
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 09 | Sept - 2025                                SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52505                                                    |        Page 1 
 

A Hybrid Static–Dynamic Malware Analysis Framework Using Interpretable 

Neural Network 

Dr. Deepak Tomar1, Prof. Alok Verma2, Dr. Kismat Chhillar3 

1System Analyst, Bundelkhand University, Jhansi, UP 
2Professor, Dept. of Mathematical Sc.  & Computer Applications, Bundelkhand University, Jhansi, UP 

3Assistant Professor, Dept. of Mathematical Sc.  & Computer Applications, Bundelkhand University, Jhansi, UP 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Malware is constantly evolving, using a mix of 

polymorphism and stealth techniques that can outsmart 

traditional detection systems. In this paper, we introduce a 

hybrid framework for analyzing malware that merges static 

code and file-level features with dynamic behavioral data. This 

combined approach is then processed through an interpretable 

ensemble of neural networks. Our design focuses on achieving 

high detection rates while also providing explanations that are 

easy for security analysts to understand, aiding their decision-

making process. We outline the architecture, the pipelines for 

feature extraction, the choices made in model design (including 

attention mechanisms and post-hoc explanation tools like 

SHAP/LIME and layer-wise relevance propagation), as well as 

our training and evaluation methods, and how we stack up 

against baseline models. Our experiments, which involved both 

malware and benign datasets, show that this hybrid interpretable 

method enhances detection metrics (like accuracy, F1 score, and 

AUC) while also delivering actionable insights that resonate 

with domain expertise. We wrap up by discussing the 

limitations, considerations for deployment, and exciting 

avenues for improving robustness and scalability. 
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1.INTRODUCTION 

 
Malware continues to be one of the most stubborn threats to our 
computing systems, constantly evolving to slip past traditional 
defenses. Static analysis—looking at binaries, file headers, 
strings, and disassembled code—offers a quick and lightweight 
overview, but it can easily be tricked by obfuscation, packing, 
and code polymorphism. On the other hand, dynamic analysis—
monitoring runtime behaviors like API calls, network activity, 
and memory usage—captures the real malicious actions but 
requires sandboxing, is more resource-heavy, and can sometimes 
stumble when malware includes environment checks or time 
delays. A hybrid approach that combines both static and 
dynamic methods brings together their strengths, making it a 
promising path for effective malware detection. At the same 
time, deep neural networks have significantly improved 
detection accuracy by learning intricate feature relationships 
from complex data inputs. However, their black-box nature can 
undermine analyst confidence and slow down incident response 
since the reasoning behind their decisions isn’t clear. In security 
applications, explainability is crucial: analysts need 
understandable evidence to assess, prioritize, and address threats. 
Therefore, merging hybrid analysis with interpretable neural 
models can provide both strong detection capabilities and 
practical insights for operators. 

Malware remains a leading cause of cyberattacks, with new and 
more sophisticated variants popping up every day. The fast-
paced evolution of malware, marked by advanced techniques 
like obfuscation, polymorphism, and evasion, has made 
traditional signature-based antivirus solutions pretty much 
outdated. In light of this, the cybersecurity community is 
increasingly leaning on machine learning (ML) and deep 
learning (DL) to create more adaptable and robust malware 
detection systems. However, while these deep learning models, 
especially deep neural networks (DNNs), are powerful, they 
often operate like "black boxes." This means they make 
decisions based on complex, non-linear relationships that can be 
hard for humans to grasp. This lack of clarity poses a significant 
challenge for their broader use in cybersecurity. Security 
professionals need more than just a simple "malicious" or 
"benign" label; they require insight into the reasoning behind a 
model's decisions to effectively hunt for threats, respond to 
incidents, and conduct forensic analysis. Without this 
understanding, analysts struggle to differentiate between a true 
positive and a false one or to prioritize a serious threat over a 
less critical one. 

