
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 1

A Hybrid Static–Dynamic Malware Analysis Framework Using Interpretable

Neural Network

Dr. Deepak Tomar1, Prof. Alok Verma2, Dr. Kismat Chhillar3

1System Analyst, Bundelkhand University, Jhansi, UP
2Professor, Dept. of Mathematical Sc. & Computer Applications, Bundelkhand University, Jhansi, UP

3Assistant Professor, Dept. of Mathematical Sc. & Computer Applications, Bundelkhand University, Jhansi, UP

---***---

Abstract - Malware is constantly evolving, using a mix of

polymorphism and stealth techniques that can outsmart

traditional detection systems. In this paper, we introduce a

hybrid framework for analyzing malware that merges static

code and file-level features with dynamic behavioral data. This

combined approach is then processed through an interpretable

ensemble of neural networks. Our design focuses on achieving

high detection rates while also providing explanations that are

easy for security analysts to understand, aiding their decision-

making process. We outline the architecture, the pipelines for

feature extraction, the choices made in model design (including

attention mechanisms and post-hoc explanation tools like

SHAP/LIME and layer-wise relevance propagation), as well as

our training and evaluation methods, and how we stack up

against baseline models. Our experiments, which involved both

malware and benign datasets, show that this hybrid interpretable

method enhances detection metrics (like accuracy, F1 score, and

AUC) while also delivering actionable insights that resonate

with domain expertise. We wrap up by discussing the

limitations, considerations for deployment, and exciting

avenues for improving robustness and scalability.

Key Words: Malware Analysis, hybrid analysis, static analysis,

dynamic analysis, interpretable neural networks, explainable AI,

malware detection, feature fusion, attention mechanisms.

1.INTRODUCTION

Malware continues to be one of the most stubborn threats to our
computing systems, constantly evolving to slip past traditional
defenses. Static analysis—looking at binaries, file headers,
strings, and disassembled code—offers a quick and lightweight
overview, but it can easily be tricked by obfuscation, packing,
and code polymorphism. On the other hand, dynamic analysis—
monitoring runtime behaviors like API calls, network activity,
and memory usage—captures the real malicious actions but
requires sandboxing, is more resource-heavy, and can sometimes
stumble when malware includes environment checks or time
delays. A hybrid approach that combines both static and
dynamic methods brings together their strengths, making it a
promising path for effective malware detection. At the same
time, deep neural networks have significantly improved
detection accuracy by learning intricate feature relationships
from complex data inputs. However, their black-box nature can
undermine analyst confidence and slow down incident response
since the reasoning behind their decisions isn’t clear. In security
applications, explainability is crucial: analysts need
understandable evidence to assess, prioritize, and address threats.
Therefore, merging hybrid analysis with interpretable neural
models can provide both strong detection capabilities and
practical insights for operators.

Malware remains a leading cause of cyberattacks, with new and
more sophisticated variants popping up every day. The fast-
paced evolution of malware, marked by advanced techniques
like obfuscation, polymorphism, and evasion, has made
traditional signature-based antivirus solutions pretty much
outdated. In light of this, the cybersecurity community is
increasingly leaning on machine learning (ML) and deep
learning (DL) to create more adaptable and robust malware
detection systems. However, while these deep learning models,
especially deep neural networks (DNNs), are powerful, they
often operate like "black boxes." This means they make
decisions based on complex, non-linear relationships that can be
hard for humans to grasp. This lack of clarity poses a significant
challenge for their broader use in cybersecurity. Security
professionals need more than just a simple "malicious" or
"benign" label; they require insight into the reasoning behind a
model's decisions to effectively hunt for threats, respond to
incidents, and conduct forensic analysis. Without this
understanding, analysts struggle to differentiate between a true
positive and a false one or to prioritize a serious threat over a
less critical one.

This research tackles the dual challenges of increasingly
sophisticated malware and the opacity of models by introducing
a hybrid analysis framework that leverages interpretable neural
networks. The main concept is to combine the advantages of
both static and dynamic analysis. Static analysis is quick and
scalable, pulling features from a file's binary structure, headers,
and code without needing to run it. However, it can be evaded
through techniques like obfuscation and packing. On the flip
side, dynamic analysis examines a program's actual behavior in a
controlled setting, like a sandbox. While it's highly effective
against evasive malware, it tends to be resource-intensive and
can be sidestepped using time-delay or environment-aware
triggers. By merging features from both analysis methods, we
can create a more robust and thorough understanding of a file's
characteristics.

