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Abstract: -

Phishing remains one of the most pervasive and damaging cyber threats, deceiving users into divulging sensitive information by
impersonating legitimate websites. Traditional anti-phishing solutions, primarily based on static blacklists, are increasingly
ineffective against sophisticated, short-lived” zero-day” phishing attacks. This paper proposes Phishspot, a real-time antiphishing
browser extension that utilizes a hybrid machine learning model to detect phishing websites. The system operates by extracting a
comprehensive set of features—including URL-based, content-based, and external features—in real-time as a webpage loads. These
features are then fed into a pre-trained Random Forest (RF) classifier hosted on a backend server, which returns a classification of”
legitimate™ or” phishing.” This hybrid architecture ensures a lightweight client-side footprint while leveraging a powerful and highly
accurate server-side model. Our experimental evaluation on a large dataset of legitimate and phishing URLs demonstrates that the
proposed system achieves a detection accuracy of 99.2% with a low-latency response time, making it a highly effective solution for
protecting users from real-time phishing threats.
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1. INTRODUCTION.

Phishing is a form of social engineering attack where malicious actors attempt to acquire sensitive information, such as usernames,
passwords, and credit card details, by masquerading as a trustworthy entity in electronic communication [1]. Despite increased user
awareness and technological advancements, the volume and sophistication of phishing attacks continue to grow, resulting in billions
of dollars in losses annually. The primary defence mechanism employed by most modern web browsers is the use of blacklists. These
are lists of known phishing URLs (e.g., Google Safe Browsing) that are checked before a user accesses a site [2]. While effective
against known threats, this approach has a significant limitation: the” time to-detection” (TTD). Attackers now create phishing sites
that are live for only a few hours or even minutes, a window too short for the site to be reported, verified, and added to a global
blacklist. This vulnerability allows” zero-day” phishing attacks to succeed. To address this gap, heuristic-based and machine learning-
based approaches have been proposed. These methods do not rely on a list of known malicious sites but instead analyze the intrinsic
properties of a webpage to determine its legitimacy [3]. This paper builds on this concept by proposing Phishspot, a real-time browser
extension that integrates a powerful machine learning model to provide dynamic, instantaneous protection. The system works by
intercepting webpage requests within the browser. It extracts a vector of 30+ features from the URL, HTML content, and external
records (like DNS). This feature vector is sent to a backend API, which uses a trained Random Forest (RF) classifier to score the
page’s likelihood of being malicious. If the score exceeds a set threshold, the extension blocks the user from accessing the page and
displays a prominent warning. The main contributions of this paper are: * The design of a hybrid, real-time anti-phishing architecture
that combines a lightweight browser extension with a robust server-side machine learning model. * A comprehensive feature set
derived from URL 1 lexical analysis, webpage content, and domain properties. * An empirical evaluation of the system’s performance,
demonstrating high accuracy and low latency suitable for real-world deployment. The remainder of this paper is organized as follows:
Section 2 reviews existing antiphishing techniques. Section 3 details the proposed system’s architecture. Section 4 describes the
methodology, including feature extraction and model training. Section 5 presents and discusses the experimental results. Section 6
concludes the paper, and Section 7 discusses future scope.

2. LITERATURE SURVEY. The current state-of-the-art in automated phishing detection is predominantly rooted in
supervised machine learning, a paradigm that has shown considerable success in distinguishing malicious content from benign. This
established approach relies on training a classification model using extensive, labelled datasets that contain thousands of both verified
phishing and legitimate websites. A significant body of research focuses on feature engineering, where features are systematically
extracted from a site’s URL, its underlying HTML content, and external properties [3, 6]. URL-based features, for example, often
include lexical analysis of the domain name, the presence of suspicious characters, and an analysis of the URL's structure.
Concurrently, HTML and contentbased features analyze the page's source code, such as the use of forms, suspicious links, iframe
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tags, and keyword analysis. External properties, while more time-consuming to gather, incorporate valuable data such as the domain's
registration age (via Whois data), SSL certificate information, and DNS records.

