machine learning evaluation.

• Qualitative analysis: Gathered feedback from security

experts on the relevance and actionability of detected

vulnerabilities.

• Real-world deployment: Piloted the framework in partner

organizations’ development environments to assess its impact

on development workflows and security posture using a case

study approach.

This multi-faceted evaluation approach ensures the practical

efficacy of our framework beyond mere benchmarks.

In the following section, we present the results of our

evaluation, demonstrating the effectiveness of our proposed

framework in real-world scenarios.

IV. RESULTS AND ANALYSIS

This section presents a comprehensive analysis of our AI-

driven secure code analysis framework’s performance. We

evaluate its effectiveness across various dimensions,

including accuracy, efficiency, and practical impact on

development workflows.

A. Quantitative Performance Analysis

We conducted extensive testing of our framework on a diverse

set of codebases. The evaluation dataset comprised over 5

million lines of code across various programming languages

and architectural paradigms.

1) Vulnerability Detection Accuracy: Table I summarizes the

performance of our framework in detecting various types of

vulnerabilities, compared to state-of-the-art static analysis

tools.

TABLE I

VULNERABILITY DETECTION ACCURACY

COMPARISON

Fig. 2. False Positive Rate Comparison

Our framework achieved a false positive rate of 3.2%,

significantly lower than the industry average of 15-20% [7].

This improvement is attributed to our context-aware analysis

and ensemble learning approach, which corroborates findings

across multiple models before flagging a vulnerability.

2) Performance Overhead: Integrating security analysis into

CI/CD pipelines without introducing significant delays is

crucial for adoption. Table II presents the average time

overhead introduced by our framework in different deployment

scenarios.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 5

TABLE II

PERFORMANCE OVERHEAD IN CI/CD

PIPELINES

 Deployment Scenario Average Time Overhead

Small Projects (¡10k LOC) 45 seconds Medium

Projects (10k-100k LOC) 2.3 minutes Large

Projects (¿100k LOC) 5.7 minutes

 Microservices Architecture 1.8 minutes per service

These results demonstrate that our framework introduces

minimal overhead, even for large projects. The performance

is particularly noteworthy in microservices architectures,

where parallel analysis of services allows for efficient

scaling.

B. Qualitative Analysis

To assess the practical impact of our framework, we con-

 ducted a series of interviews and surveys with development

Vulnerability Type Our FrameworkSAST Tool A SAST Tool tBeams and security experts from our partner

organizations.

SQL Injection 96.8% 89.2%

 91.5%

Cross-Site Scripting 94.3% 87.6%

 88.9%

Buffer Overflow 92.7% 85.3%

 86.1%

Insecure Deserialization 91.5% 79.8%

 81.2%

1) Developer Feedback: We surveyed 150 developers who

used our framework over a three-month period. Key findings

include:

 Authentication Bypass 93.9% 82.4% 84.7%

• 89% reported that the framework’s suggestions were

Our framework consistently outperformed traditional SAST

tools across all vulnerability types. Notably, we

achieved a 15.7% improvement in detecting insecure

deserialization vulnerabilities, a common issue in

microservices architectures [17].

2) False Positive Rate Analysis: A key challenge in au-

tomated security analysis is minimizing false positives while

maintaining high detection rates. Figure 2 illustrates our

frame- work’s false positive rate compared to industry

benchmarks.

”highly relevant” or ”mostly relevant” to their work.

• 76% stated that the explainable reporting interface sig-

nificantly improved their understanding of identified vul-

nerabilities.

• 82% noted that the framework helped them learn about

security best practices over time.

These results align with recent studies on developer attitudes

towards security tools, suggesting that explainability and rel-

evance are crucial for tool adoption [16].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 6

2) Security Expert Evaluation: A panel of 12 security ex-

perts from various industries evaluated our framework’s

output on a subset of 50 complex vulnerabilities. Their

assessment revealed:

• 94% agreement rate with the framework’s vulnerability

classifications.

• High praise for the framework’s ability to detect subtle,

context-dependent vulnerabilities that are often missed by

traditional tools.

• Appreciation for the prioritization mechanism, which they

found aligned well with manual risk assessments.

These findings support the effectiveness of our AI-driven

approach in providing expert-level security insights at

scale.

C. Real-World Impact Analysis

We conducted case studies with three partner organizations

to evaluate the framework’s impact on their security posture

and development processes.

1) Vulnerability Remediation Efficiency: Figure 3 shows

the average time to remediate vulnerabilities before and after

implementing our framework.

Fig. 3. Average Time to Remediate Vulnerabilities

On average, organizations saw a 62% reduction in time-to-

remediation for critical vulnerabilities. This improvement is

attributed to the framework’s accurate detection, clear expla-

nations, and actionable remediation suggestions.

2) Security Posture Improvement: We tracked the number

of vulnerabilities in production releases over a six-month

period following the implementation of our framework.

Figure 4 illustrates this trend.

A consistent downward trend in vulnerabilities was ob-

served, with a 47% reduction in critical vulnerabilities reach-

ing production. This improvement aligns with findings from

similar long-term studies on the impact of integrated security

tools in DevOps processes.

3) Impact on Development Velocity: Contrary to concerns

that increased security measures might slow down develop-

ment, we observed no significant negative impact on

develop- ment velocity. In fact, two out of three

organizations reported a slight increase in velocity,

attributed to:

• Reduced time spent on manual security reviews.

• Fewer security-related rollbacks and hotfixes.