This paper introduces a cohesive framework that gathers
extensive static and dynamic features, employs a well-thought-
out fusion strategy, and utilizes interpretable neural
architectures. The system strikes a balance between performance
and transparency by incorporating a blend of inherently
interpretable layers (like attention mechanisms and gated feature
selectors) along with post-hoc explanation tools (such as SHAP,
LIME, and LRP). The key contributions include: (1) a
comprehensive hybrid pipeline that integrates static and dynamic
signals; (2) neural architectures crafted for interpretability
without compromising accuracy; (3) evaluations demonstrating
enhanced detection metrics and explanation quality; and (4) a
discussion on deployment trade-offs and future directions aimed
at improving adversarial robustness and creating edge-friendly
models.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 2

2. BACKGROUND AND RELATED WORK

In the early days of machine learning for malware detection, the
focus was mainly on static features pulled from PE headers,
imported functions, opcode sequences, and binary byte n-grams
[1] [2]. Kolter and Maloof were at the forefront of these efforts,
showing that supervised models trained on these static features
could effectively differentiate between malicious and benign
executables, although their performance took a hit when faced
with obfuscated samples [3]. As research progressed, scientists
began to explore more complex static representations, like
control-flow and call-graph features, along with feature hashing
to handle the challenges of high-dimensional byte-level data.
While static methods were appealing due to their speed and
lower execution risk, they consistently struggled with issues
related to packing and obfuscation [4] [5].

On the other hand, dynamic analysis sought to overcome the
shortcomings of static methods by examining the actual behavior
of programs during runtime within sandboxes and
instrumentation frameworks [6]. Behavioral features such as API
call sequences, registry changes, file I/O patterns, and network
connections turned out to be quite effective in identifying
malicious intent in real-time. Research in sequence modeling—
utilizing HMMs, RNNs, and later transformer architectures—
focused on modeling API call traces and temporal behavior to
differentiate between malware families and spot unusual
activities. However, dynamic analysis comes with its own set of
challenges: malware can often detect when it's running in a
sandbox and change its behavior accordingly, and gathering
traces on a large scale can lead to increased operational
overhead.

The emergence of deep learning has paved the way for end-to-
end models that can learn to identify key features straight from
raw or lightly processed data. Techniques like convolutional and
recurrent networks have been utilized on opcode sequences and
API call logs, while graph neural networks have started to
represent program structures, such as call graphs and data-flow
graphs [7] [8], enhancing their ability to generalize even when
faced with obfuscation. Although these models have boosted
detection rates, their lack of transparency has raised some
eyebrows. Research in Explainable AI (XAI) has led to the
development of model-agnostic methods like LIME and SHAP,
as well as neural-specific techniques such as layer-wise
relevance propagation, which help link predictions back to
specific input areas or features [9]. There's a growing body of
literature that applies XAI to cybersecurity tasks, making model
decisions clearer for analysts [10].

Hybrid approaches that blend static and dynamic methods aim to
leverage the best of both worlds. Recent studies have combined
static and dynamic feature sets in various ways—early on
through feature concatenation, at intermediate stages with
modality-specific embeddings followed by fusion, and finally
through late fusion using ensemble voting. Generally, the
findings suggest that hybrid models tend to outperform those
relying on a single modality. However, there’s been less focus
on how interpretable these hybrid models are. Additionally,
practical challenges remain regarding fusion strategies that
maintain interpretability, aligning static indicators with
behavioral traces in explanations, and ensuring the system
remains efficient for enterprise use. Our proposed framework
seeks to fill these gaps by creating fusion-aware interpretability
mechanisms and rigorously assessing both detection and
explanation effectiveness

3. PROBLEM STATEMENT AND OBJECTIVES

Cybersecurity teams need malware detection systems that are

not only precise but also easy to understand. The challenge here

is to create a hybrid analysis framework that can take in both

static and dynamic features, learn strong distinguishing

representations, and provide explanations that connect model

outputs to clear, understandable elements (like suspicious API

sequences, odd network endpoints, or uncommon import

functions). This involves tackling several smaller issues: (1)

choosing and refining complementary static and dynamic

features; (2) designing neural architectures that enable

interpretable attributions across combined modalities; (3)

developing training protocols and benchmarks to evaluate both

detection effectiveness and explanation accuracy; and (4)

considering practical aspects like inference speed and resource

consumption for deployment.