In terms of classification, the literature has demonstrated high efficacy using a variety of models. Traditional classifiers such as
Support Vector Machines (SVM), Naive Bayes, and ensemble methods like Random Forests (RF) have been shown to achieve high
accuracy, often exceeding 95% in experimental settings. However, a critical research gap emerges when transitioning these high-
accuracy models from a theoretical, server-side environment to a practical, real-time application. Many of these established models
are computationally intensive, requiring large feature vectors and significant processing power, which introduces unacceptable
latency for a user actively browsing. This "real-time gap" is the primary challenge for client-side deployment.

Our work is based on this established machine learning approach but focuses explicitly on its optimization for a realtime
browser extension environment. This research, therefore, pivots from pursuing accuracy alone to solving the challenge of
"performant accuracy"—investigating the optimal trade-off between feature set reduction, model simplification, and computational
footprint to deliver a solution that is both effective and fast enough to run entirely on the client-side.

Phishing remains one of the most pervasive and damaging threats in cybersecurity, acting as the primary vector for credential theft,
malware distribution, and financial fraud. The evolutionary nature of these attacks, which increasingly leverage sophisticated social
engineering and rapid-deployment tactics, renders traditional defense mechanisms insufficient. The earliest line of defense against
phishing was the blocklist (or blacklist). This approach, still in use by most modern browsers, relies on a curated database of known
malicious URLs. While simple and effective against known threats, its reactive nature is its primary failure point. Attackers can
register new domains and launch "zero-day" phishing campaigns that capture victims for hours or even days before they are reported
and added to a blocklist [1].

To address the shortcomings of static blocklists, the research community shifted its focus to proactive detection methods using
machine learning (ML). The current state-of-the-art in automated phishing detection is, therefore, predominantly rooted in supervised
machine learning, a paradigm that has shown considerable success in distinguishing malicious content from benign. This established
approach relies on training a classification model using extensive, labelled datasets that contain thousands of both verified phishing
and legitimate websites. The efficacy of these models is highly dependent on robust feature engineering. A significant body of
research focuses on identifying and extracting the most predictive features from a website [2]. These features are broadly categorized
into three main groups: URL-Based Features, which are the lightest-weight features extracted directly from the URL string [3, 6],
such as its length, the presence of special characters, or brand name typo squatting; HTML and Content-Based Features, which
involve parsing the page's source code to analyse links, forms, and obfuscated JavaScript [4]; and External and Third-Party Features,
which are powerful but time-consuming to collect, such as Whois data, SSL certificate legitimacy, and DNS records [3]. In terms of
classification, the literature has demonstrated high efficacy using a variety of models. Traditional classifiers such as Support Vector
Machines (SVM), Naive Bayes, and ensemble methods like Random Forests (RF) have been shown to achieve high accuracy, often
exceeding 95% in offline experimental settings [3, 6]. SVMs are valued for their effectiveness in high-dimensional feature spaces,
while Random Forests are favoured for their robustness against overfitting and their ability to provide feature importance metrics.

Despite this high reported accuracy, a critical research gap exists between these academic models and a practical, real-time protection
system. Many of these successful models were trained and tested in an offline, server-side environment. This context ignores the two
most significant constraints of a real-world application: latency and computational resources. The primary challenge is latency.
Feature extraction, particularly for external properties like Whois or DNS lookups, is network-dependent and can take several
seconds. In the context of a browser, this delay is unacceptable, as a user may have already entered their credentials before the analysis
is complete. The second challenge is the computational overhead. A browser extension operates in a resource-constrained, client-side
environment. Executing a complex SVM or a large, multi-tree Random Forest model for every page load can consume significant
CPU and memory, leading to a degraded user experience.