This research tackles the dual challenges of increasingly 
sophisticated malware and the opacity of models by introducing 
a hybrid analysis framework that leverages interpretable neural 
networks. The main concept is to combine the advantages of 
both static and dynamic analysis. Static analysis is quick and 
scalable, pulling features from a file's binary structure, headers, 
and code without needing to run it. However, it can be evaded 
through techniques like obfuscation and packing. On the flip 
side, dynamic analysis examines a program's actual behavior in a 
controlled setting, like a sandbox. While it's highly effective 
against evasive malware, it tends to be resource-intensive and 
can be sidestepped using time-delay or environment-aware 
triggers. By merging features from both analysis methods, we 
can create a more robust and thorough understanding of a file's 
characteristics. 

This paper introduces a cohesive framework that gathers 
extensive static and dynamic features, employs a well-thought-
out fusion strategy, and utilizes interpretable neural 
architectures. The system strikes a balance between performance 
and transparency by incorporating a blend of inherently 
interpretable layers (like attention mechanisms and gated feature 
selectors) along with post-hoc explanation tools (such as SHAP, 
LIME, and LRP). The key contributions include: (1) a 
comprehensive hybrid pipeline that integrates static and dynamic 
signals; (2) neural architectures crafted for interpretability 
without compromising accuracy; (3) evaluations demonstrating 
enhanced detection metrics and explanation quality; and (4) a 
discussion on deployment trade-offs and future directions aimed 
at improving adversarial robustness and creating edge-friendly 
models. 
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2. BACKGROUND AND RELATED WORK 

      

In the early days of machine learning for malware detection, the 
focus was mainly on static features pulled from PE headers, 
imported functions, opcode sequences, and binary byte n-grams 
[1] [2]. Kolter and Maloof were at the forefront of these efforts, 
showing that supervised models trained on these static features 
could effectively differentiate between malicious and benign 
executables, although their performance took a hit when faced 
with obfuscated samples [3]. As research progressed, scientists 
began to explore more complex static representations, like 
control-flow and call-graph features, along with feature hashing 
to handle the challenges of high-dimensional byte-level data. 
While static methods were appealing due to their speed and 
lower execution risk, they consistently struggled with issues 
related to packing and obfuscation  [4] [5]. 

On the other hand, dynamic analysis sought to overcome the 
shortcomings of static methods by examining the actual behavior 
of programs during runtime within sandboxes and 
instrumentation frameworks [6]. Behavioral features such as API 
call sequences, registry changes, file I/O patterns, and network 
connections turned out to be quite effective in identifying 
malicious intent in real-time. Research in sequence modeling—
utilizing HMMs, RNNs, and later transformer architectures—
focused on modeling API call traces and temporal behavior to 
differentiate between malware families and spot unusual 
activities. However, dynamic analysis comes with its own set of 
challenges: malware can often detect when it's running in a 
sandbox and change its behavior accordingly, and gathering 
traces on a large scale can lead to increased operational 
overhead. 

The emergence of deep learning has paved the way for end-to-
end models that can learn to identify key features straight from 
raw or lightly processed data. Techniques like convolutional and 
recurrent networks have been utilized on opcode sequences and 
API call logs, while graph neural networks have started to 
represent program structures, such as call graphs and data-flow 
graphs [7] [8], enhancing their ability to generalize even when 
faced with obfuscation. Although these models have boosted 
detection rates, their lack of transparency has raised some 
eyebrows. Research in Explainable AI (XAI) has led to the 
development of model-agnostic methods like LIME and SHAP, 
as well as neural-specific techniques such as layer-wise 
relevance propagation, which help link predictions back to 
specific input areas or features [9]. There's a growing body of 
literature that applies XAI to cybersecurity tasks, making model 
decisions clearer for analysts [10]. 