The goals of this project are therefore: (a) to build a hybrid

pipeline that effectively merges static and dynamic features; (b)

to create interpretable neural mechanisms that clarify

predictions at both the modality and feature levels; (c) to show

through empirical evidence that detection performance is better

than unimodal and black-box benchmarks; and (d) to evaluate

how explanations assist analysts in validating and prioritizing

alerts.

4. PROPOSED FRAMEWORK OVERVIEW

The proposed framework consists of four main components:

feature extraction, modality-specific encoders, fusion and

classification networks with interpretable layers, and an

explanation module (check out Figure 1 for a visual overview).

To kick things off, we extract both static and dynamic features

from each sample using well-established parsers and

instrumentation tools. Static features encompass PE header

properties, import/export tables, string counts, opcode

histograms, and lightweight control-flow indicators. On the

other hand, dynamic features include API call sequences with

timestamps, logs of registry/file/network events, characteristics

of processes and memory, and aggregated behavioral statistics.

Let's break this down a bit. First off, we have modality-specific

encoders that take various types of inputs and turn them into

compact embeddings. For the static features, a multi-branch

feedforward network steps in to handle the vectorized metadata

and histograms. On the other hand, when it comes to dynamic

traces, a sequence model—like a bidirectional LSTM or a

lightweight transformer—encodes the temporal behavior into

embeddings, all while keeping the sequence's interpretability

intact through attention weights.

Next up, there's a fusion layer that brings together these

embeddings using a gated multimodal attention mechanism.

This clever setup allows the model to adjust the importance of

each modality based on the sample, meaning it can focus on

static cues when dynamic traces are lacking or give more weight

to dynamics when the runtime behavior is telling a story.

Finally, the classification head kicks in to provide probability

scores that distinguish between malware and benign labels, and

it can even offer family-level labels if needed. To make sense of

it all, we use both intrinsic and post-hoc interpretability

methods. Modality attention scores show which input was the

most impactful, while feature-level attributions come from

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 3

techniques like integrated gradients or LRP for the neural

components, and SHAP for the overall fused model. The

explanation module then translates these attributions into

something more understandable—like pinpointing specific API

calls, import functions, or strings that played a role in the

prediction—so analysts get actionable insights along with the

detection score. Figure 1 demonstrates the hybrid ststic-

dynamic malware analysis framework Architecture.

Figure 1: Hybrid Static–Dynamic Malware Analysis

Framework Architecture

The proposed framework aims to harness the best of both static

and dynamic analysis while tackling the interpretability

challenges that come with neural network models. It features

modular pipelines for extracting features, encoding specific

modalities, fusing multimodal data, and classifying in a way

that's easy to understand. Figure 1 shows the overall workflow,

starting with raw input (like binary files) and sandbox

execution, then moving on to dual-feature extraction,

representation learning, fusion through attention-driven

methods, and interpretability modules that connect predictions

back to relevant domain artifacts.

What sets our framework apart from traditional detection

systems is its thoughtful combination of static and dynamic

analysis. Static analysis offers quick and lightweight insights

based on the properties of executables, while dynamic analysis

captures the behavior of the system at runtime. By merging

these signals within a neural architecture that prioritizes

interpretability, our framework addresses the limitations of

unimodal systems. Plus, we treat interpretability as a key

requirement rather than an afterthought. Instead of relying on

complex deep models that are hard to understand, we

incorporate attention mechanisms, gating, and post-hoc

attribution methods to create explanations that analysts can

actually use for incident triage.

A hybrid architecture is driven by practical needs. Companies

often encounter a variety of malware samples: some are heavily

obfuscated, others are stealthy, and many use evasion

techniques to bypass sandboxing. Our system is designed to

adapt to these different conditions by learning how to balance

the importance of static and dynamic features for each sample.

This flexibility ensures that it remains effective in real-world

situations where no single approach is always dependable.

Additionally, incorporating interpretable neural components

helps avoid turning the system into a black box, which is crucial

for meeting regulatory and operational requirements for

transparency in AI within cybersecurity.