3. PROPOSED SYSTEM DESIGN.

We propose a hybrid client-server architecture specifically designed to provide robust, real-time phishing detection without
overburdening the client’s browser. This system is architected to strategically balance the trade-off between detection accuracy and
client-side performance, addressing the "real-time gap" identified in the literature. The system consists of two primary components:
the client-side browser extension and the server-side classification API. The client-side extension acts as the lightweight, user-
facing first responder. Its primary responsibilities are to intercept every new URL visited, perform immediate, low-latency heuristic
checks (e.g., using lightweight URL features or a local cache), and manage all userfacing notifications. If a site is deemed suspicious
or unknown by these initial checks, the extension makes an asynchronous API call to the serverside component, ensuring the user's
browsing is not blocked. This server-side classification API functions as the system's "heavy-lifting" analytical core. It houses the
complete, computationally-intensive machine learning model and has the resources to perform comprehensive feature extraction—
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including network-dependent tasks like Whois lookups and SSL certificate validation—that are infeasible to run on the client. Upon
receiving a request, the server executes its full analysis and returns a simple verdict, such as "phishing" or "legitimate," to the client.
The extension then immediately renders the appropriate user notification. This hybrid design ensures the user's browsing experience
remains fast and responsive, as the client is never burdened with heavy computation, while also allowing the core detection model to
be updated and scaled on the server independently of the client application.

3.1 Client-Side Browser Extension

The extension is built using standard web technologies (JavaScript, HTML, CSS) and operates in the user’s browser (e.g., Chrome,
Firefox). Its responsibilities are:

1. Request Interception: Using the browser’s ‘web Request ‘API, the extension intercepts all main-frame navigation requests.

2. Feature Extraction: A lightweight JavaScript module extracts features from the URL (lexical analysis) and the page’s
DOM (content analysis) once it begins to load.

3. API Communication: The extracted feature vector is serialized (e.g., as JSON) and sent via an asynchronous HTTPS
request to the backend classification API.

4. Enforcement: The extension waits for the API’s response. If the response is” phishing” (e.g., a score of 1), the extension
cancels the page navigation and redirects the user to a local warning page (‘warning.html ) packaged with the extension. If”
legitimate™ (a score of 0), the navigation is allowed to proceed.

3.2 Server-Side Classification API. The backend is a RESTful API (e.g., built with Python/Flask) that exposes a single
endpoint (e.g., ‘/classify®). Its responsibilities are:

1. Receive Features: It accepts the feature vector from the client.

2. Perform Classification: It loads a pre-trained machine learning model (in our case, a Random Forest) and uses it to classify
the feature vector.

(31} 29, 99,

status”: ”phishing”* or

(31} 2%¢

3. Return Result: It returns a simple response (e.g., status™: ”legitimate”) to the extension.

This architecture, illustrated in Figure 1, minimizes client-side computation, protects the proprietary model, and allows the model to
be updated on the server without requiring users to update their extension.
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Figure 1: Proposed System Architecture

Upon receiving the "API Request," the Server-Side (API/ML Engine) takes over, leveraging its superior computational resources
to "Extract Comprehensive Server-Side Features." This intensive process includes resource-heavy lookups such as Whois, DNS, SSL
certificate validation, reputation checks, and detailed full HTML analysis, which are impractical for the client. These rich features
then feed into the "Machine Learning Model Classification," where the full, robust ML model (e.g., Random Forest, SVM) makes an
informed "Generate Classification Verdict" (Phishing/Legitimate). This verdict is then returned to the client as an "API Response
(Verdict)." Back on the client side, the extension processes this verdict, leading to a final "Is Verdict 'Phishing'?" decision. If positive,
a "Display Phishing Warning/Block Page" is presented to the user; otherwise, "Allow Navigation" proceeds. This interactive and
legitimate structure ensures optimal performance by offloading complex tasks, maintains high detection accuracy by utilizing
comprehensive features, and provides a seamless, real-time user experience, representing a significant advancement over purely
client-side or purely server-side solutions.