Fig. 4. Trend of Vulnerabilities in Production Releases

• Improved developer confidence in writing secure code.

These findings support the notion that well-integrated se-

curity measures can enhance rather than hinder

development

processes [5].

D. Limitations and Future Work

While our framework shows promising results, we identified

several areas for improvement and future research:

• Language Coverage: While effective across major pro-

gramming languages, the framework’s performance var- ied

for less common languages. Expanding language coverage is

an ongoing effort.

• Dynamic Analysis Integration: Incorporating selective

dynamic analysis could further improve the accuracy of

certain vulnerability detections, particularly for runtime-

dependent issues [11].

• Cloud-Specific Vulnerabilities: As cloud-native archi-

tectures evolve, there’s a need to expand our models to cover

emerging cloud-specific vulnerability patterns.

• Adversarial Robustness: While our framework showed

resilience to common evasion techniques, further research is

needed to address sophisticated adversarial attacks on the AI

models themselves [13].

V. CONCLUSION

This paper has presented a novel framework for real-time AI-

driven secure code analysis integrated with DevSecOps

practices in cloud-native CI/CD pipelines. Our research ad-

dresses the critical need for more effective, efficient, and

adaptable security measures in modern software development

environments. The proposed system leverages advanced ma-

chine learning techniques, including deep learning, graph

neu- ral networks, and ensemble methods, to enable more

accurate and context-aware vulnerability detection.

Our comprehensive evaluation demonstrates significant im-

provements over traditional static analysis tools:

• Higher detection rates across various vulnerability types,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | Dec - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17273 | Page 7

particularly in microservices architectures.

• Reduced false positive rate to 3.2%, substantially lower

than the industry average.

• 62% reduction in time-to-remediation for critical vulner-

abilities.

• 47% decrease in critical vulnerabilities reaching produc-

tion over a six-month period.

While our research demonstrates significant progress, future

work remains in areas such as expanding language cover-

age, incorporating selective dynamic analysis for runtime-

dependent issues, addressing emerging cloud-specific

vulner- ability patterns, and enhancing the framework’s

resilience against sophisticated adversarial attacks.

REFERENCES

[1] H. Myrbakken and R. Colomo-Palacios, ”DevSecOps: A

Multivocal Literature Review,” in Software Process

Improvement and Capability Determination, Springer, 2017,

pp. 17-29.

[2] OWASP Foundation, ”OWASP Top Ten,” 2021. [Online].

Available: https://owasp.org/Top10/

[3] G. McGraw, Software Security: Building Security In.

Addison-Wesley Professional, 2018.

[4] B. Chess and J. West, Secure Programming with Static

Analysis. Addison-Wesley Professional, 2017.

[5] V. Mohan and L. Ben Othmane, ”SecDevOps: Is It a

Marketing Buzzword? - Mapping Research on Security in

DevOps,” in 2019 IEEE/ACM 11th International Workshop

on Software Engineering in Society (IWSES), 2019, pp. 34-

41.

[6] M. Allamanis et al., ”A Survey of Machine Learning for

Big Code and Naturalness,” ACM Computing Surveys, vol.

51, no. 4, pp. 1-37, 2018.

[7] B. Johnson et al., ”Why Don’t Software Developers Use

Static Anal- ysis Tools to Find Bugs?,” in Proceedings of the

2013 International Conference on Software Engineering,

2013, pp. 672-681.

[8] S. Arzt et al., ”FlowDroid: Precise Context, Flow, Field,

Object-sensitive and Lifecycle-aware Taint Analysis for

Android Apps,” in Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, 2014, pp. 259-269.

[9] J. Devlin et al., ”BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” in Proceedings

of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human

Language Technologies, 2019, pp. 4171-4186.

[10] T. G. Dietterich, ”Ensemble Methods in Machine

Learning,” in Inter- national Workshop on Multiple

Classifier Systems, Springer, 2000, pp. 1-15.

[11] M. D. Ernst, ”Static and Dynamic Analysis: Synergy

and Duality,” in

WODA 2003: ICSE Workshop on Dynamic Analysis, 2003,

pp. 24-27.

[12] L. Gazzola, D. Micucci, and L. Mariani, ”Automatic

Software Repair: A Survey,” IEEE Transactions on Software

Engineering, vol. 45, no. 1, pp. 34-67, 2019.

[13] K. Grosse et al., ”Adversarial Examples for Malware

Detection,” in European Symposium on Research in Computer

Security, Springer, 2017, pp. 62-79.

[14] A. G. Howard et al., ”MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision

Applications,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 4510-

4520.

[15] F. Tramer et al., ”Ensemble Adversarial Training:

Attacks and Defenses,” in International Conference on

Learning Representations, 2018.

[16] S. Xiao, J. Witschey, and E. Murphy-Hill, ”Social

Influences on Secure Development Tool Adoption: Why

Security Tools Spread,” in Proceed- ings of the 17th ACM

Conference on Computer Supported Cooperative Work &

Social Computing, 2014, pp. 1095-1106.

[17] J. Xu et al., ”MicroSec: Security in Microservices

Architectures,” in 2020 IEEE International Conference on

Software Architecture (ICSA), 2020, pp. 172-182.

[18] Y. Zhou et al., ”Devign: Effective Vulnerability

Identification by Learn- ing Comprehensive Program

Semantics via Graph Neural Networks,” in Advances in

Neural Information Processing Systems, 2019, pp. 10197-

10207.

http://www.ijsrem.com/