5. FEATURE EXTRACTION AND

PREPROCESSING

Feature design plays a crucial role in hybrid analysis. It all

begins with static feature extraction, which involves binary

parsing to gather structural and metadata features like header

fields, section entropy measures, lists of imported and exported

functions, and string tokens. We then tokenize opcode

sequences to create n-gram histograms or byte-level token

streams. To keep things manageable while retaining important

information, we use feature selection and hashing techniques,

along with normalized counts for our histograms. On the

dynamic side, feature extraction depends on sandboxed

execution, where an instrumentation agent monitors and

captures API call sequences, parameters (like DLL names, file

paths, and registry keys), network endpoints and protocols,

process creation trees, memory changes, and timing patterns.

We preprocess API call sequences to smooth out low-level

variations (such as normalizing parameters and standardizing

file paths) and to tag calls with meaningful labels (like

"network," "process," or "persistence").

To handle sequence length, we employ sliding windows and

aggressive truncation or padding strategies, making our models

more manageable. We also aggregate event-level features into

statistical summaries (like the number of distinct network hosts

contacted or registry keys modified) to complement our

sequence encodings. Both types of features are standardized and

scaled as needed. Categorical tokens (like API names) are

embedded using learned embeddings, while numerical features

are normalized through robust scaling. We take care to label and

eliminate any environmental artifacts introduced by sandboxes

to minimize false correlations. Feature extraction plays a vital

role in hybrid malware analysis. We take great care in designing

both static and dynamic features to capture different aspects of

malware behavior.

A. Static Feature Extraction:

We start by analyzing executable binaries to gather Portable

Executable (PE) header information, which includes details like

file size, section count, and entropy scores. The section entropy

helps us identify packed or encrypted sections that are often

linked to obfuscation techniques. Import and export tables give

us a glimpse into the external libraries and system functions the

program uses, with malicious samples usually showing unusual

import patterns. We also extract, tokenize, and normalize

strings; artifacts like suspicious URLs, registry keys, or encoded

payload markers often serve as strong indicators of malicious

intent. Opcode sequences are disassembled and represented as

n-gram histograms, which help us capture the distribution of

low-level instructions. Additionally, we compute graph features

from control-flow graphs (CFGs), focusing on metrics such as

cyclomatic complexity and function call depth, which reveal the

structural patterns of the software.

B. Dynamic Feature Extraction:

We capture dynamic traces by running samples in a sandbox

environment that's set up for thorough monitoring. This

involves gathering sequences of API calls along with their

timestamps, tracking how processes are created, noting any

changes to files and registries, monitoring memory allocations,

and logging network communications. To manage the

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 4

variability in the raw traces, we standardize file paths, simplify

registry keys, and categorize network endpoints (for instance,

labeling destination IPs as either internal or external). We keep

the timing information intact in our sequence modeling, which

helps the system spot suspicious activities like delayed

executions or staged payload deliveries. We also compile event

logs into statistical features, such as counting unique API calls,

identifying distinct network domains that were contacted, and

tracking attempts at registry persistence.

C. Preprocessing:

All the features we extract go through normalization and

encoding to make sure they work well with neural models. We

standardize numerical features (like entropy and counts) and

convert categorical tokens (such as API names and imported

DLLs) into dense vector embeddings that we learn during

training. We use sequence padding and truncation techniques to

manage API call sequences of varying lengths. To reduce bias

in our dataset, we filter out sandbox artifacts and features

specific to the environment. Plus, we apply feature selection

methods like mutual information ranking to cut down on noise,

which enhances both accuracy and interpretability.

6. NEURAL ARCHITECTURES AND

INTERPRETABILITY MECHANISMS

The neural architecture is designed with encoders that are

specific to different modalities, which feed into a fusion and

classification pipeline. The static encoder is a multi-branch

feedforward network: one branch handles structural numeric

features using dense layers with batch normalization, while

another branch processes histogram features through 1D

convolutions that capture local patterns in opcode distributions.

The outputs from these branches are then combined into a static

embedding. On the other hand, the dynamic encoder is

responsible for modeling temporal behavior. We assess two

variations: a bidirectional LSTM equipped with an attention

layer that generates attention weights across the sequence, and a

transformer encoder that utilizes single-headed self-attention to

maintain clarity (since multi-headed attention can complicate

attribution). The attention mechanism provides valuable insights

by highlighting which API calls or time frames the model is

focusing on. Fusion is managed by a gated attention module that

calculates importance scores for each modality per sample. The

gating layer learns to adjust modality embeddings based on their

relative informativeness. This fused embedding is then passed

into a shallow dense classification head that produces

probabilities.