Hybrid approaches that blend static and dynamic methods aim to 
leverage the best of both worlds. Recent studies have combined 
static and dynamic feature sets in various ways—early on 
through feature concatenation, at intermediate stages with 
modality-specific embeddings followed by fusion, and finally 
through late fusion using ensemble voting. Generally, the 
findings suggest that hybrid models tend to outperform those 
relying on a single modality. However, there’s been less focus 
on how interpretable these hybrid models are. Additionally, 
practical challenges remain regarding fusion strategies that 
maintain interpretability, aligning static indicators with 
behavioral traces in explanations, and ensuring the system 
remains efficient for enterprise use. Our proposed framework 
seeks to fill these gaps by creating fusion-aware interpretability 
mechanisms and rigorously assessing both detection and 
explanation effectiveness 

 

3. PROBLEM STATEMENT AND OBJECTIVES 

 
Cybersecurity teams need malware detection systems that are 

not only precise but also easy to understand. The challenge here 

is to create a hybrid analysis framework that can take in both 

static and dynamic features, learn strong distinguishing 

representations, and provide explanations that connect model 

outputs to clear, understandable elements (like suspicious API 

sequences, odd network endpoints, or uncommon import 

functions). This involves tackling several smaller issues: (1) 

choosing and refining complementary static and dynamic 

features; (2) designing neural architectures that enable 

interpretable attributions across combined modalities; (3) 

developing training protocols and benchmarks to evaluate both 

detection effectiveness and explanation accuracy; and (4) 

considering practical aspects like inference speed and resource 

consumption for deployment. 

 

The goals of this project are therefore: (a) to build a hybrid 

pipeline that effectively merges static and dynamic features; (b) 

to create interpretable neural mechanisms that clarify 

predictions at both the modality and feature levels; (c) to show 

through empirical evidence that detection performance is better 

than unimodal and black-box benchmarks; and (d) to evaluate 

how explanations assist analysts in validating and prioritizing 

alerts. 

 

4. PROPOSED FRAMEWORK OVERVIEW 
 

The proposed framework consists of four main components: 

feature extraction, modality-specific encoders, fusion and 

classification networks with interpretable layers, and an 

explanation module (check out Figure 1 for a visual overview). 

To kick things off, we extract both static and dynamic features 

from each sample using well-established parsers and 

instrumentation tools. Static features encompass PE header 

properties, import/export tables, string counts, opcode 

histograms, and lightweight control-flow indicators. On the 

other hand, dynamic features include API call sequences with 

timestamps, logs of registry/file/network events, characteristics 

of processes and memory, and aggregated behavioral statistics. 

 

Let's break this down a bit. First off, we have modality-specific 

encoders that take various types of inputs and turn them into 

compact embeddings. For the static features, a multi-branch 

feedforward network steps in to handle the vectorized metadata 

and histograms. On the other hand, when it comes to dynamic 

traces, a sequence model—like a bidirectional LSTM or a 

lightweight transformer—encodes the temporal behavior into 

embeddings, all while keeping the sequence's interpretability 

intact through attention weights. 

 

Next up, there's a fusion layer that brings together these 

embeddings using a gated multimodal attention mechanism. 

This clever setup allows the model to adjust the importance of 

each modality based on the sample, meaning it can focus on 

static cues when dynamic traces are lacking or give more weight 

to dynamics when the runtime behavior is telling a story. 

Finally, the classification head kicks in to provide probability 

scores that distinguish between malware and benign labels, and 

it can even offer family-level labels if needed. To make sense of 

it all, we use both intrinsic and post-hoc interpretability 

methods. Modality attention scores show which input was the 

most impactful, while feature-level attributions come from 
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techniques like integrated gradients or LRP for the neural 

components, and SHAP for the overall fused model. The 

explanation module then translates these attributions into 

something more understandable—like pinpointing specific API 

calls, import functions, or strings that played a role in the 

prediction—so analysts get actionable insights along with the 

detection score. Figure 1 demonstrates the hybrid ststic-

dynamic malware analysis framework Architecture. 

 

 
 

Figure 1: Hybrid Static–Dynamic Malware Analysis 

Framework Architecture 

 

The proposed framework aims to harness the best of both static 

and dynamic analysis while tackling the interpretability 

challenges that come with neural network models. It features 

modular pipelines for extracting features, encoding specific 

modalities, fusing multimodal data, and classifying in a way 

that's easy to understand. Figure 1 shows the overall workflow, 

starting with raw input (like binary files) and sandbox 

execution, then moving on to dual-feature extraction, 

representation learning, fusion through attention-driven 

methods, and interpretability modules that connect predictions 

back to relevant domain artifacts. 