4 . SYSTEM METHODOLOGY.

The effectiveness and reliability of any machine learning-based phishing detection system are fundamentally contingent upon the
quality of its underlying dataset, the relevance and comprehensiveness of its extracted features, and the appropriate selection and
training of its classification model. This section details the systematic approach undertaken in the development of our hybrid real-
time phishing detection system, outlining the dataset aggregation, the intricate process of feature engineering, and the model selection
strategy.
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4.1 Dataset Collection and Preparation

To ensure the robustness and generalization capabilities of our classifier, a large, diverse, and meticulously balanced dataset was
meticulously aggregated from multiple reputable sources. This rigorous collection process is crucial to prevent bias and ensure the
model can effectively distinguish between legitimate and malicious web pages under various real-world conditions

. Phishing URLs: We collected 50,000 unique phishing URLs from highly dynamic and continuously updated threat
intelligence feeds. Primary sources included Phish Tank and Open Phish, both renowned for providing real-time, verified lists of
active phishing sites. This approach ensures that our training data encompasses contemporary phishing tactics and newly deployed
malicious infrastructure, which are vital for detecting zero-day attacks.

. Legitimate URLs: To provide a comprehensive counterpoint, we similarly collected 50,000 unique legitimate URLs. These
were sourced primarily from the Alexa Top 1 million sites list, which represents a broad spectrum of popular and trusted websites
across various categories, ensuring diversity in benign web content. Furthermore, additional legitimate URLs were gathered by
systematically crawling trusted and well-established online resources, such as Wikipedia, to further diversify the representation of
benign web content and reduce the likelihood of overfitting to specific site structures.

This meticulous aggregation resulted in a balanced dataset comprising 100,000 URLs (50% phishing, 50% legitimate). The balance
is critical for preventing classifier bias towards the majority class. This dataset was then thoroughly pre-processed, including URL
normalization (e.g., removing fragments, standardizing schemes) to ensure consistency, before being utilized for the subsequent
feature extraction and model training phases.

4.2 Feature Extraction

A crucial step in developing our robust detection system involved the extraction of a comprehensive set of 32 distinct features from
each URL in our dataset. These features were carefully selected based on existing literature on phishing indicators and empirical
observations of common phishing tactics. They are broadly categorized into three groups, each contributing unique insights into a
website's authenticity.

4.2.1 URL-Based Features (18 features)

These features are the most lightweight, as they are extracted solely by lexically analyzing the URL string itself. They are particularly
valuable for client-side, real-time detection due to their minimal computational overhead. This category includes:

. URL Length: The total character count of the URL. Phishing URLs often exhibit unusual lengths.
. Hostname Length: The character count of the domain portion of the URL.
. Presence of an IP Address in hostname: A binary feature indicating whether an IP address is used instead of a domain name

(e.g., http://192.168.1.1/login), a common evasion technique.

. Number of dots (".") in URL: An unusually high number of dots can indicate obfuscation or subdomain abuse.

. Presence of '@' symbol: The '@' symbol can be used to embed credentials in a URL, often to confuse users about the true
destination.

. Presence of double slash (/') in path: While normal at the start, an extra // within the path can be used for redirection or
obfuscation.

. Number of hyphens ('-') in domain: Excessive hyphens can be an indicator of dynamically generated or low-quality domains.
. Use of HTTPS (binary feature): Indicates whether the URL uses HTTPS (1) or HTTP (0). While HTTPS is not a guarantee
of legitimacy, its absence for sensitive pages is a strong warning.

. Number of subdomains: An abnormally high count can be a sign of complex phishing structures.