To ensure interpretability, the classification head is kept

intentionally shallow and constrained, making attributions

clearer. For explanations, we use a hybrid approach. Intrinsic

explanations are derived from attention weights at both the

sequence and modality levels, as well as from learned gate

values. Additionally, post-hoc methods offer feature-level

attribution: SHAP estimates the contributions of features across

the fused model, while Layer-wise Relevance Propagation

(LRP) backpropagates relevance scores through the layers to

link outcomes to input features. To make explanations

actionable, the system aligns attributions with domain artifacts,

such as mapping a significant embedding dimension to the most

contributing import function or API call.

The neural architecture is structured into three key stages:

encoders specific to each modality, a multimodal fusion layer,

and a classification layer that’s easy to interpret.

A. Static Encoder:

The static encoder is made up of several branches, each

designed for different types of features. One branch, a dense

feedforward network, handles numeric metadata like PE header

values and entropy. Another branch uses convolutional

techniques to analyze opcode histograms, capturing local

instruction patterns. Additionally, we incorporate a graph neural

network (GNN) branch to focus on control flow graph (CFG)

features, which helps model the relationships between functions

and control flows. The outputs from these branches are

combined to create a cohesive static embedding. This modular

approach ensures that every type of static feature plays its part

effectively while keeping its impact clear.

B. Dynamic Encoder:

The dynamic encoder is all about modeling sequential behavior.

We use a bidirectional Long Short-Term Memory (Bi-LSTM)

network paired with an attention layer to capture the temporal

dependencies found in API call sequences. The attention

weights help us identify which calls or subsequences are most

significant for classification. To enhance our temporal

modeling, we also explore a lightweight transformer encoder

that features single-headed self-attention, striking a balance

between powerful sequence representation and interpretability.

Event-level aggregated features are processed through a dense

branch, and these outputs are then combined with the sequence

embeddings to create the dynamic embedding.

C. Fusion and Classification:

Fusion happens through a gated attention mechanism. Each type

of embedding—whether static or dynamic—gets an importance

weight that’s learned during training. For instance, when a

sample has hidden static features, the weight of the dynamic

embedding goes up. Conversely, for malware that avoids

detection, the static embedding weight takes precedence. This

flexibility boosts resilience in various attack scenarios. The

combined embedding then moves through a simple

classification head made up of two dense layers, which

produces probability scores indicating whether the sample is

benign or malicious.

D. Interpretability Mechanisms:

We’ve built interpretability into several layers:

• Intrinsic attention helps pinpoint key API calls and

subsequences within the dynamic encoder.

• Gated fusion weights reveal how much each modality

contributes, clarifying whether a decision was mainly

influenced by static or dynamic evidence.

• Post-hoc attribution techniques like SHAP and Layer-

wise Relevance Propagation (LRP) help trace

predictions back to specific features, such as an

unusual DLL import or a questionable network API

call.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 5

To make things easier for analysts, we connect these

explanations back to artifacts that are easy for humans to read.

For instance, if we see a high SHAP attribution for

“RegSetValue” along with a focus on “CreateRemoteThread”. It

suggests a potential attempt at persistence and injection, which

is in line with tactics used by known malware. This approach

helps bridge the gap between machine-driven decisions and

human operational insights.

7. EXPERIMENTAL SETUP, DATASETS,

BASELINES AND METRICS

We assess the framework using a variety of malware and benign

datasets, which feature PE samples that come with

corresponding dynamic traces. The datasets are divided into

separate training, validation, and test sets, employing family-

and time-based partitioning to mimic real-world scenarios

where new malware families or time-shifted variants emerge.

For benchmarking, we set up unimodal baselines (models that

rely solely on static or dynamic data), a simple hybrid model

that combines both, and deep learning baselines that are not

easily interpretable (like deep CNNs and RNNs). We evaluate

performance through metrics such as accuracy, precision, recall,

F1-score, false positive rate, and the area under the ROC curve

(AUC). Additionally, we assess the quality of explanations by

looking at attribution fidelity (how well it aligns with ablation

tests) and the usefulness for analysts through a small qualitative

study with security experts (for instance, do the most important

features help them confirm the alerts?).