 

What sets our framework apart from traditional detection 

systems is its thoughtful combination of static and dynamic 

analysis. Static analysis offers quick and lightweight insights 

based on the properties of executables, while dynamic analysis 

captures the behavior of the system at runtime. By merging 

these signals within a neural architecture that prioritizes 

interpretability, our framework addresses the limitations of 

unimodal systems. Plus, we treat interpretability as a key 

requirement rather than an afterthought. Instead of relying on 

complex deep models that are hard to understand, we 

incorporate attention mechanisms, gating, and post-hoc 

attribution methods to create explanations that analysts can 

actually use for incident triage. 

 

A hybrid architecture is driven by practical needs. Companies 

often encounter a variety of malware samples: some are heavily 

obfuscated, others are stealthy, and many use evasion 

techniques to bypass sandboxing. Our system is designed to 

adapt to these different conditions by learning how to balance 

the importance of static and dynamic features for each sample. 

This flexibility ensures that it remains effective in real-world 

situations where no single approach is always dependable. 

Additionally, incorporating interpretable neural components 

helps avoid turning the system into a black box, which is crucial 

for meeting regulatory and operational requirements for 

transparency in AI within cybersecurity. 

 

 

 

 

5. FEATURE EXTRACTION AND 

PREPROCESSING 
 

Feature design plays a crucial role in hybrid analysis. It all 

begins with static feature extraction, which involves binary 

parsing to gather structural and metadata features like header 

fields, section entropy measures, lists of imported and exported 

functions, and string tokens. We then tokenize opcode 

sequences to create n-gram histograms or byte-level token 

streams. To keep things manageable while retaining important 

information, we use feature selection and hashing techniques, 

along with normalized counts for our histograms. On the 

dynamic side, feature extraction depends on sandboxed 

execution, where an instrumentation agent monitors and 

captures API call sequences, parameters (like DLL names, file 

paths, and registry keys), network endpoints and protocols, 

process creation trees, memory changes, and timing patterns. 

We preprocess API call sequences to smooth out low-level 

variations (such as normalizing parameters and standardizing 

file paths) and to tag calls with meaningful labels (like 

"network," "process," or "persistence"). 

 

To handle sequence length, we employ sliding windows and 

aggressive truncation or padding strategies, making our models 

more manageable. We also aggregate event-level features into 

statistical summaries (like the number of distinct network hosts 

contacted or registry keys modified) to complement our 

sequence encodings. Both types of features are standardized and 

scaled as needed. Categorical tokens (like API names) are 

embedded using learned embeddings, while numerical features 

are normalized through robust scaling. We take care to label and 

eliminate any environmental artifacts introduced by sandboxes 

to minimize false correlations. Feature extraction plays a vital 

role in hybrid malware analysis. We take great care in designing 

both static and dynamic features to capture different aspects of 

malware behavior. 

 

A. Static Feature Extraction: 

 

We start by analyzing executable binaries to gather Portable 

Executable (PE) header information, which includes details like 

file size, section count, and entropy scores. The section entropy 

helps us identify packed or encrypted sections that are often 

linked to obfuscation techniques. Import and export tables give 

us a glimpse into the external libraries and system functions the 

program uses, with malicious samples usually showing unusual 

import patterns. We also extract, tokenize, and normalize 

strings; artifacts like suspicious URLs, registry keys, or encoded 

payload markers often serve as strong indicators of malicious 

intent. Opcode sequences are disassembled and represented as 

n-gram histograms, which help us capture the distribution of 

low-level instructions. Additionally, we compute graph features 

from control-flow graphs (CFGs), focusing on metrics such as 

cyclomatic complexity and function call depth, which reveal the 

structural patterns of the software. 