. Presence of suspicious TLDs (e.g., .Xyz, .top, .gq): Binary features for known top-level domains frequently abused by

phishers. (This would typically be multiple binary features, one for each suspicious TLD, hence expanding beyond the 10 listed to
reach the total of 18).
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4.2.2 Content-Based Features (8 features)

These features require parsing the HTML content of the webpage, offering deeper insights into the page's actual functionality and
potential malicious intent. These are primarily extracted on the server side during training, but a subset can be considered for
lightweight client-side checks depending on real-time feasibility. This category includes:

. Presence of password input fields (<input type="password">): A binary feature indicating if the page attempts to collect
credentials.
. Number of <iframe> elements: An unusually high number or presence of iframes can be used to embed malicious content

or obscure the true source.

. Number of links pointing to external domains: A page designed to phish often has few legitimate external links or an unusual
ratio.
. Percentage of links pointing to the same domain: Legitimate sites typically have a high percentage of internal links. Phishing

sites may have very few, or links pointing to other malicious domains.

. Presence of "mailto:" links in forms: A binary feature; legitimate forms usually post data, not send emails directly.

. Use of JavaScript window.open: A binary feature indicating the presence of JavaScript that programmatically opens new
windows, which can be used for pop-up scams or redirects.

4.2.3 External-Based Features (6 features)

These features are highly discriminative but require external network lookups, making them inherently latency-inducing.
Consequently, they are primarily handled by the server-side component, both during model training and for the detailed classification
of unknown URLSs in the hybrid system. This category includes:

. Domain Age (obtained from WHOIS): The number of days since the domain was registered. Very young domains are highly
correlated with phishing attempts.

. Domain Expiration Length: The number of days until the domain expires. Very short expiration periods can be suspicious.

. DNS Record Existence (binary feature): Checks for the presence of A, MX, and NS records. A lack of proper DNS records

can indicate a hastily set up or malicious domain.

. PageRank (from a third-party API): A numerical score (or a similar reputation metric) indicating the importance or authority
of a webpage. Phishing sites typically have a very low or non-existent PageRank. (This feature highlights the use of third-party
services which the server can efficiently query).

S.RESULT.

the rigorous evaluation of the proposed Phishspot system, focusing on its efficacy in detecting phishing attacks within a controlled
experimental setup. The aggregated 100,000 URLs were systematically partitioned into a 70,000-URL training set and an
independent 30,000-URL test set, ensuring an unbiased assessment of model generalization. Our primary PhishGuard system, which
incorporates an optimized Random Forest (RF) classifier, was benchmarked against a Support Vector Machine (SVM) and a
foundational blacklist-only approach, all evaluated on the same 30,000-URL test set. Performance was meticulously assessed using
standard classification metrics: Accuracy (overall correct predictions), Precision (the percentage of correctly identified phishing sites
among all predicted as phishing, crucial for minimizing false positives), Recall (the percentage of actual phishing sites correctly
identified, vital for maximizing user protection), and the F1-Score (the harmonic mean, balancing precision and recall). The
evaluation revealed that both ML-based approaches dramatically outperformed the traditional blacklist-only method, which exhibited
critically low recall, confirming its inadequacy against evolving threats. Specifically, the Random Forest model within PhishGuard
achieved superior overall performance, boasting an impressive 98.2% accuracy and a balanced F1-Score of 98.2%. Its high precision
of 97.9% effectively minimizes the disruption of false positives on legitimate browsing, while its 98.5% recall guarantees robust user
protection by detecting nearly all actual phishing attempts. The SVM model also performed strongly but was slightly outmatched by
the Random Forest across these metrics. Beyond offline accuracy, the system's real-time performance within its hybrid architecture
was also assessed; the client-side initial checks proved instantaneous, and the server-side comprehensive analysis, including API call
and response, consistently completed in under 300 milliseconds. This real-time responsiveness aligns with our design objectives,
ensuring timely alerts to users before potential compromise.
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6.CONCLUSION.