During training, we apply early stopping based on validation

loss, use class-balanced minibatches, and implement data

augmentation for dynamic sequences (like minor event

shuffling and synthetic parameter normalization) to enhance

generalization. We select hyperparameters such as embedding

sizes, attention dimensions, learning rate, and regularization

coefficients through a grid search process.

For our experiments, we’re working with datasets that reflect

typical research practices. This includes a varied malware

collection that covers different families like ransomware,

trojans, and droppers, alongside a set of legitimate software

across various versions. We gather dynamic traces in a

controlled sandbox environment. Our baselines feature

traditional machine learning models, such as Random Forests

using static features and Hidden Markov Models (HMMs) on

dynamic traces, as well as unimodal deep learning models like

CNNs for static histograms and LSTMs for dynamic sequences,

plus late-fusion ensembles. We focus on metrics that highlight

detection reliability and minimize false positives, since

operational settings can be quite unforgiving when it comes to

false alarms.

Beyond the usual metrics, we also look at explanation metrics:

(1) fidelity — checking if removing the top-k attributed features

significantly impacts model confidence; (2) sparsity — ensuring

that explanations are straightforward and to the point; and (3)

consistency — verifying that similar inputs yield similar

explanations. Additionally, we keep track of inference latency

and memory usage to evaluate how feasible deployment would

be.

8. RESULTS AND DISCUSSION

The hybrid interpretable model consistently outshines unimodal

baselines. When tested on held-out splits, this model not only

achieves higher F1 and AUC scores compared to static-only and

dynamic-only models, but it also surpasses a basic

concatenation hybrid baseline. It does this by effectively

learning to gate modalities, which helps filter out the noisy

ones. For instance, in situations where static features are

compromised (like when binaries are packed), the model leans

more on dynamic embeddings through gate activations,

ensuring detection performance remains strong. On the flip side,

when dynamic traces are sparse—say, due to environmental

checks—it's the static signals that take the lead in decision-

making.

Interpretability analyses reveal a strong correlation between

intrinsic attention weights and SHAP attributions: API calls that

attract a lot of attention also tend to score high on SHAP

contributions. When we conduct ablation tests by removing the

top-attributed features, we see a significant drop in confidence,

which supports the idea of explanation fidelity. Feedback from

security practitioners suggests that explanations focusing on a

small number of actionable artifacts—like a series of suspicious

API calls paired with an unusual import—greatly speed up the

triage process.

Figure 2: ROC curves comparing Hybrid vs. Static-only vs.

Dynamic-only models

The model does come with a bit of extra overhead compared to

static-only detectors because of its dynamic trace processing.

However, the gated fusion helps cut down on unnecessary

computations by focusing attention where it really matters. Our

runtime profiling shows that this architecture can be fine-tuned

for near-real-time inference in enterprise pipelines, especially

when dynamic feature extraction is already set up. Figure 2

demonstrates ROC curves comparing hybrid vs static-only vs

dynamic-only models.

That said, there are some limitations to keep in mind. For

instance, it can be sensitive to sandbox detection, meaning

malware might stay hidden. There's also a risk of adversarial

manipulation affecting the explanations provided. We've

noticed instances where the model mistakenly assigns

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 6

importance to harmless but correlated features. To address this,

careful curation of the dataset and adversarial training can help

reduce these issues. Figure 3 illustrates comparative

performance bar chart.

Figure 3: Comparative performance bar chart across Accuracy,

Precision, Recall, and F1-score.

9. DEPLOYMENT CONSIDERATIONS AND

SECURITY IMPLICATIONS

Implementing a hybrid interpretable system in a business setting

involves a few key components: you need to integrate it with

sandboxing infrastructure, ensure secure log collection, and set

up alert pipelines. Privacy issues can pop up when dynamic

traces include sensitive information, so it’s crucial to enforce

tokenization and parameter redaction. To keep false positive

rates low, the system should be part of a layered defense

strategy. This means using automated blocking for high-

confidence detections while having analysts review borderline

cases, with the help of the explanations provided.

From a security standpoint, attackers might try to take

advantage of the explainability feature (known as explanation-

guided evasion) or contaminate training data to distort

attributions. To counter these threats, you can employ

adversarial training, focus on explanation-robust training

objectives, and keep an eye out for shifts in feature importance.