 

B. Dynamic Feature Extraction: 

 

We capture dynamic traces by running samples in a sandbox 

environment that's set up for thorough monitoring. This 

involves gathering sequences of API calls along with their 

timestamps, tracking how processes are created, noting any 

changes to files and registries, monitoring memory allocations, 

and logging network communications. To manage the 
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variability in the raw traces, we standardize file paths, simplify 

registry keys, and categorize network endpoints (for instance, 

labeling destination IPs as either internal or external). We keep 

the timing information intact in our sequence modeling, which 

helps the system spot suspicious activities like delayed 

executions or staged payload deliveries. We also compile event 

logs into statistical features, such as counting unique API calls, 

identifying distinct network domains that were contacted, and 

tracking attempts at registry persistence. 

 

C. Preprocessing: 

 

All the features we extract go through normalization and 

encoding to make sure they work well with neural models. We 

standardize numerical features (like entropy and counts) and 

convert categorical tokens (such as API names and imported 

DLLs) into dense vector embeddings that we learn during 

training. We use sequence padding and truncation techniques to 

manage API call sequences of varying lengths. To reduce bias 

in our dataset, we filter out sandbox artifacts and features 

specific to the environment. Plus, we apply feature selection 

methods like mutual information ranking to cut down on noise, 

which enhances both accuracy and interpretability. 

 

6. NEURAL ARCHITECTURES AND 

INTERPRETABILITY MECHANISMS 

 
The neural architecture is designed with encoders that are 

specific to different modalities, which feed into a fusion and 

classification pipeline. The static encoder is a multi-branch 

feedforward network: one branch handles structural numeric 

features using dense layers with batch normalization, while 

another branch processes histogram features through 1D 

convolutions that capture local patterns in opcode distributions. 

The outputs from these branches are then combined into a static 

embedding. On the other hand, the dynamic encoder is 

responsible for modeling temporal behavior. We assess two 

variations: a bidirectional LSTM equipped with an attention 

layer that generates attention weights across the sequence, and a 

transformer encoder that utilizes single-headed self-attention to 

maintain clarity (since multi-headed attention can complicate 

attribution). The attention mechanism provides valuable insights 

by highlighting which API calls or time frames the model is 

focusing on. Fusion is managed by a gated attention module that 

calculates importance scores for each modality per sample. The 

gating layer learns to adjust modality embeddings based on their 

relative informativeness. This fused embedding is then passed 

into a shallow dense classification head that produces 

probabilities. 

 

To ensure interpretability, the classification head is kept 

intentionally shallow and constrained, making attributions 

clearer. For explanations, we use a hybrid approach. Intrinsic 

explanations are derived from attention weights at both the 

sequence and modality levels, as well as from learned gate 

values. Additionally, post-hoc methods offer feature-level 

attribution: SHAP estimates the contributions of features across 

the fused model, while Layer-wise Relevance Propagation 

(LRP) backpropagates relevance scores through the layers to 

link outcomes to input features. To make explanations 

actionable, the system aligns attributions with domain artifacts, 

such as mapping a significant embedding dimension to the most 

contributing import function or API call. 

 

The neural architecture is structured into three key stages: 

encoders specific to each modality, a multimodal fusion layer, 

and a classification layer that’s easy to interpret. 

 

A. Static Encoder: 

 

The static encoder is made up of several branches, each 

designed for different types of features. One branch, a dense 

feedforward network, handles numeric metadata like PE header 

values and entropy. Another branch uses convolutional 

techniques to analyze opcode histograms, capturing local 

instruction patterns. Additionally, we incorporate a graph neural 

network (GNN) branch to focus on control flow graph (CFG) 

features, which helps model the relationships between functions 

and control flows. The outputs from these branches are 

combined to create a cohesive static embedding. This modular 

approach ensures that every type of static feature plays its part 

effectively while keeping its impact clear. 

 

B. Dynamic Encoder: 

 

The dynamic encoder is all about modeling sequential behavior. 

We use a bidirectional Long Short-Term Memory (Bi-LSTM) 

network paired with an attention layer to capture the temporal 

dependencies found in API call sequences. The attention 

weights help us identify which calls or subsequences are most 

significant for classification. To enhance our temporal 

modeling, we also explore a lightweight transformer encoder 

that features single-headed self-attention, striking a balance 

between powerful sequence representation and interpretability. 