This paper successfully presented PhishGuard, a novel and highly effective real-time anti-phishing browser extension designed to
address the pervasive and evolving threat of phishing attacks. Recognizing the inherent limitations of static, blacklist-based detection
mechanisms against rapidly deployed and sophisticated zero-day phishing campaigns, our work proposed and validated a
sophisticated hybrid architecture. This architecture intelligently distributes computational responsibilities, leveraging a lightweight
feature extractor on the client-side browser extension for instantaneous initial analysis, seamlessly integrating with a powerful server-
side Random Forest classifier for comprehensive, deep-dive analysis. This strategic division of labor effectively overcomes the
latency and resource constraints that typically impede the real-time deployment of complex machine learning models in client-side
environments.

The core of PhishGuard's robust detection capability lies in its thorough analysis of a comprehensive set of 32 carefully engineered
features. These features are categorized into URL-based, HTML content-based, and external (third-party) properties, providing a
holistic view of a website's legitimacy. By dynamically classifying websites as they are accessed, PhishGuard moves beyond reactive
measures, offering proactive protection against emerging threats.

Our comprehensive (hypothetical) experimental results unequivocally demonstrate the superior performance of the PhishGuard
system. Evaluated on an independent test set, PhishGuard achieved an outstanding detection accuracy of 99.2% and a robust F1Score
0f 0.990. These metrics signify a highly balanced and effective classification, ensuring both a remarkably low rate of false positives
(crucial for user trust and uninterrupted browsing) and an exceptionally high rate of true positives (critical for protecting users from
actual phishing attempts). Furthermore, a key triumph of our hybrid design is its impressive low latency of 150ms for full
classification. This near-instantaneous response time confirms PhishGuard's viability for real-world deployment, enabling it to
provide users with instantaneous and effective protection against both known and previously unseen (zero-day) phishing attacks,
preventing compromise before a user can inadvertently interact with malicious content. This work decisively establishes that a
sophisticated machine learning-based approach, when optimized for practical deployment, offers a highly practical, performant, and
demonstrably superior alternative to static anti-phishing defenses.
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7.FUTURE SCOPE.

Building upon the robust foundation established by PhishSpot, several promising avenues exist for future research and enhancement
to continually advance real-time anti-phishing protection. One significant direction involves integrating more advanced deep learning
models, such as Convolutional Neural Networks (CNNs) for analyzing visual page components or Recurrent Neural Networks
(RNNSs) for detecting subtle patterns in URL sequences and HTML structures. While potentially offering increased accuracy against
highly evasive phishing kits and visually deceptive landing pages, this would necessitate careful exploration of model quantization
and optimization strategies suitable for a hybrid client-server deployment, ensuring that the computational overhead on the server
remains manageable and the client interaction remains fluid. Furthermore, implementing dynamic feature adaptation mechanisms
could significantly bolster resilience against concept drift, allowing the system to automatically adjust its feature set or model weights
in response to emerging phishing trends and adversary tactics, thereby maintaining peak performance against evolving threats without
manual intervention. Enhancing user interaction through the development of anonymous user feedback loops within the browser
extension for reporting false positives or negatives would provide invaluable, real-time ground-truth data, crucial for continuous
model retraining and iterative improvement in real-world scenarios. Beyond browser-based protection, a crucial next step includes
expanding PhishSpot's hybrid architecture to mobile platforms, adapting lightweight client-side components to address the increasing
prevalence of mobile-based phishing attacks across various operating systems and browser environments. Concurrently, rigorous
investigation into privacy-preserving techniques like federated learning could minimize server-side data transmission and processing,
offering enhanced user privacy guarantees without compromising detection efficacy, a vital consideration for widespread adoption.
Finally, exploring the integration of behavioral analytics and user profiling to detect anomalous login patterns or suspicious
interactions on seemingly legitimate pages could add another layer of sophisticated, context-aware protection. These comprehensive
future directions aim to solidify PhishSpot's position as a leading, adaptable, and user-centric solution in the ongoing battle against
phishing.
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