It’s essential that the explainable outputs are crafted to support

human decision-making without disclosing sensitive internal

detection methods that could be exploited by malicious actors.

10. CONCLUSION

This paper introduces a hybrid framework for analyzing

malware that cleverly blends static and dynamic analysis

techniques with interpretable neural networks. By creating

encoders tailored to specific modalities, incorporating a gated

attention-based fusion layer, and utilizing hybrid interpretability

methods (like intrinsic attention and post-hoc attribution), the

system not only achieves impressive detection rates but also

provides meaningful explanations for security analysts. The

experimental results show that this hybrid interpretable model

outshines both unimodal and naive-fusion approaches, with

explanations that genuinely resonate with domain artifacts.

When it comes to real-world application, it’s crucial to focus on

aspects like sandbox fidelity, privacy-conscious logging,

adversarial resilience, and computational efficiency. Still, this

hybrid interpretable method marks a significant move towards

more reliable malware detection systems that do more than just

identify threats—they also clarify them.

11. FUTURE SCOPE

There are several exciting avenues to explore that could build

on this work. For starters, merging graph-based program

representations—like call graphs and data-flow graphs—with

graph neural networks could help us capture more nuanced

structural semantics of programs and offer better graph-level

explanations. Next, enhancing adversarial robustness is

essential; this could involve training with adversarial examples,

using robust attribution methods, and detecting any

manipulation of explanations to ensure real-world resilience.

Additionally, adapting the framework for resource-limited

environments, such as IoT or edge computing, will necessitate

model compression and smart dynamic tracing strategies.

Lastly, conducting a larger user study with security analysts

could help us understand how explanations influence the speed

and accuracy of triage in real operational contexts.

REFERENCES

[1] Z. Chen, X. Zhang and S. Kim, "A Learning-based Static

Malware Detection System with Integrated Feature,"

Intelligent Automation & Soft Computing, vol. 27, no. 3, p.

891, 2021.

[2] M. Ali, S. Shiaeles, G. Bendiab and B. Ghita, "MALGRA:

Machine Learning and N-Gram Malware Feature

Extraction and Detection System," Electronics, vol. 9, no.

11, p. 1777, 2020.

[3] J. Z. Kolter and M. A. Maloof, "Learning to Detect

Malicious Executables," in Machine Learning and Data

Mining for Computer Security: Methods and Applications,

London, Springer, 2006, pp. 47-63.

[4] R. Vinayakumar, M. Alazab, K. P. Soman, P.

Poornachandran and S. Venkatraman, "Robust Intelligent

Malware Detection Using Deep Learning," IEEE Access,

vol. 7, no. 1, pp. 46717-46738, April 2019.

[5] H. Rathore, S. Agarwal, S. K. Sahay and M. Sewak,

"Malware detection using machine learning and deep

learning," in International Conference on Big Data

Analytics, Wrangal, India, 2018.

[6] F. H. da Costa, I. Medeiros, T. Menezes, J. V. da Silva, I.

L. da Silva, R. Bonifácio, K. Narasimhan and M. Ribeiro,

"Exploring the use of static and dynamic analysis to

improve the performance of the mining sandbox approach

for android malware identification," Journal of Systems

and Software, vol. 183, no. 1, p. 111092, January 2022.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52505 | Page 7

[7] Y. Wu, J. Shi, P. Wang, D. Zeng and C. Sun, "DeepCatra:

Learning flow‐and graph‐based behaviours for Android

malware detection," IET Information Security, vol. 17, no.

1, pp. 118-130, January 2023.

[8] W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, "Detecting

Code Clones with Graph Neural Network and Flow-

Augmented Abstract Syntax Tree," in IEEE 27th

International Conference on Software Analysis, Evolution

and Reengineering (SANER), London, ON, Canada, 2020.

[9] I. Mollas, N. Bassiliades and G. Tsoumakas, "LioNets: a

neural-specific local interpretation technique exploiting

penultimate layer information," Applied Intelligence, vol.

53, no. 3, pp. 2538-2563, 2023.

[10] Z. Zhang, H. A. Hamadi, E. Damiani, C. Y. Yeun and F.

Taher, "Explainable Artificial Intelligence Applications in

Cyber Security: State-of-the-Art in Research," IEEE

Access, vol. 10, no. 1, pp. 93104-93139, September 2022.

https://ijsrem.com/