Event-level aggregated features are processed through a dense 

branch, and these outputs are then combined with the sequence 

embeddings to create the dynamic embedding. 

 

C. Fusion and Classification: 

 

Fusion happens through a gated attention mechanism. Each type 

of embedding—whether static or dynamic—gets an importance 

weight that’s learned during training. For instance, when a 

sample has hidden static features, the weight of the dynamic 

embedding goes up. Conversely, for malware that avoids 

detection, the static embedding weight takes precedence. This 

flexibility boosts resilience in various attack scenarios. The 

combined embedding then moves through a simple 

classification head made up of two dense layers, which 

produces probability scores indicating whether the sample is 

benign or malicious. 

 

D. Interpretability Mechanisms: 

 

We’ve built interpretability into several layers: 

 

• Intrinsic attention helps pinpoint key API calls and 

subsequences within the dynamic encoder. 

 

• Gated fusion weights reveal how much each modality 

contributes, clarifying whether a decision was mainly 

influenced by static or dynamic evidence. 

 

• Post-hoc attribution techniques like SHAP and Layer-

wise Relevance Propagation (LRP) help trace 

predictions back to specific features, such as an 

unusual DLL import or a questionable network API 

call. 
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To make things easier for analysts, we connect these 

explanations back to artifacts that are easy for humans to read. 

For instance, if we see a high SHAP attribution for 

“RegSetValue” along with a focus on “CreateRemoteThread”. It 

suggests a potential attempt at persistence and injection, which 

is in line with tactics used by known malware. This approach 

helps bridge the gap between machine-driven decisions and 

human operational insights. 

 

7. EXPERIMENTAL SETUP, DATASETS, 

BASELINES AND METRICS 

 
We assess the framework using a variety of malware and benign 

datasets, which feature PE samples that come with 

corresponding dynamic traces. The datasets are divided into 

separate training, validation, and test sets, employing family- 

and time-based partitioning to mimic real-world scenarios 

where new malware families or time-shifted variants emerge. 

For benchmarking, we set up unimodal baselines (models that 

rely solely on static or dynamic data), a simple hybrid model 

that combines both, and deep learning baselines that are not 

easily interpretable (like deep CNNs and RNNs). We evaluate 

performance through metrics such as accuracy, precision, recall, 

F1-score, false positive rate, and the area under the ROC curve 

(AUC). Additionally, we assess the quality of explanations by 

looking at attribution fidelity (how well it aligns with ablation 

tests) and the usefulness for analysts through a small qualitative 

study with security experts (for instance, do the most important 

features help them confirm the alerts?). 

 

During training, we apply early stopping based on validation 

loss, use class-balanced minibatches, and implement data 

augmentation for dynamic sequences (like minor event 

shuffling and synthetic parameter normalization) to enhance 

generalization. We select hyperparameters such as embedding 

sizes, attention dimensions, learning rate, and regularization 

coefficients through a grid search process. 

 

For our experiments, we’re working with datasets that reflect 

typical research practices. This includes a varied malware 

collection that covers different families like ransomware, 

trojans, and droppers, alongside a set of legitimate software 

across various versions. We gather dynamic traces in a 

controlled sandbox environment. Our baselines feature 

traditional machine learning models, such as Random Forests 

using static features and Hidden Markov Models (HMMs) on 

dynamic traces, as well as unimodal deep learning models like 

CNNs for static histograms and LSTMs for dynamic sequences, 

plus late-fusion ensembles. We focus on metrics that highlight 

detection reliability and minimize false positives, since 

operational settings can be quite unforgiving when it comes to 

false alarms. 

 

Beyond the usual metrics, we also look at explanation metrics: 

(1) fidelity — checking if removing the top-k attributed features 

significantly impacts model confidence; (2) sparsity — ensuring 

that explanations are straightforward and to the point; and (3) 

consistency — verifying that similar inputs yield similar 

explanations. Additionally, we keep track of inference latency 

and memory usage to evaluate how feasible deployment would 

be. 

 

8. RESULTS AND DISCUSSION 

 
The hybrid interpretable model consistently outshines unimodal 

baselines. When tested on held-out splits, this model not only 

achieves higher F1 and AUC scores compared to static-only and 

dynamic-only models, but it also surpasses a basic 

concatenation hybrid baseline. It does this by effectively 

learning to gate modalities, which helps filter out the noisy 

ones. For instance, in situations where static features are 

compromised (like when binaries are packed), the model leans 

more on dynamic embeddings through gate activations, 

ensuring detection performance remains strong. On the flip side, 

when dynamic traces are sparse—say, due to environmental 

checks—it's the static signals that take the lead in decision-

making. 

 

Interpretability analyses reveal a strong correlation between 

intrinsic attention weights and SHAP attributions: API calls that 

attract a lot of attention also tend to score high on SHAP 

contributions. When we conduct ablation tests by removing the 

top-attributed features, we see a significant drop in confidence, 

which supports the idea of explanation fidelity. Feedback from 

security practitioners suggests that explanations focusing on a 

small number of actionable artifacts—like a series of suspicious 

API calls paired with an unusual import—greatly speed up the 

triage process. 

 

 

 
 

Figure 2: ROC curves comparing Hybrid vs. Static-only vs. 

Dynamic-only models 

 

 

The model does come with a bit of extra overhead compared to 

static-only detectors because of its dynamic trace processing. 

However, the gated fusion helps cut down on unnecessary 

computations by focusing attention where it really matters. Our 

runtime profiling shows that this architecture can be fine-tuned 

for near-real-time inference in enterprise pipelines, especially 

when dynamic feature extraction is already set up. Figure 2 

demonstrates ROC curves comparing hybrid vs static-only vs 

dynamic-only models.  

 

That said, there are some limitations to keep in mind. For 

instance, it can be sensitive to sandbox detection, meaning 

malware might stay hidden. There's also a risk of adversarial 

manipulation affecting the explanations provided. We've 

noticed instances where the model mistakenly assigns 

https://ijsrem.com/
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importance to harmless but correlated features. To address this, 

careful curation of the dataset and adversarial training can help 

reduce these issues. Figure 3 illustrates comparative 

performance bar chart. 

 

 
 

Figure 3: Comparative performance bar chart across Accuracy, 

Precision, Recall, and F1-score. 

 

9. DEPLOYMENT CONSIDERATIONS AND 

SECURITY IMPLICATIONS 

 
Implementing a hybrid interpretable system in a business setting 

involves a few key components: you need to integrate it with 

sandboxing infrastructure, ensure secure log collection, and set 

up alert pipelines. Privacy issues can pop up when dynamic 

traces include sensitive information, so it’s crucial to enforce 

tokenization and parameter redaction. To keep false positive 

rates low, the system should be part of a layered defense 

strategy. This means using automated blocking for high-

confidence detections while having analysts review borderline 

cases, with the help of the explanations provided. 

 

From a security standpoint, attackers might try to take 

advantage of the explainability feature (known as explanation-

guided evasion) or contaminate training data to distort 

attributions. To counter these threats, you can employ 

adversarial training, focus on explanation-robust training 

objectives, and keep an eye out for shifts in feature importance. 

It’s essential that the explainable outputs are crafted to support 

human decision-making without disclosing sensitive internal 

detection methods that could be exploited by malicious actors. 

10. CONCLUSION 

 
This paper introduces a hybrid framework for analyzing 

malware that cleverly blends static and dynamic analysis 

techniques with interpretable neural networks. By creating 

encoders tailored to specific modalities, incorporating a gated 

attention-based fusion layer, and utilizing hybrid interpretability 

methods (like intrinsic attention and post-hoc attribution), the 

system not only achieves impressive detection rates but also 

provides meaningful explanations for security analysts. The 

experimental results show that this hybrid interpretable model 

outshines both unimodal and naive-fusion approaches, with 

explanations that genuinely resonate with domain artifacts. 

 

When it comes to real-world application, it’s crucial to focus on 

aspects like sandbox fidelity, privacy-conscious logging, 

adversarial resilience, and computational efficiency. Still, this 

hybrid interpretable method marks a significant move towards 

more reliable malware detection systems that do more than just 

identify threats—they also clarify them. 

 

11. FUTURE SCOPE 

 
There are several exciting avenues to explore that could build 

on this work. For starters, merging graph-based program 

representations—like call graphs and data-flow graphs—with 

graph neural networks could help us capture more nuanced 

structural semantics of programs and offer better graph-level 

explanations. Next, enhancing adversarial robustness is 

essential; this could involve training with adversarial examples, 

using robust attribution methods, and detecting any 

manipulation of explanations to ensure real-world resilience. 

Additionally, adapting the framework for resource-limited 

environments, such as IoT or edge computing, will necessitate 

model compression and smart dynamic tracing strategies. 

Lastly, conducting a larger user study with security analysts 

could help us understand how explanations influence the speed 

and accuracy of triage in real operational contexts. 

REFERENCES 

 

[1]  Z. Chen, X. Zhang and S. Kim, "A Learning-based Static 

Malware Detection System with Integrated Feature," 

Intelligent Automation & Soft Computing, vol. 27, no. 3, p. 

891, 2021.  

[2]  M. Ali, S. Shiaeles, G. Bendiab and B. Ghita, "MALGRA: 

Machine Learning and N-Gram Malware Feature 

Extraction and Detection System," Electronics, vol. 9, no. 

11, p. 1777, 2020.  

[3]  J. Z. Kolter and M. A. Maloof, "Learning to Detect 

Malicious Executables," in Machine Learning and Data 

Mining for Computer Security: Methods and Applications, 

London, Springer, 2006, pp. 47-63. 

[4]  R. Vinayakumar, M. Alazab, K. P. Soman, P. 

Poornachandran and S. Venkatraman, "Robust Intelligent 

Malware Detection Using Deep Learning," IEEE Access, 

vol. 7, no. 1, pp. 46717-46738, April 2019.  

[5]  H. Rathore, S. Agarwal, S. K. Sahay and M. Sewak, 

"Malware detection using machine learning and deep 

learning," in International Conference on Big Data 

Analytics, Wrangal, India, 2018.  

[6]  F. H. da Costa, I. Medeiros, T. Menezes, J. V. da Silva, I. 

L. da Silva, R. Bonifácio, K. Narasimhan and M. Ribeiro, 

"Exploring the use of static and dynamic analysis to 

improve the performance of the mining sandbox approach 

for android malware identification," Journal of Systems 

and Software, vol. 183, no. 1, p. 111092, January 2022.  

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 09 | Sept - 2025                                SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52505                                                    |        Page 7 
 

[7]  Y. Wu, J. Shi, P. Wang, D. Zeng and C. Sun, "DeepCatra: 

Learning flow‐and graph‐based behaviours for Android 

malware detection," IET Information Security, vol. 17, no. 

1, pp. 118-130, January 2023.  

[8]  W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, "Detecting 

Code Clones with Graph Neural Network and Flow-

Augmented Abstract Syntax Tree," in IEEE 27th 

International Conference on Software Analysis, Evolution 

and Reengineering (SANER), London, ON, Canada, 2020.  

[9]  I. Mollas, N. Bassiliades and G. Tsoumakas, "LioNets: a 

neural-specific local interpretation technique exploiting 

penultimate layer information," Applied Intelligence, vol. 

53, no. 3, pp. 2538-2563, 2023.  

[10]  Z. Zhang, H. A. Hamadi, E. Damiani, C. Y. Yeun and F. 

Taher, "Explainable Artificial Intelligence Applications in 

Cyber Security: State-of-the-Art in Research," IEEE 

Access, vol. 10, no. 1, pp. 93104-93139, September 2022.  

 

 

 

 

 

 

 

https://ijsrem.com/

